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Abstract: The emission of blast furnace (BF) exhaust gas
has been criticized by society. It is momentous to quickly
predict the comprehensive coke ratio (CCR) of BF, because
CCR is one of the important indicators for evaluating gas
emissions, energy consumption, and production stability,
and also affects composite economic benefits. In this article,
13 data-driven prediction techniques, including six conven-
tional and seven ensemble methods, are applied to predict
CCR. The result of ten-fold cross-validation indicates that
multiple linear regression (MLR) and support vector regres-
sion (SVR) based on radial basis function are superior to
the other methods. The mean absolute error, the root mean
square error, and the coefficient of determination (R?) of the
MLR model are 1.079 kgt™, 1.668, and 0.973, respectively.
The three indicators of the SVR model are 1.158 kg-t‘l, 1.878,
and 0.975, respectively. Furthermore, AdaBoost based on
linear regression has also strong prediction ability and gen-
eralization performance. The three methods have important
significances both in theory and in practice for predicting
CCR. Moreover, the models constructed here can provide valu-
able hints into realizing data-driven control of the BF process.

Keywords: blast furnace, comprehensive coke ratio, mul-
tiple linear regression, support vector regression, AdaBoost,
data-driven.

1 Introduction

Despite high energy consumption and a large environ-
mental load during the ironmaking process, a blast furnace
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(BF) is still a crucial component of the whole system of steel
production [1-4]. Fundamentally, BF is an input and output
system that generates molten iron through a series of extra-
ordinarily complex physical and chemical processes with
the cooperation of main and auxiliary materials [5,6]. A
schematic diagram of a representative BF is shown in
Figure 1. The main materials refer to iron resources, such
as iron ore, sinter, and pellets. Auxiliary materials concern
energy sources or other necessary materials for trans-
forming main materials, e.g., coke, coal, limestone, and
oxygen-enriched water and refractory materials. The pro-
duction stability of BF is directly influenced by the opera-
tion characteristics of main and auxiliary materials [4,7].
The principle of BF ironmaking becomes entangled because
of the interaction of various factors [8,9].

Energy consumption, resource shortages, and envir-
onmental pollution caused by the development of the
iron and steel industry are becoming more and more ser-
ious. A lower comprehensive coke ratio (CCR) can decrease
coke, heavy oil, and other fuels consumed in producing
course of BF and is an effective means to solve the above
problems [10]. With the benefit of mathematics and com-
puter technologies to simulate complex BF ironmaking
processes, the methods of predicting and controlling various
variables by optimizing the BF parameters have recently
gained increasing attention [3,11-15]. They contain two
approaches: the traditional math approach and machine
learning technology. It is a notoriously difficult task to
construct a mathematical model on the basis of the
mechanism because BF is a complex industrial reactor,
including the interacting effects of multiphases accompa-
nied simultaneously by multiphase coupling and multi-
physics field coexistence, and so on [14]. In contrast, the
machine learning technique based on data-driven is a fast
and efficient means that has been widely and successfully
employed in many industrial processes since many enter-
prises have accumulated a large amount of historical data
[13,16-19]. Zhang et al. employed a variety of techniques to
predict the current time and multistep-ahead hot metal
temperature (HMT) of BF, such as random forest (RF),
boosting regression tree, neural network-based methods,
and Gaussian process regression [13]. Zhai et al. constructed
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Figure 1: Schematic diagram of BF.

a support vector regression (SVR) model based on the radial
basis function (RBF) to predict the BF fuel ratio with merely
six parameters [17]. Zhang et al. have demonstrated that the
ensemble pattern trees method is superior to several con-
ventional methods for predicting the HMT of BF [14].

Although predictive techniques are emerging in an
endless stream, research has not made an appearance
on comparing data-driven methods in detail for pre-
dicting the CCR of BF. The present work provides a study
on predicting CCR with the 13 prediction technologies.
They include six conventional methods, namely, multiple
linear regression (MLR), decision tree regression (CART),
Lasso, elastic net (EN), k-nearest neighbor (KNN), and
SVR, as well as seven ensemble methods, namely, AdaBoost,
RF, AdaBoost based on KNN (KNN-AdaBoost), gradient
boosting regression (GBR), AdaBoost based on linear
regression (LR-AdaBoost), extremely randomized trees
(ERTs), and AdaBoost based on RF (RF-AdaBoost). The
results of ten-fold cross-validation and external valida-
tion demonstrated that MLR, SVR, and LR-AdaBoost
were superior to other methods. The evaluation indica-
tors of the models indicated that they were highly valu-
able in theory and practice to realize data-driven control
of the BF process.

The remaining structure and organization of this article
are as follows: The 13 predictive methods are succinctly illu-
strated in Section 2. In Section 3, the evaluation indicators of

the models are explicated. The comparative analysis and
application research of the predictive techniques are pre-
sented in Section 4. The conclusions of the work are dis-
cussed in Section 5.

2 Predictive techniques

In the work, a number of predictive techniques are employed
for predicting the CCR of BF, namely, MLR, CART, Lasso,
EN, KNN, SVR, AdaBoost, RF, KNN-AdaBoost, GBR, LR-
AdaBoost, ERT, and RF-AdaBoost. These methods are
briefly depicted as follows.

2.1 MLR

MLR attempts to establish the relationship between a
response variable and two or more explanatory variables
by fitting a linear equation to the observed data [20]. The
value of the response variable y has a relationship with
every value of the independent variable x. The population
regression line for p explanatory variables x, x, ..., X,
is defined to be p,, = B + By + %o + -+ B,Xp. This line
describes how the mean response p, changes with the
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explanatory variables. The observed values for y vary
about their means p, and are assumed to have the
same standard deviation o. Formally, the MLR model

for n observations can be represented as follows:
Yi = Bo + BXan + ByXio + -+ Byxip + &  for

i=1, 2,...,n,

)

where ¢ is the notation for the model deviations.

2.2 CART

CART [21,22] is a supervised learning technique that is
suitable for both classification and regression problems.
It provides a flexible tree-like structure, where internal
nodes, branches, and leaf nodes represent the features of
a dataset, the decision rules, and the outcomes, respec-
tively. Two kinds of nodes are in a decision tree, i.e., a
decision node, including multiple branches for making
decisions, and a leaf node for outputting a decision
without further branches.

The principle of CART is described as follows. Without
losing generality, X and Y are given as the input vector
and the response vector, respectively. The training set
is defined as D = {(x, ), (&, ¥,), ..., (xXn, Yy}, where
xi = Y, x?, ..., xV)is known as feature vector, n
represents the number of features, i =1, 2,...,N, N is
sample size.

The feature space is divided by the heuristic method.
In each division, each value of the features in the current
set will be investigated one by one, and the optimal one
will be selected as the segmentation point according
to the least-squares error criterion. The j-th feature of
the training set is denoted as x, the value of which is
s. x and s are regarded as segmentation variable and
segmentation point, respectively. Suppose two regions:
R(j,s) = (xx) < s} and Ry(j,s) = {x|x > s}. Solve
the following equation to obtain optimal j and s:

> ()4—62)2], )

Xi€R(j,s)

> (3 - @)?+ min

. c2
Xi€Ri(j,s)

min| min
j,s cl

where ¢ and ¢ denote the fixed output values of the
two regions. The above formula can also be written as
follows:

Z (y; - 62)2]s (3)

xi€Ry(j,$)

min| Y (y-&)?+
1S [ xeRi(ns)

~ 1 ~ 1
where G = -3 g o A0d G = 13 cpislhe
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After finding the optimal segmentation point (j, s),
the input space is divided into two regions. Repeat the
above division process for each region until the termina-
tion condition is reached. Based on the above process, a
least-squares decision tree is constructed.

2.3 Lasso

Lasso regression [23,24], sometimes called L1 regulariza-
tion of LR, is a modified form of LR. A regularization
parameter as punishment is used to control model com-
plexity. It is a biased estimation for dealing with complex
collinearity data and obtains a more accurate model by
constructing a penalty function. Suppose a regression
function:

ho(x) = Ogxg + Oxq + -+ + O, (4)

Its loss function can be expressed as follows:
1 m
0) = — Y (hy(x® — yD2,
J.(6) o 21( o( y9) (5)

where X € R™™ is the input vector, Y € R™ is the response
vector, n and m are the feature number and the sample
size, respectively. The emergence of Lasso is to tackle two
problems: over-fitting of LR and the occurrence of X
transpose multiplied by irreversible X in course of solving
0 by regular methods. To this end, a regularizer is intro-
duced into the loss function, which is as follows:

1 m . . n
Ju(0) = =— > (he(x® — yD)2 + 1316, (6)
2m -
i=1 j=1
where A is a regularization parameter. If A is set too big, it
will cause an under-fitting result; otherwise, it will cause
over-fitting.
In addition, the loss function can also be matrixed
into the following form:

Ju(6) = arg min [y - X6|[3 + A||6)3. @)
€R"

2.4 EN

EN, the mixture of Ridge and Lasso regressions, is a linear
regression method with L1 and L2 norms as the priori
regularizers [25]. A model with only a few non-zero and
sparse parameters is learned by this combination, which
is just like Lasso. But it still maintains some regular prop-
erties like Ridge regression. The matrix of the loss func-
tion of EN is described as follows:
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Je(6) = arg min|ly - X6|” + A||613 + Aill6lh.  (g)
€R"

2.5 KNN

KNN is one of the most basic and simplest machine
learning algorithms [26]. Its idea is very simple: Each of
the n-dimensional input vectors corresponds to a point in
the feature space, and the output is a category label or a
prediction value. When it is used for regression predic-
tion, the average of those target values (y;) of k nearest
samples is taken as the prediction value y of the new
sample [27]. The formula is as follows:

1K
y=—>V. 9
y Ki:lyl )

2.6 SVR

Based on kernel functions and ¢ insensitive function,
SVR first proposed by Cortes and Vapnik [28] has been
applied in many fields successfully [29,30], such as char-
acter recognition [31], drug design [32], and combina-
torial chemistry [33]. The input and output of the i-th
sample (i=1, 2,...,1) are denoted as x; € R" and Y,
respectively. The solution of the nonlinear SVR could
be obtained via the following equation:

11
min W(a, ) = min =Y. Y (a; - a7)(@; - a))K(x;, )
a,a* a,a* i=1j=1 (10)

1
+ Z[(s -ya; + (& + yoail,

i=1

z(ai* - ai) = Oy

i=1

where a; and a;" represent Lagrange coefficients; C is the
penalty factor; and K(-) denotes the kernel function. The
regression function f(x) is

NSV
fx) =Y sv(eaf - aDK(x;, x), (11)

i=1

where Ngy denotes the number of SVs.

2.7 AdaBoost

In view of multiple variations of AdaBoost, its R? regres-
sion is illustrated as an example here [34]. Denoting
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T={Ca,y), (% ¥), ..., (Xm,¥,)} as the sample set. The
iteration number of the weak learner is K.
The initial weight of the sample set is expressed as

follows:
1 .
D(1) = (w1, Wizs..., Wim); Wy = E; i=1, 2,...,m.
Supporting k=1, 2, ..., K:
(1) Gain a weak learner Gy(x) by training the sample set
with weights Dy.

(2) Calculate the maximum error of the training set.

Ex= max |y, - Gi(x)|, i=1,2,...,m. (12

(3) Calculate the relative error for each sample. Exponent
error is expressed as follows:

—|v. — G .
ei=1- exp(—|y’ k) ) (13)
Ex
(4) Calculate the regression error rate as follows:
m
e = Zwkieki- (14)

i=1
(5) Calculate the coefficient of the weak learner as follows:

€k

Ay = .
1- e

(15)

(6) Update the weight distribution of the sample set as
follows:

wki 1-ey;
Wi+1,i = Z—ak “,

k

(16)
where the normalization factor Z; is expressed as follows:

m
Zy = Zwkia,l’e“.
i=1

17)

Finally, the strong learner is constructed as follows:

(.1
fx) = Z(ln —)]g(x),
k=1 QX

where g(x), k = 1,..., K, is the median value of all a;G(x).

(18)

2.8 RF

RF [35] is an ensemble of B trees {T;(X),..., Tg(X)}, where
X ={x,..., Xy} is a p-dimensional input vector [36]. The
ensemble produces B outputs {¥; = Ti(X),..., Y5 = To(X)},
where f/b, b =1,..., B, is a prediction value of the output
variable generated by the b-th tree. The outputs of all
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A

trees are aggregated to generate one final prediction, Y.
In regression, it is the average prediction of all the indi-
vidual trees.

The training set, D = {(Xi, Y)),...,(Xy, Y,)}, where X;,
i=1,...,n, is an input vector and ¥; is an output vector.
The training process is as follows:

(1) A bootstrap sample with replacement is randomly
drawn from the training data including n samples.

(2) For each bootstrap sample, a tree will be grown by
the following process: at each node, the optimal seg-
mentation is chosen among the subsets, including
random myy (rather than all) variables. Here, myy is
the only tunable parameter in RF. The tree is grown to
its maximum size (i.e., until no further splits are pos-
sible) and not pruned back.

(3) Repeat the above steps until B (a sufficiently large
number) trees are grown.

(4) Average the predictions of the individual trees to
obtain the final prediction as follows:

Y=

)

. 19)

| =

B
2
b=1

2.9 KNN-AdaBoost, LR-AdaBoost, and
RF-AdaBoost

Ensemble learning algorithms can significantly promote
the generalization ability of learning systems by training
a certain number of weak learners and combining them
into a strong learner. KNN-AdaBoost, LR-AdaBoost, and
RF-AdaBoost are all ensemble algorithms that improve
AdaBoosts by training KNN, LR, or RF as weak learners,
respectively [37-39]. The training process is the same as
AdaBoost, and only one difference can be found in the
first step. KNN, RF, or LR algorithms are selected as the
weak learners Gy(x), and the sample set is trained with
the weights Dy in iterations.

2.10 GBR

GBR fits the negative gradient by iterative process
[40,41]. Considering a regression question, n samples,
a, ), ey ,), ..., (xn,Y,) given are fitted into a func-
tion F(x) with minimal error.

Set the fitted values y = F(x), square error function
L(y,7) = (y — y)?/2, and the total error for all sam-

ples J = Z?:lL(Yi’ -
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The target value y; of the sample is known, and the
final result of error J is a numerical scalar. Error J is a
function of the n-variable (3, ¥, ..., §},) for a total of n
samples.

Calculate the gradient of the function J as follows:

V]:(a{ a_]a_]) 20)
) 7B O A
Y _LLOLR) _ LW _ A% - /)
Rl %, %, %,
= -0 = Ws
5o
hoh= Ty 1)

It can be seen from the above derivation that the residual
error is equal to the negative gradient y — y = -VJ.

The weak models are established through iteration,
gradually enhanced (boosting) and combined into a
strong model.

2.11 ERT

ERT, proposed by Geurts et al. [42] in 2006, is very similar
to the RF algorithm, which is composed of many decision
trees [43,44]. The two major differences between the two
algorithms are described as follows:

(1) The bagging model is applied in the RF algorithm.
While all samples are trained to generate each deci-
sion tree in ERT, i.e., each decision tree is constructed
with the same training samples.

(2) A random subset of RF needs to find the best bifurca-
tion attribute. While the bifurcation value of ERT is
obtained completely at random, so as to realize the
bifurcation of a decision tree. The ERT model is
trained with random features and threshold values.
Therefore, the training process of ERT is much faster
than RF.

3 Evaluation criteria

The four evaluation criteria, including root mean square
error (RMSE), correlation coefficient (R), mean absolute
error (MAE), and R? (coefficient of determination), were
employed to evaluate the results of TFCV, model predic-
tion, and external validation. They are defined as follows:

N
1 .
RMSE = [=)(y; - 7)?,
Ni=1

(22)
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>N 35— mo)(Ji — 1ho)

i ’ (23)
\/Z’L(y" - Moy’ \/ZL(JZ' — 1io)?
LN
MAE = N;U’] - Yl (24)
g1 ZmUi R o

YN - m)?

where N, y,, J, mo, and iy denote the number of samples,
the measured value, the predicted value, the mean value
of y;, and the mean value of y,, respectively.

4 Results and discussions

In this section, the genetic algorithm (GA) and recursive
feature elimination (RFE) are adopted to select variables
to form the optimal feature sets. Thirteen technologies,
including MLR, CART, Lasso, EN, KNN, SVR, AdaBoost,
RF, KNN-AdaBoost, GBR, LR-AdaBoost, ERT, and RF-
AdaBoost, were used for predicting the CCR of the indus-
trial BF. The comparative analysis of the above techniques
is presented as follows.

4.1 Dataset

The dataset consists of two parts: the training set for
modeling and the test set for validation. After excluding

Table 1: The list of the independent variables
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the outliers caused by the abnormal state of BF (such as
blowing down, record fault, or overhaul) and data with
missing values, the training set with 326 samples was
established by collecting the historical data throughout
a year from an industrial BF (an internal volume of
2,000 m®) with a sampling interval of 1 day. The test set
includes 87 samples collected from the same BF in the
first 3 months of next year. The disciplinarian of BF
burden distribution remained the same during the period
of data collection [17].

The dependent variable of the dataset is CCR (kg-t™).
The data for every CCR is the average of a day. According
to the experience of BF experts, 36 process variables
(shown in Table 1) were chosen as the independent vari-
ables of the dataset. The quantity and quality of data
are two key factors influencing industrial optimization
and constructing a reasonable model. A common thought
is that the amount of data needed to construct a plausible
data-driven model is at least three times of feature number.
The quantity of data in the work meets the above require-
ment. The quality of the data depends on the spatial cov-
erage of the target variable and the uncertainties associated
with the data [45]. Normally, data with a normal distri-
bution is in favor of establishing a reasonable model.
Data uncertainty, such as experimental error and input
error, could influence the quality of the data. To further
analyze the quality of the data, the distribution curves of
CCR and the independent variables were plotted in
Figures S1 and S2 of Supporting Information, respec-
tively. It can be seen from the two figures that all vari-
ables are basically consistent with normal distribution,

No. Meanings Features No. Meanings Features
1 Grade of iron (%) Gl 19 Iron losses (%) LI

2 Pig iron [Ti] (%) Ply; 20 Unit consumption of nut coke (kgt™) Ic

3 Pig iron [Si] (%) Pls; 21 Small sinter (kg-t™) SS
4 Blast tmperature (°C) Ts 22 Comprehensive ironmaking strength (t/m>.d) SC

5 Top gas pressure (MPa) Prop 23 Feed batch FB

6 Blast volume (m3min~?) Qs 24 Gas utilization rate (%) RGas
7 Burden ratio (t-t™%) P 25 Unit consumption of iron ore (kg-t™) Uo
8 Utilization coefficient (t-m~3.day™) n 26 Permeability index IP

9 Slag ratio (kg:t™) Rs, 27 Gray iron ratio (%) R
10 Basicity of slag (%) Rgas 28 Top temperature (°C) Trop
11 Oxygen-enriched rate (%) Rox 29 Sinter of each batch (t-batch™) Se
12 Coke ash (%) CA 30 Small sinter of each batch (t-batch™) SSg
13 Coke sulfur (%) cs 31 Pellet 1 of each batch (t-batch™) Pig
14 Coke M40 (%) Mo 32 Pellet 2 of each batch (t-batch™) P
15 Coke M10 (%) Mo 33 Huili mine of each batch (t-batch™) Mg
16 Coke CSR (%) CSR 34 Batch weight of coke (t-batch™) Caw
17 Coke <25 mm (%) Cys 35 Blast speed (m-s™) Ve
18 Clinker rate (%) RcL 36 Coal injection ratio (kg-t™) Ycoal
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and the stability of the data is higher because the data
show relative concentration. Most of the data measure-
ment instruments have random and systematic errors,
so the data collected from the BF system has some
degree of uncertainty. On the whole, the quality of the
data set used is suitable for data mining and industrial
optimization, although the BF data have some inevi-
table errors [17,19].

4.2 Selecting variables

Before establishing the models, variable selection can not
only reduce the dimension of feature space to further
decrease the risk of over fitting but also better remove
some variables unrelated to the target variable and noise
interference. Meanwhile, it can also greatly reduce training
time and further improve the prediction accuracy and gener-
alization performance of the model [17,46]. Apparently, the
model’s performance will be harshly affected, and the model
is too complex if the variables irrelevant to the output are not
deleted before training a model.

In the work, the primary feature screening was con-
ducted using the Pearson correlation coefficients between
the features. First, the max relevance min redundancy
(mRMR) method [47] was employed to sort the features.
The sorting result is represented in Figure S3. Second,
the Pearson correlation coefficients between the features
were calculated. Its matrix is shown in Figure S4. If the
correlation score between the features is higher than 0.9,
the feature with the lower mRMR score will be omitted.
After Plg;, Rcr, and SSg were omitted, the 33 features were
retained by the primary screening.

GA based on the learners and RFE based on the
base_estimators were used to further optimize the feature
sets, respectively. GA, first put forward by Holland [48], is
a global optimization algorithm of random search that
simulates the processes of inheritance and evolution in
natural conditions. It has highly collateral, random, and
adaptive features, is an effective method to remove from
local optima present on the response surface, and can
solve a wide variety of optimization problems with the
requirement of no knowledge about the response surface
or gradient present on it [49].

RFE is a method that works by selecting data features
recursively based on the smallest feature value [50]. In
the RFE concept, RFE based on the base_estimators
works by eliminating irrelevant features in each iteration,
namely the lowest-weight feature. This method is divided
into three stages as described in ref. [51]. The two feature

Comparison of data-driven prediction methods for CCR of BF = 7

selection processes are related to the learners or the
base_estimators and are automatically performed during
the training of the learners or the base_estimators.

Figure 2 illustrates the implementation processes of
variable selection of GA based on the seven learners,
respectively. The learners employed are CART, KNN,
SVR, KNN-AdaBoost, GBR, LR-AdaBoost, and RF-Ada-
Boost. Genetic algebra and the best feature set for each
GA-learner are listed in Table 2. Figure 3 shows the pro-
cesses of feature selection of RFE based on the six base_
estimators, namely, MLR, Lasso, EN, AdaBoost, RF, and
ETR. Table 3 illustrates the best feature set for each RFE -
base_estimator. In the variable screening process, the
optimal feature sets will be found when R is the max-
imum or RMSE is the minimum. It can be seen from
Tables 2 and 3 that the best feature set is different with
different learners or base_estimators, and the feature
number for different optimal feature set varies greatly.
The least feature number is 4, and the most is 18.

The top three most frequency features selected by the
various GA-learners are P, Ujg, and Y., in the feature
subsets. P refers to the amount of ore smelted by unit
coke, whose higher value may result in lower CCR. Uy is
the amount of iron ore consumption for generating 1t
of pig iron, and the larger Uy content may lead to the
higher CCR. In terms of the mechanism of BF operation,
Ycoa has large contributions to CCR and their relationship
is related to the quality and dosage of pulverized coal
and coke.

As shown in Figure 4, the scatter plots between the
top important features and CCR are generated for further
analysis based on the training data. Figure 4(a) indicates
that the larger P tends to result in a smaller CCR value
and has a negative correlation with CCR. Meanwhile,
Figure 4(b) shows the positive correlation between Ujg
and CCR, and Figure 4(c) reveals the positive one. There-
fore, the relationships between the three features and
CCR are consistent with the mechanism of BF operation.

4.3 CCR prediction

The parameters of the models were optimized with the
grid search technique and TFCV. The results were com-
pared by three evaluation criteria, namely RMSECV,
MAE_CV, and R? CV, where “CV” represents “cross vali-
dation.” The three methods with the top performances were
discovered by TFCV and used to establish the models. The
generalization capabilities and robustness of the models
were evaluated by using RMSE, MAE, R, and R
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Figure 2: The procedures of variable selection in GA-learners: (a) GA-CART, (b) GA-KNN, (c) GA-SVR, (d) GA-KNN-AdaBoost, (e) GA-GBR,

(f) GA-LR-AdaBoost, and (g) GA-RF-AdaBoost.

Table 2: Genetic algebra and the optimal feature sets in GA-learners

Learner Genetic algebra Selected features

CART 22 Gl, Tg, Prop, P, CA, C5s, SC, FB, Ui, S, P2, Ms, Ycoal

KNN 18 P, Ny, Rsi, CSR, LI, Ic, SC, FB, Rgas, Uio, IP, Ycoal

SVR 20 P, M1o, Uio, Ycoal

KNN-AdaBoost 24 Gl, P, ny, Rsi, Reass Rox» CA, CS, M40, CSR, LI, Ic, FB, Rgas, Uio, Sg, P1ss Ycoal

GBR 19 Plti, Props Py Roxs CS, Myo, Myg, CSR, Css, Ic, SS, SC, FB, Rgas, Uios IP, Trop, Ma, Caws Ycoal
LR-AdaBoost 15 Gl, Plyi, P, Ry, Uio, Rais Trops Ses Pigs P2y Yeoal

RF-AdaBoost 17 Props Py Mys Rst, Mao, SC, Uio, P2, Ycoal
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Figure 3: The procedures of feature selection in RFE based on the base_estimators: (a) MLR, (b) Lasso, (c) EN, (d) AdaBoost, (e) RF, and

(f) ETR.

Table 3: The optimal feature sets in RFE based on the
base_estimators

Base_estimator Selected features

MLR I-')ITi, PTop: Rox, M10: C25; IC: SS, SC, FB, RGas:
Uios Sgs Pigs P2g> Mg, Caws Ycoal

Lasso Qs, CSR, Ic, FB, Uio, IP, Rai, Trops Vs Ycoal

EN Qs, CSR, Ic, FB, Rgas, Uio, IP, Rais Trops Caws Ve,
YCoal

AdaBoost Plyi, P, v, Rsi, LI, ¢, SC, Uio, Caws Ycoal

RF Plyi, P, v, LI, SC, Ujo, Yecoal

ETR P, ny, LI, SC, Uio, Caws Ycoal

4.3.1 Model validation

The TFCV results of six conventional and seven ensemble
methods constructed with the optimal features obtained
from feature selection are shown in Table 4. Compared
with the other methods, KNN-AdaBoost has an inferior
prediction performance, for it achieved the largest
RMSECV and MAE_CV and the lowest R> CV in TFCV.
MLR, SVR based on RBF, and LR-AdaBoost exhibit the
best predictive properties among all the technologies.
LR-AdaBoost is an ensemble learning algorithm that
improves AdaBoost with linear regression as weak
learner. According to the excellent performance of

the MLR and LR-AdaBoost models, a conclusion can
be drawn that a certain linear relationship exists between
the target variable and the independent variables. Due
to sufficiently high R*> CV and very low RMSECV and
MAE_CV, the three models have excellent generalization
performance. Therefore, the further optimization of other
methods would not be considered.

Figure 5 reveals the box plots of RMSECV and R* CV
for six conventional methods. In Figure 5(a), the technol-
ogies are ranked from low to high according to the center
of RMSECV: MLR, SVR, Lasso, KNN, EN, and CART. Espe-
cially, the center values of RMSECV distribution of the
MLR and SVR models are far less than other methods.
As shown in Figure 5(b), the zones of R? CV for MLR,
SVR, and Lasso are much narrower than those of the
other methods, and their center values are much higher
than those of the others. According to the above analysis,
MLR, SVR, and Lasso are more reliable and more precise
for predicting CCR than the other techniques.

Figure 6 represents the box plots of RMSECV and
R%_CV of TFCV for seven ensemble methods. In Figure
6(a), the methods are ordered according to the central
values of RMSECV in ascending order: LR-AdaBoost,
GBR, RF, ERT, RF-AdaBoost, AdaBoost, and KNN-Ada-
Boost. The RMSECV range of LR-AdaBoost is the nar-
rowest among the seven methods. In Figure 6(b), the
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Figure 4: Relationships between the top three most important features: (a) P, (b) U, and (c) Ycoa and CCR.

Table 4: The TFCV results of the thirteen methods

Methods RMSECV MAE_CV R*_CV
MLR 1.668 1.079 0.973
CART 5.630 3.860 0.757
Lasso 3.018 2.365 0.928
EN 4.776 3.635 0.819
KNN 4.233 2.890 0.882
SVR 1.878 1.158 0.975
AdaBoost 5.073 3.808 0.803
RF 3.711 2.741 0.885
KNN-AdaBoost 6.404 4.882 0.674
GBR 3.459 2.578 0.904
LR-AdaBoost 2.276 1.638 0.953
ERT 4.053 2.976 0.867
RF-AdaBoost 4.226 2.931 0.858

centers of LR-AdaBoost, RF, GBR, ERT, and RF-AdaBoost
are much higher than those of the others. The methods
with a narrow distribution of R* CV include LR-AdaBoost,

8
[ 25%~75%
(a) RMSEQV T Range within 1.5IQR
7+ — Median Line
o Mean
6 ¢ Outliers
5k
<
=R
3L
-
i ==
1 1 1 1 1 1 1

MLR CART Lasso EN KNN

Predictive Techniques

SVR

RF, and ERT. On the whole, LR-AdaBoost is the most accu-
rate and stable technique for predicting CCR among all the
ensemble techniques.

In addition, it can be seen from the above two fig-
ures that MLR has the superior prediction performance,
while SVR and LR-AdaBoost trail in second and third,
respectively.

4.3.2 Model training and testing

Based on the above comparison and analysis of the thir-
teen methods in TFCV, MLR, SVR, and LR-AdaBoost have
the top three performances for CCR prediction. This sec-
tion will illustrate how they would be employed to estab-
lish the models and how well the models performed in
external validation.

By setting a regression equation, the MLR model can
estimate the dependent variable with multiple independent

1.00
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Figure 5: Box plots of (a) RMSECV and (b) R>_CV for six conventional methods.
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Figure 6: Box plots of (a) RMSECV and (b) R>_CV for seven ensemble methods.

variables and then predict the dependent variable. The
independent variables were standardized because of their
different units. The larger the value of the standardized
regression coefficient, the greater the influence of the inde-
pendent variable on the dependent variable. The MLR
model constructed with the optimal feature set is shown
as follows:

CCR = - 4.16PIy; + 9.05Pr,, — 1.64Rox + 0.82M;g
— 0.19G;5 + 0.24Ic — 0.05SS + 287.4SC
— 1.88FB — 0.41Rg,s + 0.25U10 — 9.05Sp
- 876P1]3 - 9.5P2]3 - 961MB + 925CBW
+ 0.21Ycoa + 348.52.

(26)

Parameter tuning of SVR and LR-AdaBoost is a cru-
cial step to develop models with high generalization per-
formance. The three hyperparameters, C, &, and o need
to be optimized using the grid search method based on
leave-one-out cross-validation before SVR modeling [17].
In the work, the range of € was from 0.01 to 0.1 with a step
of 0.01; C changed from 1 to 100 with an interval of 2;
o varied from 0.5 to 1.4 with a step of 0.1. As can be
seen from Figure 7, the higher the C and o, the larger
the RMSE. The RMSE value ranges from 1.867 to 5.470.
Obviously, the reasonable selection of C, €, and ¢ has a
great influence on the prediction performance of the SVR
model. After conducting the grid search shown in Figure
7, the optimal C, €, and ¢ were determined to be 23, 0.01,
and 0.7, respectively, when RMSE (equal to 1.867) was
lowest.

The SVR model constructed with the optimal C, &,
and o is shown as follows:

n
y = YB, - exp(-0.7-||x - xi|[2) + 0.64286,

i=1

(7)

where x is the unknown vector, x; is the support vector of
the SVR model, n is the corresponding sample number,
and ; is the Lagrange multiplier of the support vector.
The two hyperparameters of the LR-AdaBoost model,
namely n_estimators and learning_rate need to be tuned
by using the grid search method. Here, n_estimators
is the number of weak learners. Generally, too small
n_estimators could cause under-fitting, otherwise could
cause over-fitting. Furthermore, learning_rate is the weight
reduction factor of the weak learner. In this work, n_esti-
mators varied from 1 to 10 with a step of 1 and from 20 to 100
with a step of 10. Learning_rate changed from 0.1 to 1 with
an interval of 0.1. The result indicated that n_estimators and
learning_rate were equal to 2 and 0.1, respectively, when
RMSE was at a minimum. The optimization process of the

1.860
2.221

2.582

2.943
o]
3.304
3.665
4.026
4.387
4.748

5.109

5.470

Figure 7: The variety of RMSE with o and C in optimizing SVR’s
hyperparameters.
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Figure 8: The variety of RMSE with learning_rate and n_estimators in
optimizing LR-AdaBoost’s hyperparameters.

Table 5: The prediction results of the MLR, SVR, and LR-AdaBoost
models

Indicator MLR SVR LR-AdaBoost
RMSEr 1.337 1.812 1.855

MAEr 1.037 1.084 1.123

Rrr 0.993 0.988 0.986

R% 0.987 0.976 0.973
RMSEqe 1.593 2.464 1.863

MAE 1.328 1.887 1.508

Rre 0.989 0.981 0.987

parameters is shown in Figure 8, from which it can be found
that n_estimators have a more influential impact on RMSE
than learning_rate. When n_estimators are less than 20, a
smaller RMSE can be obtained.

The MLR, SVR, and LR-AdaBoost models were employed
to predict the samples in the test set. The evaluation criteria
of the three models, RMSE, MAE, R, and R? are listed in Table 5.

DE GRUYTER

The subscripts “TR” and “TE” represent “training” and
“test,” respectively. It can be seen from the table that
MLR has the lowest RMSEtgr and MAErg, and the highest
R and R%g. Moreover, it also performs best in the external
test. In model training, SVR is superior to LR-AdaBoost.
The reverse is true for the performance indicators gener-
ated by the external test of the two technologies. This
shows that LR-AdaBoost has stronger extrapolation per-
formance than SVR. Figure 9 represents the scatter plots of
the three models. It can be seen from the figure that they
could primely fit the experimental data since the predictive
data are closely distributed along the diagonal direction.
In particular, the training result of SVR is slightly better
than LR-AdaBoost, but LR-AdaBoost in external validation
is more reliable than SVR. It can be seen from the above
analysis that the three methods all possess high prediction
accuracy and practical values.

5 Conclusions

In the work, a comparative study of data-driven predic-
tion methods for the CCR of BF was carried out. Six con-
ventional methods, including MLR, CART, Lasso, EN,
KNN, and SVR, and seven ensemble methods, namely,
AdaBoost, RF, KNN-AdaBoost, GBR, LR-AdaBoost, ERT,
and RF-AdaBoost, were investigated from the application
point of view. The TFCV results found that KNN-AdaBoost
had the lowest competitiveness for predicting CCR.
Meanwhile, MLR had the optimal prediction performance
among all the methods, while SVR and LR-AdaBoost trailed
in second and third place. Furthermore, the SVR model pos-
sessed better training performance than the LR-AdaBoost
model, but the LR-AdaBoost method appeared more reliable
for external validation. On the whole, the three methods
owned high practical values and generalization performance
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because of their models’ extremely high R and very low
RMSE and MAE. The study integrated 13 techniques to solve
the industrial optimization problem with strong noise and
multivariable couple. The method outlined here can pro-
vide valuable hints into industry optimization with the
assistance of machine learning and has important instruc-
tions and practical value for assisting managers to control
BF parameters and detect BF status.
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