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Abstract: The difficulty of endpoint determination in
basic oxygen furnace (BOF) steelmaking lies in achieving
accurate real-time measurements of carbon content and
temperature. For the characteristics of serious nonli-
nearity between process data, deep learning can perform
excellent nonlinear feature representation for complex
structural data. However, there is a process drift phenom-
enon in BOF steelmaking, and the existing deep learning-
based soft sensor models cannot adapt to changes in the
characteristics of samples, which may lead to their per-
formance degradation. To deal with this problem, con-
sidering the characteristics of multimode distribution of
process data, an adaptive updating deep learning model
based on von-Mises Fisher (vMF) mixture model and
weighted stacked autoencoder is proposed. First, the
stacked autoencoder (SAE) and vMF mixture model are
constructed for complex structural data, which can initi-
ally establish nonlinear mapping relationships and divi-
sion of different distributions. Second, for each query
sample, the basic SAE network will perform online adap-
tive fine-tuning according to its data with the same dis-
tribution to achieve dynamic updating. Moreover, each

sample is assigned a weight according to its similarity
with the query sample. Through the designed weighted
loss function, the updated deep network will better match
the working conditions of the query sample. Experimental
studies with numerical examples and actual BOF steel-
making process data are provided to demonstrate the
effectiveness of the proposed method.

Keywords: BOF steelmaking endpoint, stacked autoen-
coder, vMF mixture model, similarity measure, adaptive
weighted updating

1 Introduction

Basic oxygen furnace (BOF) steelmaking, as the main
technical means of steelmaking, has the characteristics
of high production efficiency and relatively low cost [1]. It
is a complex physicochemical reaction process that con-
verts raw materials such as molten iron, scrap steel, and
pig iron into steel [2]. Figure 1 illustrates the process of
BOF steelmaking. Among them, the endpoint carbon con-
tent and temperature of molten steel are important indi-
cators in the steelmaking process, and they are the key to
determining whether the steel quality is up to the standard.
Therefore, it is of great significance to achieve accurate
prediction of the endpoint carbon content and temperature
for improving steel production efficiency, reducing produc-
tion costs, and reducing emissions [3].

Currently, there are two main methods to obtain the
endpoint carbon content and temperature of molten steel,
one is contact measurement and the other is noncontact
measurement [4]. The sublance is a typical contact mea-
suring device. It immerses the probe in the high-tempera-
ture molten pool for measurement and then takes out the
used probe from the sublance, which increases the cost of
steelmaking. In addition, this measurement method can
only be measured intermittently [5]. Judging the endpoint
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by manual experience is one of the most common noncon-
tact methods, and workers judge whether the heat has
reached the end point based on experience. However, it
will be affected by observers’ subjective emotions and pro-
ficiency, and it is difficult to achieve accurate judgment of
the endpoint [6]. Inspired by this method, some noncon-
tact measurement models based on the flame radiation
image of the vessel mouth are proposed to predict the
endpoint carbon content and temperature [7–9]. Since
the flame radiation image is easily affected by the scene
environment, it poses a great challenge to extract the key
features of the flame image [10]. With the development of
computer technology and data collection technology of
BOF steelmaking process, the data-driven endpoint carbon
content and temperature soft sensor method in the BOF
steelmaking production process have become a current
research focus [11]. The researchers use a large amount
of steelmaking process data as process variables and employ
the endpoint carbon content and temperature as target/output
variables to build an intelligent predictionmodel to predict the
carbon content and temperature in molten steel [12–16]. How-
ever, these methods are all shallow learning models with a
narrow scope of application. For BOF steelmaking process
data with highly nonlinear and complex data structures,
more reasonable methods are needed to model.

Soft sensor methods of the industrial process are
mainly divided into local model modeling and global
model modeling. Just-in-time learning (JITL) is the most
typical algorithmic framework in the local model mod-
eling. For each query sample, its similar sample set is
selected from historical data for local modeling and the
output is predicted [17]. In this way, the process time-
varying problem can be dealt with refs. [17–19]. For
example, Fan et al. [18] proposed a similarity criterion
based on the Gaussian mixture model-weighted Mahala-
nobis distance under the JITL framework for soft sensor
modeling of non-Gaussian industrial processes. It can be
seen that the difficulty of JITL modeling method lies in
the use of the similarity criterion [19]. For the complex

industrial process of BOF steelmaking, the distribution of
process data varies greatly. If the similarity criterion fails,
it is difficult for JITL to obtain a good prediction effect.
Global model modeling methods are divided into tradi-
tional machine learning modeling [20,21] and soft sensor
modeling based on deep learning technology [22–26].
Due to the shallow architecture of traditional machine
learning models, their expressive ability is still insufficient
to describe complex industrial process data structures,
which can easily lead to unstable model performance or
even failure [23]. Deep learning technology has powerful
feature extraction and nonlinear processing capabilities
and can alleviate the restrictive problems such as gra-
dient disappearance in network training through layer-by-
layer unsupervised pretraining and supervised fine-tuning
[24]. Therefore, deep learning can greatly improve the pre-
diction performance of soft sensor models. For example,
Liu et al. [22] discussed the unique advantages of deep
learning in industrial processes using a modified long
short-term memory neural network. Yuan et al. [23–25]
improved the deep learning network by introducing output
information to guide the pretraining process, and achieved
good results in industrial systems such as hydrocracking
processes. In addition, the introduction of some new theo-
retical techniques in soft sensor modeling has also achieved
good results. For example, Liu et al. [27,28], inspired by the
idea of transfer learning, introduced the domain adaptive
method into soft sensor. Deng et al. [29] and Liu et al. [30]
facilitate the efficient modeling and prediction of soft sen-
sors by introducing active learning.

BOF steelmaking is a complex industrial production
process, and there are serious nonlinear characteristics
between the data [16]. Currently, the research on the
quality prediction of steelmaking is still in the stage of
using the shallow model for modeling prediction [31,32],
which does not fit well with more complex industrial
processes. Deep learning techniques can be used for non-
linear modeling of the complex structured data [23].
Among them, stacked autoencoder (SAE) [33], as a
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Figure 1: The process step of BOF steelmaking.
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representative deep learning method, has been widely
used in the field of industrial process soft sensing modeling
[23–25]. However, most of the aforementioned methods are
staticmodels, i.e., theyusehistoricaldata to train thenetwork
offline and then use it online to predict target variables for
new samples, with little attention to the dynamic changes of
the process.

In addition, in actual steelmaking production, the
distribution of the collected process data characteristics
varies considerably due to the quality differences of dif-
ferent batches of raw materials, variations in product
specifications, and changes in operating conditions [34].
Industrial processes often have multiple operating condi-
tions or cycles [35]. The data of different working con-
ditions or construction periods have different statistical
characteristics, and the converter process presents multi-
mode distribution characteristics [36]. Specifically, the
production conditions required to smelt steel of different
qualities are also different. In the initial stage of blowing,
the number of auxiliary materials added and the time
period of addition are one of the factors that affect the
end of steelmaking. During the steelmaking process, workers
have to calculate the amount of steel scrap added according
to the composition of molten iron. The amount of scrap steel
added will also vary according to different qualities, and the
amount of heavy scrap steel added is lower than that of light
scrap steel. Workers will also adjust the blowing time of the
oxygen lance and control of the amount of oxygen blowing
according to the actual situation on site. Overall, data char-
acteristics such as mean, variance, and correlation will differ
when a production process is run under different conditions
or cycles. Since static models cannot be updated in time
according to changes in actual working conditions, these
models are difficult to be effective for a long time. Although
retraining the deep network can solve the aforementioned
problems, it is difficult to meet the real-time requirements
in actual production. For the multimode process data of
BOF steelmaking with complex data distribution, how to
maintain the model performance is the goal of deep learning
application in the endpoint soft sensor modeling of the BOF
steelmaking. Therefore, an effective deep learning adaptive
strategy is needed to avoid the aforementioned problems.
Besides, for the multimode distribution phenomenon of
industrial process data, researchers often use a mixed
model to express multimode behavior in historical data-
bases [16,18,37]. Qi et al. [16] demonstrated the advantages
of introducing the von-Mises Fisher (vMF) mixture model
[38] for soft sensor modeling in industrial process data
with large differences in distribution. This motivates this
article to try to combine the vMF mixture model with the
SAE deep learning model to solve the problem of the high

nonlinearity of the data in the BOF steelmaking process
and the multimode distribution of the data, which leads to
the degradation of the model performance.

Based on the aforementioned analysis, in view of the
high nonlinearity of the BOF steelmaking process data,
this article introduces SAE into the steelmaking process
data modeling. For the problem that the performance of
the static model degrades due to the process drift, con-
sidering that the data characteristics of BOF steelmaking
process have the characteristics of multimodal distribu-
tion, an adaptive updating deep learning model based on
the vMFmixture model and weighted SAE (vMF-WSAE) is
proposed. First, through the pretraining and supervised
fine-tuning of SAE, features can be extracted from com-
plex structural data and a nonlinear mapping relation-
ship can be initially established to obtain a basic predic-
tion network. At the same time, the vMF mixture model is
trained on the historical data, so that the samples in each
component have a certain consistency between the pro-
cess states. When a new query sample is predicted online,
the offline-trained SAE is adaptively fine-tuned online
with the data within the vMF component to which it
belongs, which realizes dynamic updating of the net-
work. Moreover, to pay more attention to the samples
that are highly similar to the query samples when the
model is updated, the loss function of the model update
is improved considering the local characteristics of each
vMF component. Different weights are assigned according
to the similarity between the query sample and the sam-
ples in its belonging component, and the more relevant
sample indicates that it has a data structure closer to the
query sample of the same working condition. Weighted
adaptive updates are performed in this way to improve pre-
diction accuracy. Finally, a numerical simulation example
and a simulation experiment and comparative analysis of
actual BOF steelmaking data are provided.

In summary, the main contributions of this study are
as follows:
(1) An updating strategy of adaptive dynamic deep learning

is proposed, which can dynamically update the deep
network according to the distribution characteristics of
the query sample, to realize the endpoint soft sensor of
multimode BOF steelmaking.

(2) Through the improved weighted loss function, SAE
can quickly adapt to the process running status in
the update phase and achieve accurate prediction.

(3) Experimental studies on numerical examples and
practical BOF steelmaking processes are provided.
The effectiveness of the proposed method is verified
by ablation experiments and compared with other
soft sensor methods.
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2 Dynamic deep learning model
based on vMF-WSAE adaptive
updating

In this section, relevant knowledge is introduced in
Sections 2.1 and 2.2, including traditional SAE and
vMF mixture model algorithms. Then, based on this
existing knowledge, the proposed vMF-WSAE-based
adaptive deep learning model is introduced. The struc-
ture of the theoretical part is shown in Figure 2. First,
through the SAE to train the basic deep network on historical
data, a nonlinear mapping relationship can be initially estab-
lished.At the same time, through the improvedBayesian infor-
mation criterion (iBIC) shown in definition 1, the optimal
number of mixed model components is determined, and
the complex distributed data are divided into different vMF
components. Next, to solve the problem that the static
model cannot adapt to the fluctuation of sample charac-
teristics for accurate prediction, an adaptive updating
strategy is constructed in Section 2.3. The parameters of
the offline model are adaptively updated using the vMF
components to which the query samples belong. More-
over, WSAE utilizes an improved network loss function,
whose weighting parameters are obtained by the similarity
criterion shown in definition 2, so that the model pays more
attention to samples that are similar in data structure to the
query samples when updating.

2.1 SAE

Autoencoder (AE) is the constituent unit of SAE, which is
a three-layer deep learning network including encoder
and decoder [33]. Figure 3(a) shows the network structure
of AE. AE tries to reconstruct its input data with hidden
layer features, h is usually regarded as a feature repre-
sentation learned from the input data. The encoder con-
verts the input variable vectorx Rdx∈ into a hidden variable
vector h Rdh∈ through a nonlinear activation function. The
decoder maps the hidden layer vector to the output layer to
obtain the output variable vector x̃ Rdx∈ as follows:

fh Wx b ,( )= + (1)

fx̃ W̃h b̃˜ ,( )= + (2)

where f and f̃ are the nonlinear activation functions of the
hidden layer and output layer, respectively; W and b
are the weight matrix and bias vector of the encoder,
respectively; W̃ and b̃ are the weight matrix and bias
vector of the decoder, respectively. The set of parameters
to be optimized by the AE can be expressed as θAE =

W W̃ b b̃, , ,{ }. Assuming there are N training data, the
parameters and hidden layer features H hi i

N
1{ }=

=
of the

model are obtained by minimizing the following objective
function through multiple iterations:

J Nθ x̃ x 2 .
i

N

i iAE AE
1

2( ) ∥ ∥∑= − /

=

(3)

Figure 2: The structure of the proposed method.
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To extract deeper abstract features for prediction and
improve the nonlinear processing capability of the net-
work, multiple AEs with a single structure are stacked to
form a SAE deep neural network, and the basic structure
is shown in Figure 3(b). Here, hk represents the hidden
variable vector at the kth hidden layer of the deep net-
work. The training process is divided into an unsuper-
vised pretraining stage and a supervised fine-tuning stage.

First, the network parameters θi i
K

1{ }
=

of each AE are pre-
trained greedily in an unsupervised manner. In the fine-
tuning stage, the weights obtained from pretraining are
regarded as the initial weights of the stacked network.
The hidden layer in the last AE is connected to the regres-
sion layer for the prediction output. There is an overall fine-
tuning of the weights and biases with minimizing the mean
square error of the label and prediction output as the objec-
tive function, thus optimizing the parameters of all layers.

2.2 vMF mixture model

To make samples within the same distribution compo-
nent have a certain consistency between process states,
this section introduces an algorithm for partitioning the
distribution. The vMF distribution is considered a pop-
ular direction distribution [39]. For a D-dimensional unit
vector x x xx , , ... , D

Τ
1 2[ ]= , its probability density function

can be expressed as follows:

ν λ λ

π I λ
ex μ,

2
,D

λμ x
1

2 1

D

D

Τ2

2

( | )
( ) ( )

=

−

−

(4)

where μ 1|| || = ，λ 0≥ ， and I D 2 1( )( ) ⋅/ − indicates the mod-
ified Bessel function of the first kind of order D 2 1( )/ − .

The probability density function ν λx μ,( | ) is described by
the mean direction μ and the concentration parameter λ.
The greater value of λ means a more robust concentration
around the mean direction.

Fora setofdata that containsNvectorsX x x x, , ... , N1 2{ }= ,
where each vector xi = x x x, , ...,i i iD

Τ
1 2[ ] indicates a D-dimen-

sional data. The probability density of its vMF mixture
model is defined as follows:

p τ νX μ λ τ x μ λ, , , ,
i

N

m

M

m i m m
1 1

( | ) ( | )∏ ∑=

= =

(5)

where M is the number of mixture components and τm is
the weight of the mth vMF component.

For the vMF mixture model, if the traditional expec-
tation maximization algorithm is used for training, it may
lead to high computational cost and overfitting due to the
complexity of the model or poor initialization. To solve
the problem of parameter estimation, the method of var-
iational inference (VI) is used for Bayesian estimation of
vMF mixture models [40]. This approach provides a var-
iational treatment for the vMF model by approximating
posterior distributions.

First, a set of latent probability variables is defined as
Z z z z, , ... , N1 2{ }= . Each latent probability variable zi =

z z z, , ...,i i iM1 2{ } corresponds to a D-dimensional observa-
tion vector x x xx , , ...,i i i iD

Τ
1 2[ ]= , where z 1m

M
im1∑ =

=
and

z0 1im≤ ≤ . If z 1im = , then the sample xi completely
belongs to the mth vMF distribution component. The
probability density function can be expressed as follows:

p νX Z μ λ x μ λ, , , .
i

N

m

M

i m m
z

1 1

im( | ) ( | )∏ ∑=

= =

(6)

Next, in VI methods, a lower bound called the evidence
lower bound is provided to approximate the posterior

Figure 3: Structure for AE and SAE. (a) AE network. (b) SAE network with K AEs.
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distribution, whose evidence lower bound is defined as
follows:

L q p
q

p p p p
q q

X Z μ λ τ
Z μ λ τ

X Z μ λ μ λ Z τ τ
Z μ λ τ

ln , , , ,
, , ,

ln , , ,
, ,

,

( )
( )

( )

( | ) ( ) ( | ) ( )

( ) ( )

=

=

(7)

where p X Z μ λ τ, , , ,( ) represents the joint distribution of
all random variables, and q Z μ λ τ, , ,( ) is the approxima-
tion for the posterior distributions. The variation factor
q Z( ) is optimized by maximizing the evidence lower bound
L q( ). The optimal variational posterior distribution of the
latent probability variable Z is defined as follows:

q ξZ ,
i

N

m

M

im
z⁎

1 1

im( ) ∏∏=

= =

(8)

where q⁎( )⋅ represents the optimized posterior distribu-
tion and ξim is given by

ξ e
e

,im

ρ

j
M ρ

ln

1
ln

im

ij

⁎

⁎=

∑
=

(9)

where ξ 1m
M

im1∑ =
=

and ξ0 1im≤ ≤ . For q Z⁎( ), we obtain
z ξim imZ( ) = . ρln im

⁎ is obtained by:

ρ φ α φ α D π D φ α b

a
b

I λ
λ

I λ a
b

λω x

ln ˆ
2

ln 2
2

1 ln

ln ˆ ln ˆ ˆ ,

im m m m

m

m
m
Τ

i D m
m

D m
m

m
m

⁎

2 1 2 1⎜ ⎟⎜ ⎟

( ) ( ) ⎛
⎝

⎞
⎠

( ( ) )

( ) ⎛

⎝
( )⎞

⎠

⎛

⎝

⎞

⎠

= − − + − −

+ − −
∂

∂

−
− −

(10)

where φ α αlnα
d

d( ) = and α αˆ m
M

m1= ∑
=

. Finally, when using
VI to estimate the parameters of the vMF mixture model,
α β a b, , ,m m m m and ωm is recorded as the posterior para-
meters of the mth vMF component, as follows:

α α ξ

β β ξ

β ξ β

a a D ξ

β λ
I β λ β λ

b b ξ
λ

I λ

β
β λ

I β λ

ω x

ω ω x

,

,

,

2
1

ln ˆ ˆ ,

ln ˆ

ln ˆ .

m m
i

N

im

m m m
i

N

im i

m m m
i

N

im i m

m m
i

N

im

m m
D m m m m

m m
i

N

im
m

D m

m
m m

D m m

0,
1

0, 0,
1

0, 0,
1

1

0,
1

2 1
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1 2 1

0,
0, 2 1 0,
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∑
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+
∂

∂

= +
∂

∂

+
∂

∂

=

=

=

−

=

−

=

−

−

(11)

For the trained finite vMF mixture model, the total
space of BOF historical data is divided into multiple vMF
components, each of which represents a distribution with
similar parameters. Each process sample has a corre-
sponding latent probability variable z z zz , , ...,i i i iM1 2{ }= ,
and zim can be considered as the probability that the
sample belongs to themth vMF component. For example,
if the largest element in zi is zi1, the sample is considered
to belong to the first vMF component.

2.3 An adaptive dynamic deep learning
strategy based on vMF mixture model
and WSAE

As mentioned in Section 1, for most deep learning-based
soft sensor methods, the model is trained offline and then
used online to make predictions, and it has no mechanism
for model updating. That is, although SAE can learn the
deep features of the data for nonlinear modeling after off-
line training, when the model is applied online, frequent
changes in operating conditions or data characteristics
may cause the model performance to degrade. In the
actual BOF steelmaking process, affected by the fluctua-
tion of rawmaterial quality of different batches, changes in
product specifications and changes in operating conditions,
the process data presents the characteristics of multimode
distribution. Based on the aforementioned analysis, this sec-
tion proposes a dynamic deep learning adaptive updating
strategy based on the vMFmixture model and weighted SAE
(vMF-WSAE) to maintain the performance of the model and
track the working conditions in time. The vMF-WSAE mod-
eling framework is divided into two main stages, including
offline modeling and online adaptive updating.

2.3.1 Base model constructed based on SAE and vMF
mixture model

The BOF steelmaking data has serious nonlinear charac-
teristics. In the offline modeling stage, SAE is used to
extract the features of historical data and initially con-
struct nonlinear mapping relationships to obtain the
basic deep network. To obtain the weight and bias para-
meters of each AE, the stacked network is hierarchically
pretrained using the limited-memory BFGS (LBFGS) [41] algo-
rithm. Given the input dataX x , x x, ... , N1 2{ }= , the first-level
hidden layer feature h h h, , ... , N1

1
2
1 1{ } can be learned by the

first AE pretraining. The parameter θ W W̃ b b̃, , ,1
1 1 1 1

{ }= of
AE 1 is obtained by minimizing the loss function shown in
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equation (3). After training, its encoder part remains in the
first layer of the SAE network structure, and h1 will be used
as the input part of AE 2 to extract the next-level hidden
layer feature h h h, , ... , N1

2
2
2 2{ }. Likewise, deep features can

be obtained by layer-wise pretraining in a similar manner.
Assuming that the feature data extracted in AE k (k = 2,…,

K − 1) is h h h, , ... ,k k
N
k

1 2{ }, it will be used to extract the

feature data h h h, , ,k k
N
k

1
1

2
1 1{ }…

+ + + of level k + 1. AE (k + 1)
is trained by minimizing the following objective function
to obtain the network parameters θk 1+ :

J Nθ h̃ h 2 .k
k

i

N

i
k

i
k

AE
1

1
1

2( ) ∥ ∥∑= − /
+

+

=

(12)

By pretraining in the aforementioned manner, the
initial parameter W b,k k k K1,2,...,{ } = of the SAE network

and the feature vector hk
k K1,2,...,{ } = corresponding to the

K hidden layers can be obtained. After that, the output
layer of the target variables is added to the top hidden
layer feature hK to construct the SAE regression predic-
tion network. The weight matrix and the bias vector of the
output layer are denoted by Wo and bo, respectively, and
they are randomly initialized first. The predicted output ỹ
is computed by forward propagation as follows:

fỹ W h b .K
o o( )= + (13)

Then, the LBFGS algorithm is used to minimize the
error between the predicted value and the true value to
fine-tune the parameter θ W b W b, , ,k k k KSAE o o 1,2,...,{ }= = of
the entire network, the loss function of the network is
calculated as follows:

J y y Nθ ˜ 2 .
i

N

i iSAE SAE
1

2( ) ( )∑= − /

=

(14)

At the same time, considering the characteristics of
process data showing multimode distribution, the vMF
mixture model is trained to distinguish the differences
between the distributions of steelmaking process data.
The model parameters are estimated by the method of
VI, thereby dividing the BOF steelmaking process data
into different distributions, and the samples in the same
distribution have the same data characteristics to a certain
extent. It will be used for subsequent adaptive updates of
the model.

But in mixture modeling, the determination of the
number of components is a key issue. For the BOF steel-
making process data, if the mixture model contains too
many distributions (components), the model may overfit
the observations; if there are too few components, the
model may be undertrained. Therefore, a reasonable cal-
culation method is needed to determine the number of
components of the mixture model. Inspired by Mehrjou

et al. [42], this article defines the evaluation index of vMF
mixture model based on the iBIC to determine the optimal
number of distributions.

Definition 1. The definition of the number of components
to determine the vMF mixture model based on iBIC is as
follows:

Given a training set X of N samples, the probability
density function of its vMF mixture model is p X μ λ τ, ,( | ),
and iBIC is calculated as follows:

p d N τ

d π d τ J

X μ λ τiBIC 2 log , , log log

log2 log log ,

m

M

m

m

M

m m
m

M

m

1

1 1

( | )

∣ ∣

∑

∑ ∑

= − + −

− + +

=

= =

(15)

where d D D D 1 2m ( )= + + / denotes the number of free
parameters for the mth component, d d M Mm= × + is
the number of free parameters in the mixture model,
and Jm is the Fisher information matrix of the mth com-
ponent. The smaller the iBIC value is, the better the effect
of the component M is.

The defined iBIC can be used to select the optimal
number of components for the vMFmixture model offline.
First, a vMF mixture model with specificM components is
trained and then evaluated using iBIC. Next, after evalu-
ating all possible M values, the optimal number of com-
ponents M can be determined.

2.3.2 Adaptive updating strategy based on vMF-WSAE

The SAE trained in the offline phase is essentially a static
model. To maintain the performance of the model and
keep track of the working conditions in time, an adaptive
updating strategy is designed. When a query sample
arrives, the latent probability of belonging to each vMF
component is calculated, and the data belonging to the
same distribution as the query sample are used to form its
updating dataset. In addition, the update dataset has
different degrees of similarity with the query sample,
and the trend of the model update should be closer to
the working conditions of the query sample. Therefore,
this study improves the loss function in the fine-tuning
stage of SAE and dynamically assigns different weights
according to the similarity between the updating sample
set and the query sample.

Among them, the traditional Euclidean distance (ED)-
based similarity criterion has defects in measuring the
data of the BOF steelmaking process [16], which may
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lead to the performance of the model degraded after
updating. To more reasonably calculate the similarity
between the update sample set and the query sample,
considering the local characteristics of different distribu-
tions in the mixture model, a similarity criterion based on
the weighted Euclidean distance (WED) is defined. In the
traditional similarity criterion, the contributions of fea-
tures to the similarity calculation are treated equally. If
the features that are more related to the output variables
are given a larger weight when calculating the similarity,
the similarity of the calculated similar samples on the
output variable is also higher. Therefore, different weights
are introduced to different features in the ED calculation.
The maximum mutual information coefficient (MIC) has
been shown to be effective in mining linear and nonlinear
relationships between variables [43], and the weights are
determined by the MIC between the input features and the
output variables. The defined WED not only retains the
stability of ED for measurement but also achieves a
comprehensive evaluation of characteristics and output
endpoint using a weighting method. In addition, the
correlations of the same features with endpoint carbon
content and temperature were different within different vMF
compositions, and the calculated MICs were also different.

Definition 2. The similarity criterion based on the WED
distance is defined as follows:

Step 1: Given a dataset X Y x x x y, , , ... , ,D
Τ

1 2( ) [ ]= of n
sample, the mutual information for the dth dimensional
feature xd of the sample and the target variable vector y is
calculated as follows:

p p
p p

d Dx y x y x y
x y

MI , , log , , 1, .d d
d

d
( ) ( )

( )

( ) ( )
( )∑= ∈ (16)

Here, p x y,d( ) represents the joint probability distribution
of the two variables, and p xd( ) and p y( ) are the marginal
probability distributions of xd and y, respectively.

Step 2: Divide the scatter plots formed by xd and y
into a b× grids, and calculate the mutual information of
each grid separately. Since there are many grid division
methods, the maximum value of MI under different divi-
sion methods is selected to obtain the MIC. It is calculated
as follows:

a b
x y x yMIC , max MI ,

log min ,
.d

a b n

d

20.6
( )

( )

( )
=

⋅ <

(17)

Step 3: From Step 2, the MIC value between the input
features and the target variable can be obtained, and the

weighting coefficient wd d
D

1{ }
=

of the measurement can be
obtained by calculating the MIC ratio by

w x y
x y

MIC ,
MIC ,

.d
d

d
D

d1

( )

( )
=

∑
=

(18)

Then w w ww , ... , , ... ,d D1( )= is the weight of the fea-
ture measure, and a higher weight indicates a greater
degree of association with the target variable and a
greater contribution to the calculation of similarity.

Step 4: Assuming two random samples x x X,i j ∈ , the
WED distance between two samples is calculated as
follows:

w x xx xWED , .i j
d

D

d id jd
1

2( ) ( )∑= ⋅ −

=

(19)

The smaller the distance is, the more similar the his-
torical sample is to the query sample. To distinguish the
similarity of different samples, the designed similarity
measure function based on WED distance is as follows:

ε x xexp WED , .i j
2( ( ) )= − (20)

It can be seen that the larger ε is, the more similar the
two samples are, and ε is in the range of 0–1.

The vMF-WSAE algorithm diagram is shown in Figure 4,
and the detailed algorithm steps are as follows:

Step 1: After offline modeling, assume that the input
part of the new query sample is xq. Calculate the latent
probability variable zqm m M1,2,..,{ } = for the vMF mixture
model according to equation (9). Assuming that xq
belongs to the mth vMF distribution, and the index of
the samples in this distribution in the historical data
set is u u u, , ... , N1 2 m

vmf{ }, the representation of the online

updating dataset is yB x ,u u u u
N

1
m
vmf

{ }=
=

.
Step 2: Calculate the similarity weighting coefficient

w w ww , , ... ,m D1 2( )= under the vMF component to which
the query sample belongs according to the MIC. Next,
calculate the WED similarity between the query sample
and all samples in the updating dataset Bu according to

definition 2, denoted as εεm u u
N

1
m
vmf

{ }=
=

.
Step 3: To enhance the influence of similar samples

on network training when calculating the loss, map εm to
the [0, 2] interval as the weight of the loss function
updated by the WSAE model. The mapping method is
expressed as follows:

ε
ε ε

ε ε2 ,m
m min

max min
=

−

−
(21)

where εmin and εmax are the minimum and maximum
values in εm, respectively.

Step 4: Implement adaptive variable weight fine-
tuning for static SAE. In detail, although these updating
samples belong to the same distribution to the query
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sample, they also have different similarities. To pay more
attention to the samples that are highly similar to the
query sample when the model is updating, an updating
strategy of variable-weighted SAE is constructed. Updating

dataset Bu and similarity weight set εεm u u
N

1
m
vmf

{ }=
=

are used
to update the static SAE model. First, through forward

propagation, the predicted output variable ỹu u
N

1
m
vmf

{ }
=

of Bu
can be obtained. Then, the entire SAE network is updating
with a weighted loss function defined as follows:

J ε y y Nθ ˜ 2 .
u

N

u u u mWSAE WSAE
1

2 vmf
m
vmf

( ) ( )∑= − /

=

(22)

The network is iterated in turn by the LBFGS algo-
rithm to obtain the updated network model parameters
θ W b W b, , ,k k k KWSAE

⁎ ⁎
o
⁎

o
⁎

1,2,...,{ }= = .
Step 5：The output of query sample can be quickly

predicted by forward propagation based on the updated
model parameters θWSAE. For the next query sample, the
aforementioned process of latent probability calculation
of the vMF mixture model, similarity calculation, weight
calculation, model update, and target variable prediction
will be performed again.

Among them, when using the LBFGS algorithm to
iteratively update the network parameters to minimize
the objective function JWSAE, as with the backpropagation
algorithm, the critical step is to compute the partial deri-
vatives of the function. For a single-labeled training
sample yx ,u u( ) in WSAE, the calculation process of the
partial derivatives of its parameters is as follows:
(1) For layers 2 and 3 of the network up to the output

layer ln, the activation values of each hidden layer are
obtained using forward propagation.

(2) For the output layer ln, the following derivative terms
are computed:

δ
z

J y ε a

y f z

W b x, ; ,

,

l
l u u u

l

u
l

WSAEn
n

n

n

( ) (

) ( )

( )
( )

( )

( )

=
∂

∂

=

− ⋅ ′

(23)

where z ln( ) is the weighted sum of the output layer ln,
the calculation methods is z W a bl l l ln n n n1 1 1( ) ( ) ( ) ( )

= +− − − ,
and εu is the similarity between the sample and the
query sample, which is calculated by definition 2.

(3) For each hidden layer of l l l l, , ... ,n n1 2 2= − − , compute
the following derivatives:

δ δ f zW .l l Τ l l1(( ) ) ( )( ) ( ) ( ) ( )
= ⋅ ⋅ ′

+ (24)

Figure 4: Algorithm diagram of vMF-WSAE.
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(4) Calculate the final required partial derivatives:

J y δ a
W

W b x, ; , ,l u u
l l

WSAE
1 T( ) ( )

( )
( ) ( )∂

∂

= ⋅
+ (25)

J y δ
b

W b x, ; , .l u u
l

WSAE
1( )

( )
( )∂

∂

=
+ (26)

From the aforementioned equation, the partial deri-
vatives of the total objective function can be obtained and
the optimal values can be obtained iteratively updating
the parameters.

It can be seen that the updating of the vMF-WSAE is
based on the global regression model trained in the off-
line phase. After the arrival of the sample to be tested, the
samples in the vMF distribution to which it belongs are
selected from the historical samples as the online update
dataset. Through the weighting of the loss function, the
model pays more attention to the samples that are highly
similar to the data patterns of the query sample when
updating. Therefore, only a small amount of iterative
calculation is required to update the regression model
online adaptively to improve the prediction performance
of the model.

3 Endpoint carbon content and
temperature soft sensor method
based on vMF-WSAE for
multimode BOF steelmaking
process data

Due to the phenomenon of process drift, the distribution
of BOF steelmaking process data will also change, and
the characteristics of the data show the characteristics of
multimodal distribution, making training an effective
deep learning model a challenging problem. In this sec-
tion, an adaptive update soft sensor modeling method
based on vMF-WSAE is introduced, which will be used
for endpoint carbon content and temperature prediction
in the BOF steelmaking process.

Figure 5 shows the offline training and online updating
process of the vMF-WSAE-based soft sensor model. The
specific steps of the offline training part are as follows:
(1) Use SAE to pretrain and fine-tune the historical

dataset of BOF steelmaking, and save the basic
SAE model for subsequent updating.

(2) In addition, the vMF mixture model is trained on the
historical data of BOF steelmaking by means of VI.

(3) The vMF mixture model with different number of
components was evaluated by iBIC to determine the
optimal number of components.

(4) According to equations (16)–(18), the correlation degree
of different features in each vMF component to the target
variable is calculated, respectively, and the weighting
coefficient of the WED metric criterion under each com-
ponent is obtained.

The specific steps for the online updating section are
as follows:
(1) For a query sample, calculate the probability that

belongs to each trained vMF component by equation
(9). The samples in the vMF component to which the
query sample belong are used as the updating dataset.

(2) Calculate the WED between the query sample and the
updating samples by equation (20), and convert it
into the updating weight of WSAE by equation (21).

(3) Adaptive updating of weighted SAE using updating
dataset and similarity weight set. Then, the output of
the query sample can be quickly predicted based on
the updated model parameters.

4 Experimental results and
analysis

In this section, a numerical example is first utilized to
illustrate the effectiveness of the proposed vMF-WSAE
model over the original SAE. Then, a series of experiments

Figure 5: The flowchart of the proposed vMF-WSAE-based soft
sensor model.
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are carried out on BOF steelmaking process data to demon-
strate the effectiveness and advantages of the soft sensor
modeling method proposed in this article. The simulation
configurations of the computer are as follows: RAM: 16GB,
CPU: R7-4800H (AMD Ryzen Processor @2.9 GHz), and
MATLAB version: 2020a.

The root mean square error (RMSE) and mean abso-
lute percentage error (MAPE) are used to evaluate the
prediction performance of the soft sensor model, as shown
in equations (33) and (34). The smaller the value, the better
the prediction performance of the model.

N
y yRMSE 1 ˜ ,

i

N

i i
test 1

2
test

( )∑= −

=

(27)

N
y y

y
MAPE 1 ˜

,
i

N
i i

itest 1

test

∑=

−

=

(28)

where Ntest is the number of samples in the test set, and yi
and ỹi are the actual and predicted values, respectively, of
the output endpoint of the ith sample.

Also, in the prediction of BOF endpoint, regression
accuracy (RA) is an important evaluation criterion, which
represents the prediction accuracy of the model on the
test set within the allowable error range. The calculation
method of RA in this article is as follows:

N
y yRA 1 Match ˜ , 100%,

i

N

i i
test 1

test

( )∑= ⋅

=

(29)

where Match(⋅) is a conditional function, and if the dif-
ference between the two inputs is within the tolerable error
(Te) range, it will output 1, which is a prediction hit. This
function formulation can be expressed as follows:

y y
y y
y y

Match ˜ ,
1, ˜ Te
0, ˜ Te

.i i
i i

i i
( )

⎧

⎨
⎩

∣ ∣

∣ ∣
=

− ≤

− >

(30)

4.1 Numerical example

To verify the performance of the proposed method, the
numerical case described in reference [44] was used for
experiments. The seven input variables are simulated as
linear combinations of a total of five source variables as
follows:

s k i i
s k i i
s k i i
s k i i
s k

2 cos 0.08 sin 0.06 ,
sin 0.3 3 cos 0.1 ,
sin 0.4 3 cos 0.1 ,
cos 0.1 sin 0.05 ,

uniformly distributed noise in 1, 1 .

1

2

3

4

5

⎧

⎨

⎪
⎪

⎩

⎪
⎪

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) [ ]

=

= +

= +

= −

= −

(31)

In total, 1,500 samples belonging to three different
modes are generated as follows:

The first 500 samples are generated in mode 1, with

z A s e y z z z, 0.8 0.6 1.5 .Τ
1 1 2 3= + = + + (32)

The second 500 samples are generated in mode 2 as
follows:

z AB s e y z z z, 2.4 1.6 4 .Τ
1 2 3 4( )= + = + + (33)

The last 500 samples are generated in mode 3 as
follows:

z AB s e y z z z, 1.2 0.4 .Τ2
1 1 2 4( )= + = + + (34)

Here z is the input variable vector, e Ν 0, 0.011 ( )∼ is the
Gaussian noise, A R5 7

∈
× is a random coefficient matrix,

and B R7 7
∈

× is a lower triangular matrix of all ones. The
output variable is defined as follows:

y y e e Ν, 0, 0.1 .2 2 ( )= + ∼ (35)

For each mode, 250 samples are selected as the
training set, and the remaining 250 samples are used as
the testing set for the soft sensor. Thus, there are 750
samples in each training set and the testing set.

It can be seen that there is a complex nonlinear relation-
ship between the input and output variables. In addition,
data consists of multiple patterns. To verify the effectiveness
of the proposed method, in addition to vMF-WSAE, soft-
sensor models of partial least squares (PLS), BP neural
network (BPNN), and SAE are also employed for output
prediction. In the vMF-WSAE-based method, the probability
distribution of the training set is approximated as a mixture
of 3 vMF distributions, and the prediction network has the
structure of [7-4-1]. The maximum number of iterations for
pretraining and offline fine-tuning is 400, and the max-
imum number of iterations for updating the network online
is 100. Furthermore, both BPNN and SAE have the same
network structure as [7-4-1]. For NN-based regression net-
work, the network parameters are randomly initialized. The
maximum number of iterations for pretraining and fine-
tuning of SAE is 400. These hyperparameters are the best
results under their respective methods.

Table 1 outlines the results of PLS, BPNN, SAE, and
vMF-WSAE in terms of RMSE and MAPE. From Table 1, it
is found that the multilayer PLS has the largest prediction
RMSE and MAPE. Differently, vMF-WSAE can achieve the
best prediction performance under the newmodel update
strategy. In detail, Figure 6 shows the prediction errors on
the testing samples for the four methods. It can be seen
that BPNN and SAE do not consider the characteristics of
query sample, and their prediction effect is poor. The
proposed vMF-WSAE can achieve good results because
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the model can be adaptively updated in nonlinear data
modeling to effectively adapt to changes in data charac-
teristics. As can be seen from this example, the proposed
vMF-WSAEmodel is more effective in nonlinear modeling
of multimode data.

4.2 BOF steelmaking process data
experiment

4.2.1 Data introduction and parameter setting

Accurate forecasting of the endpoint carbon content and
temperature of the molten steel is the key to endpoint

control in BOF steelmaking. The experimental data in
this article come from the real BOF steelmaking produc-
tion data of a steel plant, and the endpoint carbon con-
tent and temperature are the target variables, namely,
the output variables. The quality of the raw materials
changes over time, and the production conditions are
constantly changing, and these process samples are col-
lected under different production conditions. After pre-
vious research, the feature selection method is employed
to select the original features shown in Table 3 as the
input variables of the model [10,45]. Table 2 describes
the details of the two datasets in terms of the number
of input variables, the number of samples, and the output
range. The specific meaning of each input variable is
shown in Table 3, where the location of oxygen lance 1
refers to the first location of the oxygen lance and the
oxygen pressure 1 represents the oxygen pressure value
measured at the first time. To remove effects between
dimensions, all data are normalized by zero-mean nor-
malization. During the experiment, a total of 2,500 sam-
ples under normal working conditions are collected, of
which 2,000 process samples are used as the training set
and 500 samples are used as the test set to evaluate the
performance of the model online.

Table 1: Performance comparison among the proposed vMF-WSAE
and other methods in terms of RMSE and MAPE

Indicators PLS BPNN SAE vMF-WSAE

RMSE 7.6241 5.0840 4.5675 1.7467
MAPE 1.5043 1.0471 0.7016 0.2078

Bold represent the relative optimal value under this indicator in the
comparison algorithm.
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Figure 6: Prediction results of (a) PLS, (b) BPNN, (c) SAE, and (d) vMF-WSAE for the numerical simulation data.
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In this article, there are many parameters that need
to be set reasonably. First, for the network hyperpara-
meters of SAE, different network structure candidates
are designed. Second, these candidates are evaluated
by a trial-and-error technique based on their predictive
performance on the test set. Table 4 shows some network
structure candidates and their performance. After com-
paring the predicted RMSE, [15-13-10-5-1] was selected as
the network structure of carbon content and [11-9-7-5-1]
as the network structure of temperature. Table 5 shows
the settings of specific or range parameter values.

Moreover, for the finite mixture model, the number of
mixture components is a significant parameter. In this
article, iBIC of definition 1 is used to determine the
number of vMF mixture model components, M varies
from 2 to 10 with the step size of 1. The changes of iBIC
values for vMF mixture models with respect to various
choices of M are drawn in Figure 7. As can be seen
from the figure, the two curves show an upward trend
after reaching the minimum value. From definition 1,
the smaller the value of iBIC is, the better the parameter
M. Thus, the number of components M in vMF mixture

Table 3: The description of input variables

Target variable Input variables Target variable Input variables

Carbon content Amount of loaded steel scrap Temperature Total of transfer
Total of transfer Duration of first blowing oxygen
Temperature of iron Arsenic content in molten iron
End of iron mixing to oxygen opening time Phosphorus content in molten iron
The time from tapping to starting to mix iron Manganese content in molten iron
Manganese content in molten iron Location of oxygen lance 3
Phosphorus content in molten iron Location of oxygen lance 4
Arsenic content in molten iron Location of oxygen lance 5
Time to mix iron Oxygen pressure 4
Average location of oxygen lance Oxygen pressure 5
Location of oxygen lance 1 Oxygen pressure 6
Location of oxygen lance 2
Oxygen pressure 1
Oxygen pressure 2
Oxygen pressure 3

Table 2: Details of the datasets of the BOF steelmaking production process

Datasets No. of input variables No. of samples Range of outputs

Carbon content 15 2,500 [0.04, 0.18] (%)
Temperature 11 2,500 [1,600, 1,700] (°C)

Table 4: Prediction performance of some candidate schemes of network parameters under the method of this paper

Network structure of carbon content RMSE Network structure of temperature RMSE

[15-12-9-4-1] 1.7552 × 10−2 [11-8-6-4-1] 8.3925
[15-9-4-1] 2.3244 × 10−2 [11-6-4-1] 9.4695
[15-4-1] 2.6251 × 10−2 [11-4-1] 10.3243
[15-13-10-5-1] 1.4185 × 10−2 [11-9-7-5-1] 6.8536
[15-10-5-1] 1.8742 × 10−2 [11-7-5-1] 8.4183
[15-5-1] 1.9301 × 10−2 [11-5-1] 9.9253
[15-14-11-6-1] 1.7289 × 10−2 [11-10-8-6-1] 9.2093
[15-11-6-1] 2.0978 × 10−2 [11-8-6-1] 9.3557
[15-6-1] 2.2167 × 10−2 [11-6-1] 10.3423

Bold represent the relative optimal value under this indicator in the comparison algorithm.
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model for carbon content and temperature is set to 5 and
7, respectively.

4.2.2 Evaluation of the proposed method

In this section, the performance of the proposed vMF-
WSAE is evaluated. First, the influence of the parameter
M on the prediction results is evaluated. Then, the pre-
diction performance of the linear model PLS and the
traditional nonlinear model BPNN is compared. The abla-
tion experiments of the proposed method are compared,
including:
(1) The original SAE-based soft sensor model.
(2) The offline stage remains unchanged, and there is no

method to improve the loss function in the online
update stage, which is expressed as vMF-SAE.

(3) In the update phase, the weighting parameter of
WSAE is determined by the ED between the query
sample and the updating dataset, which is expressed
as vMF-WSAE (ED).

(4) The method proposed in this article is denoted as
vMF-WSAE (WED).

Various independent experiments are carried out on the
production process data of BOF steelmaking, and the model
parameters of the compared methods are adjusted to the
optimum according to the trial-and-error technique.

First, to evaluate the influence of parameter M on
the performance of the proposed method, comparative
experiments are carried out by changing the parameter
values. The effect of M on the prediction error is shown
in Figure 8. It can be noticed that the RMSE varies
widely, and the parameter M plays an important role in
the variation of prediction accuracy. With the remaining
parameters unchanged, for the number of components
M of the vMF mixture model, M values of the carbon
content and temperature are the smallest when the
RSME is taken to be 5 and 7, respectively. Furthermore,
the number of components of the mixed model with the
best prediction performance agrees with the optimal
number of components determined by iBIC, proving
the validity of definition 1.

Second, ablation experiments are performed to verify
the effectiveness of the proposed method. Table 6 sum-
marizes the predicted evaluation indicators of the compared
methods under the carbon content and temperature

Table 5: The parameter settings

Parameters Value(s)

Network structure of offline SAE Carbon content: [15-13-10-5-1], Temperature: [11-9-7-5-1]
Maximum iterations for pretraining 400
Maximum iterations for offline fine-tuning 300
Maximum iterations for online adaptive updating 100
The number of mixture model components M Min = 2, max = 10
The tolerable error of carbon content (Te) {±0.01, ±0.02, ±0.03} (%)
The tolerable error of temperature (Te) {±5, ±10, ±15} (°C)

(a) (b) 

Figure 7: Demonstration of iBIC for vMF mixture model with respect to various choices of M on (a) carbon content and (b) temperature.
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datasets. It can be seen that on the two datasets, the RA of
the proposed vMF-WSAE (WED) under various Te is much
higher than that of other methods, and the statistical results
of RMSE and MAPE also show that the performance of the
proposed method is also better than other methods.

In detail, the prediction performance of PLS is the worst
because the complex nonlinear relationship between the
features and the output makes the linear model to not be
effectively modeled. Comparing the results of BPNN and
SAE, SAE can better express the complex nonlinear relation-
ship between data after pretraining and fine-tuning. While
vMF-SAE adaptively updates offline SAE by considering the
data pattern characteristics of query samples, its prediction
performance is better than traditional SAE modeling. vMF-
WSAE (ED) and vMF-WSAE (WED) improve the loss func-
tion in the SAE update stage, and use ED andWED to obtain
the similarity weight for weighted update respectively.
Among them, the traditional ED-based similarity criterion
only calculates the input variables. Although the prediction
performance has been improved, the evaluation ability of
similar samples is still insufficient. For the vMF-WSAE

(WED) method proposed in this article, WED comprehen-
sively considers the information of input and output
variables to calculate the similarity, and the evaluation
of similar samples is more reasonable. In the adaptive
weighted updating, the model pays more attention to
the samples in the updating dataset whose data char-
acteristics are more similar to the query sample, thereby
obtaining better prediction results.

To more intuitively show the prediction and the
tracking effect of the model, Figure 9 further shows the
detailed prediction results of these methods for carbon
content and temperature, and it displays the actual and
predicted outputs sorted by the actual order of the sam-
ples. Looking at Figure 9(a), the linear model cannot
effectively fit the complex process data of BOF steel-
making. As can be seen from Figure 9(b) and (c), the
predicted values of BPNN and SAE have a large deviation
from the real values, and the staticmodels cannot adapt well
to changing working conditions. Looking at Figure 9(d),
although the prediction effect of vMF-SAE is improved, it
does not fully consider the data structure characteristics of
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Figure 8: The RMSE values of the test set of vMF-WSAE vary with different choices of M at (a) carbon content and (b) temperature.

Table 6: Prediction performance comparison of the proposed method with other ablation experiments

Indicators Te PLS BPNN SAE vMF-SAE vMF-WSAE (ED) vMF-WSAE (WED)

Carbon content regression accuracy 0.01% 22.20% 28.20% 35.20% 40.60% 52.80% 70.40%
0.02% 41.40% 51.00% 60.40% 70.40% 84.00% 90.60%
0.03% 59.80% 71.00% 75.00% 86.00% 94.00% 95.80%

RMSE(E-02) — 3.4810 2.9890 2.6967 2.2067 1.6274 1.4185
MAPE — 0.2973 0.2466 0.2246 0.1772 0.1254 0.1092
Temperature regression accuracy 5°C 22.60% 38.60% 41.00% 47.20% 57.20% 59.80%

10°C 42.60% 60.80% 67.40% 77.20% 84.20% 92.00%
15°C 60.40% 78.00% 83.60% 89.60% 96.60% 98.20%

RMSE — 18.0490 12.4408 11.5903 10.0790 7.6974 6.8536
MAPE(E-03) — 8.9517 5.8475 5.3840 4.5601 3.6153 3.2788

Bold represent the relative optimal value under this indicator in the comparison algorithm.
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Figure 9: Detailed prediction results for carbon content (left) and temperature (right) test datasets: (a) PLS, (b) BPNN, (c) SAE, (d) vMF-SAE,
(e) vMF-WSAE(ED), and (f) vMF-WSAE(WED).
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the query samples to effectively update. Observing Figures
9(e) and (f), the predicted values of the proposed vMF-WSAE
(WED) fit best with the actual values of carbon content and
temperature, and vMF-WSAE(ED) has a certain degree of
prediction value that cannot accurately track the true value.
These results fully demonstrate that the proposed method
has great advantages over the traditional static model.

Table 7 summarizes the computation time of the pro-
posed method and ablation experiments in seconds. Com-
pared with traditional SAE, the offline part of the proposed
method increases the time required to fit the vMF mixture
model on the training samples. The online test part needs
more time to update the model to adapt to the working
conditions of the query samples. The time taken to predict
the 500 test sets under the two datasets is 46.9063 s and
31.8944 s, respectively (Table 7). The sublance detection as

a real-time detection technique, according to the descrip-
tion of the sublance inspection of the BOF in reference [46]
and the description of the experts in the steelmaking field,
the average time consuming to detect the carbon content
of the molten steel is about 1min per time. The time
required to predict the endpoint of steelmaking by the
proposed method is much less than that of the sublance
detection, so that it can meet the real-time requirements of
the actual BOF steelmaking process.

4.2.3 Comparison with other deep learning soft sensor
methods

In this section, a comparison between the proposed vMF-
WSAE and other deep learning soft sensor methods, such

Table 7: Performance comparison of the proposed method and ablation experiments in terms of computation time

Datasets Phase PLS (s) BPNN (s) SAE (s) vMF-SAE (s) vMF-WSAE (ED) (s) vMF-WSAE (WED) (s)

Carbon Content Offline 0.0229 5.0691 2.8579 20.5336 20.8746 20.4332
Online 0.0146 0.3066 0.0171 48.0876 44.1774 46.9063

Temperature Offline 0.0894 1.5921 2.1042 18.7954 19.1849 18.5827
Online 0.0133 0.0801 0.0138 30.6217 29.7163 31.8944
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Figure 9: (Continued)

Table 8: Comparison the proposed method with other methods in terms of prediction evaluation indicators

Indicators Te VW-SAE [23] NVW-SAE [24] SQAE [25] vMF-WSAE

Carbon content regression accuracy 0.01% 31.00% 35.60% 36.20% 70.40%
0.02% 61.80% 62.20% 67.00% 90.60%
0.03% 77.20% 77.00% 81.60% 95.80%

RMSE (E-02) — 2.6292 2.6424 2.5279 1.4185
MAPE — 0.2200 0.2142 0.1929 0.1092
Temperature regression accuracy 5°C 43.20% 46.60% 48.60% 59.80%

10°C 71.20% 73.80% 76.40% 92.00%
15°C 84.80% 88.40% 89.20% 98.20%

RMSE — 10.8009 10.2448 10.4834 6.8536
MAPE (E-03) — 5.0830 4.7856 4.6657 3.2788

Bold represent the relative optimal value under this indicator in the comparison algorithm.
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as variable weighted stacked autoencoder (VW-SAE) [23],
nonlinear variable weighted stacked autoencoder (NVW-
SAE) [24], and stacked quality-driven autoencoder (SQAE)
[25]. The parameters of the compared methods are the best
performance under the data of the BOF steelmaking process.

Table 8 presents the prediction performance metrics
of the proposed vMF-WSAE and other soft sensor methods.
It can be noted that the RA of the proposed vMF-WSAE
method under various Te is much higher than all other
methods on both datasets, and observing the RMSE and

Table 9: Performance comparison of the proposed method and other experiments in terms of computation time

Datasets Phase VW-SAE (s) NVW-SAE (s) SQAE (s) vMF-WSAE (s)

Carbon Content Offline 1.5459 13.759 2.2398 20.4332
Online 0.0161 0.0389 0.0133 46.9063

Temperature Offline 1.7043 18.8453 1.3772 18.5827
Online 0.008 0.0421 0.0103 31.8944
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Figure 10: Scatter plots of actual and predicted values for carbon content (left) and temperature (right): (a) VW-SAE, (b) NVW-SAE, (c) SQAE,
and (d) vMF-WSAE.
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MAPE statistics, the vMF-WSAE method still outperforms
the other methods. For VW-SAE, NVW-SAE, and SQAE, the
performance indicators for predicting temperature are better
than those for predicting the carbon content, and the model
performance of SQAE is better. Compared with traditional
machine learning, these deep learning models can solve the
highly nonlinear problem of BOF steelmaking process data
to a certain extent. Although these methods improve the
performance of SAE by improving unsupervised pre-
training to supervised, they are essentially global offline
static models, which cannot automatically update the
parameters of the prediction model according to the
characteristics of the query samples.

Table 9 shows the computation time of the proposed
method and other methods. Compared with the static
deep learning algorithms in these references, the online
part of the proposed method requires more time to update
the model to adapt to the working conditions of the query
sample. In the case of meeting the production require-
ments, the proposed method achieves better predictive
performance.

To more clearly show the fit between the predicted
value and the real value of the compared methods, Figure 10
shows the scatter plots of the actual output and predicted
output of the proposed method and other methods under
the two datasets. In this figure, the sample order is shown
sorted by the label size, and each data point represents a
test sample. That is to say, the better the prediction perfor-
mance of the model, the closer the scatter point of the pre-
dicted value will be to the curve of the real value. It can be
seen from Figure 10(a) and (b) that the predicted values of
VW-SAE and NVW-SAE have a large deviation from the real
values, and the static deep learning soft sensor model
cannot fit the data of the multimode BOF steelmaking pro-
cess well. Looking at Figure 10(c), although the prediction
effect of SQAE is improved compared with the first two
methods, there are too many samples with excessive pre-
diction deviation. While in Figure 10(d), vMF-WSAE can
always fit the actual output curve well due to the excellent
adaptive updating mechanism of vMF-WSAE. Experiments
show that the method proposed in this article has certain
advantages over other deep learning soft sensor methods in
the endpoint carbon content and temperature prediction of
BOF steelmaking.

5 Conclusions

For the characteristics of highly nonlinear and multi-
mode distribution of BOF steelmaking process data, the

static model cannot adapt to the changes in sample char-
acteristics leading to the degradation of prediction per-
formance. In this article, an adaptive dynamic deep
learning soft sensor model based on the vMF mixture
model and weighted SAE (vMF-WSAE) is proposed for
predicting the endpoint carbon content and temperature
in BOF steelmaking.

For most existing deep networks, they are static fea-
ture learning models. This may not be an effective soft
sensor modeling method for BOF steelmaking processes
with widely varying data distributions. vMF-WSAE
adopts an effective adaptive model update strategy,
which enables deep learning to quickly adapt to the
process running state and achieve accurate prediction.
Through numerical examples and modeling simula-
tions of BOF steelmaking process data, the proposed
method is compared with ablation experiments. Moreover,
other deep learning soft measurement methods are com-
pared. Various evaluation criteria are used to evaluate the
performance of each method on the carbon content and
temperature datasets. Compared with traditional machine
learning, the proposed method can effectively solve the
highly nonlinear problem of BOF steelmaking process
data. Comparedwith the offline staticmodel, themechanism
of adaptively updating model parameters can update the
model according to the distribution and data structure char-
acteristics of the query sample to improve the prediction
performance. This article provides a better research direction
for soft sensor modeling of BOF endpoint carbon content
and temperature using deep learning, which has a certain
reference value in practical applications.
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