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Abstract: 7N01-T4 aluminum alloy is widely applied to
high speed train body material attributed to its excellent
comprehensive mechanical properties; however, its high
sensitivity to hydrogen stress corrosion would seriously
restrict its further application. In this study, the hydrogen-
induced stress corrosion of the base metal and the joint
was investigated under slow strain rate test to ascertain
the characteristics and mechanism of hydrogen-induced
stress corrosion cracking of aluminum alloy. By applying
the cathode potential, the morphology of tensile port was
studied. Results show that under the action of tensile
stress, the free atomic hydrogen produced in the corrosion
process or absorbed hydrogen diffuses along the grain
boundary into the crack tip region, weakens the grain
boundary and causes hydrogen embrittlement, thus accel-
erating the crack propagation and fracture. These prop-
erties provide a broader prospect for the application of
7N01-T4 aluminum alloy in high-speed train body.
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hydrogen-induced stress corrosion

1 Introduction

Aluminum alloy has achieved wide application in the
current rail transit field due to its characteristics of light-
weight, corrosion resistance, and excellent tensile prop-
erties [1,2]. Wide-body of aluminum alloy profile enables
its application in high-speed train body to become a
current research hotspot [3–5]. Thereinto, high-strength
A7N01-T4 aluminum alloy is the key structural material

for high-speed train body, car body, and the most ideal
medium strength welding structural material [6]. So it
is particularly important to study its operating perfor-
mance, especially the stress corrosion behavior [7].

In the operating process of A7N01-T4 high-strength
aluminum alloy component, stress corrosion has a great
impact on its strength and always becomes the main
reason for its failure. The main strengthening phase of
A7N01 high-strength aluminum alloy is MgZn2 (η phase).
Increasing the content of zinc (Zn) and magnesium (Mg)
in the solution limit can greatly improve the strength of
the alloy, but its stress corrosion cracking (SCC) resis-
tance will decrease. Therefore, the contradiction between
SCC sensitivity and strength is still a major difficulty in
the industrial application of A7N01 high-strength alu-
minum alloy [8,9]. A large number of failure analyses
and experimental studies show that stress corrosion is
the main failure mode of A7N01 high-strength aluminum
alloy welded joint. In view of this problem, many scholars
have carried out a series of studies and made remarkable
progress. Ma et al. [10] studied the SCC sensitivity of
A7N01 friction stir welding joint under hydrogen environ-
ment, and found that aluminum alloy FSW joint had
a large ductility and tensile strength loss, which was
caused by hydrogen infiltration into the grain boundary
of aluminum alloy material, resulting in material embrit-
tlement. Shen et al. [11] studied the SCC of a 7N01P-T4
aluminum alloy by using improved unilateral notched
tensile specimen, and found that the corrosion crack
growth rate of A7N01P-T4 alloy in 3.5% sodium chloride
solution was 3 orders of magnitude lower than that
of corrosion fatigue crack. Hydrogen embrittlement is
the main cause of stress corrosion crack and corrosion
fatigue crack propagation [12]. Qi et al. [13] found that
hydrogen segregation occurred at the grain boundary of
aluminum alloy, which increased cell lattice constant
and reduced the average binding energy and interatomic
binding force of grain boundary atoms, thus increasing
the hydrogen embrittlement sensitivity (IHE) of the alloy.
In addition, Akbari et al. deeply researched multicriteria
optimization of mechanical properties of aluminum com-
posites reinforced with different reinforcing particles
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type, and an approach based on TOPSIS method was
applied for determining the best compromised solution
from the obtained pareto-optimal set [14]. Then, they
investigated multi-walled carbon nanotubes/aluminum
composite fabrication using friction stir processing through
simulation and experiment, showing that the wear resis-
tance and hardness of the produced composites are consid-
erably enhanced compared to the base alloy [15]. Aging
degree has great influence on IHE of 7050 aluminum alloy.
Under the same hydrogen filling condition, the hydrogen
content of the aluminum alloy under the under-aged con-
dition is the largest, the hydrogen embrittlement effect is the
most obvious, the over-aged hydrogen content is the lowest,
the hydrogen embrittlement effect is the weakest, and the
peak age is in the middle.

Based on the above research and research status, this
work studied the effect of external hydrogen on SCC of
aluminum alloy and the characteristics and mechanism
of hydrogen-induced stress corrosion of the base metal
and the joint, in order to figure out the corrosion resis-
tance properties of weld and fracture properties of the
base metal.

2 Experiment and methods

2.1 Materials

The 7N01-T4 aluminum alloy sheet with a thickness of
7 mm was selected and its aging state was natural aging
as the base material. The joint form is butt joint, and
7N01-T4 welding joint is prepared by laser-arc composite
welding process. The fillingmetal is ER5356 aluminum alloy
welding wire containing 5% Mg. Table 1 lists the chemical
composition of aluminum alloy and welding wire.

The equipment used in the laser-arc composite welding
process is TruDisk 10002 continuous laser and Transpuls
Synergic 4000 welding machine. The welding process is rea-
lized by ABB robot arm. The process parameters of laser-arc
welding are shown in Table 2, and the laser output wave-
length is 1.06 μm, spot minimum diameter is 0.4mm, and
focal length is 300mm. The size of the welding test plate is
320mm× 160mm× 7mm (length × width × thickness), and
the welding groove is “v” shaped. The heat source configura-
tion with laser in front and arc in back is used for welding.

2.2 Electrochemistry

Electrochemical test can quickly evaluate the influence of
environmental factors on the corrosion performance. In
order to study the corrosion performance of 7N01-T4 alu-
minum alloy, Potentiodynamic Polarization Measurement
was carried out at the scanning rate of 1 mV/s. Each
sample was tested three times, and the average value
of electrochemical parameters obtained three times was
taken as the final result. The test environment was room
temperature and the medium was 3.5 wt% NaCl solution.
Polarization test was carried out on CS2000 electroche-
mical workstation, in which three-electrode system was
used for polarization test and the working electrode was
connected to the test sample by wire. The sample of base
metal and weld area was cut by electric spark wire cutting
to a size of 5 × 5mm2. All surfaces except test surfaces shall
be sealed with denture powder after welding wires. After
polishing the test surface according to the metallographic
sample preparation procedure, it was cleaned with anhy-
drous ethanol to remove oil and water stains on the sur-
face, and dried for later use. The scanning potential range
was relative open circuit potential ±0.5 V, and the scan-
ning rate was 1mV/s.

Table 1: Main chemical composition of 7N01 aluminum alloy and ER5356 welding wire (wt%)

Material Si Fe Cu Mn Mg Zn Ti Al

7N01 0.061 0.009 0.096 0.307 1.114 4.38 0.058 Residual volume
ER5356 0.25 0.10 0.10 0.10 4.6 0.10 0.20 Residual volume

Table 2: Laser-arc composite welding process parameters

Parameter Laser
power (kW)

Welding speed
(mm/s)

Wire feeding speed
(m/min)

Shielding gas Butt joint
gap (mm)

Defocusing
amount (mm)

Numerical value 4 10 8.5 Ar 0.2 0
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2.3 Slow strain rate tensile test (SSRT)

The sensitivity of 7N01-T4 laser-arc composite welded joints
to hydrogen stress corrosion was evaluated by SSRT test.
The reference standard is GB/T15970.7-2000 Corrosion of
Metals and Alloys– Stress Corrosion – Part 7: Slow Strain
Rate Test. SSRT samples of base metal and joint are taken
perpendicular to the welding direction. The length of SSRT
sample is 25mm, and the thickness is 3mm. MTS-300 ten-
sile testing machine was used for SSRT test.

SSRT tests were carried out in 3.5 wt % NaCl solution
at 25°C and strain rate set at 10−6 s−1. The cathode poten-
tial was applied through the CS2000 electrochemical
workstation. The sample was used as the working elec-
trode, saturated calomel electrode as the reference elec-
trode, and platinum electrode as the auxiliary electrode,
as shown in Figure 1(a). When the cathode potential is
applied during the SSRT test, “hydrogen evolution reac-
tion” will occur on the sample surface, and hydrogen
atoms can be adsorbed on the sample surface and gradu-
ally diffuse into the sample, as shown in Figure 1(b). After
the SSRT test, the fracture surface morphology of the
sample was observed and analyzed under scanning elec-
tron microscope.

3 Results and discussion

3.1 Polarization curve

Figure 2 shows the polarization curve of 7N01-T4 alu-
minum alloy base metal and joint weld in 3.5% NaCl
solution (scanning rate is 1 mV/s). In electrochemical
corrosion, the corrosion resistance of metal materials
can be evaluated by self-corrosion potential. Generally

speaking, the greater the self-corrosion potential is, the
better its corrosion resistance is, and vice versa. Therefore,
it can be obviously found from Figure 2 that the self-corro-
sion potential of weld is higher and the self-corrosion
potential of base metal is lower, indicating that the weld
has better corrosion resistance. The reason for the good
corrosion resistance of the weld is that the filler material is
ER5356 welding wire, and the alloy is Al–Mg, which has
good corrosion resistance [16].

According to the test results, it can be found that the
corrosion potential of base metal and weld is basically in
the range of −0.8 to −1.4 V. Therefore, the potentials of
−0.8, −1.0, −1.2, and −1.4 V were selected as the cathodic
potentials applied in the subsequent SSRT hydrogen
stress corrosion tests.

Polarization curve analysis shows that the weld self-
corrosion potential is higher and the base metal self-cor-
rosion potential is lower, indicating that the weld has
better corrosion resistance. The reason for the good
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Figure 1: Schematic diagram of test design: (a) synchronously applied cathode potential of SSRT test and (b) hydrogen atoms adsorbed on
the surface of the material and diffusing into the material under the action of cathode potential.
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Figure 2: Polarization curves of 7N01-T4 aluminum alloy base metal
and joint weld zone.
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corrosion resistance of the weld is that the filler material
is ER5356 welding wire, and the alloy is Al–Mg, which
has good corrosion resistance.

3.2 SSRT

Figure 3 shows the SSRT stress–strain curves of base
metal and joint under the condition of potentiostatic
polarization in 3.5 wt% NaCl solution at room tempera-
ture. It can be seen from Figure 3 that the slope of stress–
strain curves of base material and joint samples at elastic
deformation stage is almost the same under different
potentiostatic polarization conditions, indicating that
potentiostatic polarization has no obvious influence on
the elastic deformation behavior of base material and joint.
In addition, the overall tensile strength and elongation of
the base metal are better than that of the welded joint,
mainly because of the performance of the weld. The perfor-
mance of the weld is related to the chemical composition,
fusion ratio, and crystallization process of the filler wire.
The weld area is mainly the as-cast structure formed by
the solidification of Al–Mg welding wire after melting,
resulting in low mechanical properties of the weld. Gener-
ally, the as-cast grain size is coarse. According to the Hall–
Petch formula, the smaller the grain size is, the greater the
yield strength is ref. [17]. Therefore, the yield strength of
the weld is lower than that of the base metal, which is
also the reason for the low weld strength. On the other
hand, the aluminum alloy laser-arc composite welding pro-
cess will inevitably produce small pores and other defects,
and these defects will become the stress concentration

position under the action of external tensile force, leading
to the joint fracture in advance, resulting in low welding
joint fracture strength.

In addition, the same rule can be found in the engi-
neering stress–strain curves of the base metal and the
joint, that is, the base metal and the joint have the best
tensile properties (breaking strength and elongation are
the best) in the air environment. With the increase in the
applied cathode potential, the tensile properties of both
the base metal and the joint decrease, and the more nega-
tive the cathode potential shifts, the worse the fracture
resistance. The reason is that when cathode potential is
applied to aluminum alloy material, the material indi-
cates that hydrogen evolution reaction will occur, and
the reaction intensity increases gradually with the nega-
tive shift of the applied potential [18,19]. At this point,
hydrogen, driven by external stress and internal stress,
will migrate and enrich toward hydrogen trap areas such
as grain boundaries, phase boundaries, dislocation, and
pores, resulting in hydrogen-induced stress cracking of
the material [20,21].

According to the above SSRT tensile test results,
stress corrosion sensitivity index ISSRT was used for quan-
titative comparative analysis of stress corrosion sensi-
tivity of the base metal and joint. ISSRT calculation for-
mula (1) is as follows:

I σ δ
σ δ

1 1
1

,SSRT
fw fw

fA fA
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( )
= −

× +

× +

(1)

where σfw is the breaking strength in corrosive environ-
ment, δfw is the elongation after break in corrosive envir-
onment, σfA is the breaking strength in air, and δfA is the
elongation after break in air.
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Figure 3: SSRT tensile test results: (a) engineering stress–strain curve of the base metal and (b) engineering stress–strain curve of 7N01-T4
welded joint.
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According to formula (1), the engineering stress–
strain curves of the base metal and joint were extracted,
sorted, and analyzed to obtain the values of various para-
meters required for the calculation of stress sensitivity
index as shown in Table 3. Finally, the stress sensitivity
index value ISSRT of the base metal and joint under dif-
ferent cathode potentials was obtained through compre-
hensive calculation.

Based on the data calculated in Table 3, the corre-
sponding relation curve between the cathode potential
applied by the base material and the joint and the stress
sensitivity index were drawn, as shown in Figure 4. As
can be seen from Figure 4, the overall curve of the base
metal is higher than that of the joint, indicating that the
stress sensitivity index of the base metal is higher than
that of the joint, and the base metal has a higher stress
corrosion sensitivity tendency. Generally speaking, the
higher the stress sensitivity index is, the worse the stress
corrosion resistance will be. Therefore, compared with
the base metal, the laser-arc composite welded joint of
7N01-T4 aluminum alloy has better stress corrosion resis-
tance [22].

In addition, with the negative shift of the applied
cathode potential, the base metal and the joint have the
same change trend, and the stress sensitivity index ISSRT
of the two gradually rises to the maximum value. This
also confirms the above analysis that negative cathode
potential shift results in intensified hydrogen evolution
reaction [23]. As the applied cathode potential increases,
the ISSRT index is lowest at the cathode potential of
–0.8 V, 0.114 for the base material and 0.058 for the joint.
The joint has such a low stress sensitivity index that there
is almost no stress corrosion tendency at this potential.
Then, with the negative potential shift, the stress index
increases gradually. When it reaches –1.4 V, it has the
maximum ISSRT index value, which is 0.430 for the base
metal and 0.337 for the joint.

It can be drawn that the overall curve of the base
metal is higher than that of the joint, indicating that
the base metal has a higher stress corrosion sensitivity
index than that of the joint, and the base metal has a
higher stress corrosion sensitivity tendency. Therefore,
compared with the base metal, 7N01-T4 aluminum alloy
laser-arc composite welded joint has better stress corro-
sion resistance.

3.3 Fracture morphology

Typical tensile fracture at slow tensile rate was selected to
study the stress corrosion fracture characteristics of the
base metal and welded joint by observing and analyzing
the fracture morphology of base metal and welded joint
in air environment and 3.5 wt% NaCl corrosion environ-
ment. Figure 5 shows the fracture morphology character-
istics of base metal in air environment and at various
cathode potentials. Figure 6 shows the microstructure

Table 3: Stress corrosion sensitivity index calculated values of each parameter

Object Condition σfA (MPa) σfw (MPa) δfA (%) δfw (%) ISSRT

Base metal Air 362 — 22.2 — —
–0.8 V — 360 — 19.68 0.114
–1.0 V — 345 — 17.38 0.245
–1.2 V — 328 — 16.52 0.316
–1.4 V — 321 — 13.92 0.430

Welded joint Air 349 — 16.92 — —
–0.8 V — 330 — 16.85 0.058
–1.0 V — 326 — 14.48 0.193
–1.2 V — 316 — 13.64 0.260
–1.4 V — 305 — 12.60 0.337
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Figure 4: Polarization curves of 7N01-T4 aluminum alloy base metal
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characteristics of 7N01-T4 welded joint in air environ-
ment and at applied cathode potentials.

It can be seen that the fracture morphology of base
metal in non-corrosive media is mainly strip-shaped
dimple (Figure 5(a)), indicating that it is ductile fracture.
Under the action of corrosion solution and cathode poten-
tial, the surface of the fracture showed corrosion charac-
teristics (Figure 5(b–e)). Clusters of corrosion products and
mud-like patterns can be found on the surface of the frac-
ture side (Figure 5(b)). Local intergranular fracture mor-
phology can also be found on the surface of the fracture
side, with local intergranular cracks (Figure 5(d)) and
obvious layered intergranular cracks (Figure 5(e)).

In addition, the fracture positions of welded joints
are all located in the weld zone. The fracture morphology
of the joint in air is typical of ductile fracture, and the

dimple distribution is fine and uniform (Figure 6(a)).
Similar to the fracture morphology of the base metal,
the fracture surface of the joint also shows corrosion
characteristics due to the action of corrosive medium
and applied potential (Figure 6(b and c)). At the same
time, obvious intergranular fracture characteristics can be
found on the surface of the fracture side, and rocky cracking
morphology appears in local areas (Figure 6(d and e)).

Many experimental studies show that SCC of 7XXX
series high-strength aluminum alloy mainly belongs to
the hydrogen-induced crackingmechanism [24–26]. According
to the hydrogen embrittlement theory, free atomic hydrogen
generated in the corrosion process or self-absorbed hydrogen
diffuses into the crack tip region along the grain boundary
under the action of tensile stress, weakening the grain
boundary and causing hydrogen embrittlement, thus

Figure 5:Microstructure of base metal fracture: (a) in air condition, (b) in the condition of cathode potential of –0.8 V, (c) in the condition of
cathode potential of –1 V, (d) in the condition of cathode potential of –1.2 V, and (e) in the condition of cathode potential of –1.4 V.

Figure 6: Microstructures of K4648 alloy after solid solution treatment: (a) in air condition, (b) in the condition of cathode potential of
–0.8 V, (c) in the condition of cathode potential of –1 V, (d) in the condition of cathode potential of –1.2 V, and (e) in the condition of cathode
potential of –1.4 V.
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accelerating the crack propagation and fracture [27–29].
Under the action of hydrogen-induced corrosion
cracking, the formation of cracks starts from spot corro-
sion [20]. Pitting corrosion occurs because in chloride
solution, the passivation film is broken by chloride
ions, which induces pitting corrosion in local areas
and leads to cracks [1,29–31]. We know that the
reaction of aluminum alloy with water is Al + 3H2O =
Al3O2 + 6H+ + 6e−. As the aluminum alloy is in 3.5 wt%
NaCl solution, there will be corresponding chemical
reactions at the crack tip: Al + Cl− = AlCl3 + 3e− and
Al3+ + H2O = Al(OH)2+ + H+.

In addition, under the action of applied stress, there
is a great stress concentration at the crack tip. The for-
mula (2) of the stress field of crystal crack tip is as follows:

σ K
πρ

,i
yy

0
= (2)

where σyy is the stress value of the crystal crack tip, Ki is
the applied load, ρ0 is the notch curvature of the crystal
crack tip, which is generally considered to be equal to
2–3, and b is the crystal lattice constant. It can be found
that the larger the loading load is, the more easily the
stress concentration is formed in the front edge of
the crack tip, and the larger the load is, the more easily
the stress cracking occurs.

Under the joint action of stress field and hydrogen
ion, hydrogen will gradually open the crack. The applied
stress facilitates the exchange of hydrogen between alu-
minum alloy and corrosion environment and promotes
hydrogen diffusion along grain boundaries. In addition,
hydrogen can greatly reduce the bonding strength at
grain boundaries, leading to the weakening of grain
boundaries, resulting in grain embrittlement and inter-
granular cracks, resulting in grain boundary cracking
and finally collapse.

In summary, observation and analysis of the fracture
surface microstructure of the base metal and welded joint
of 7N01-T4 aluminum alloy show that the fracture surface
morphology of the base metal and welded joint is mainly
a large area of dimple distribution in the non-corrosive
medium environment, which belongs to the ductile frac-
ture. Under the action of 3.5 wt% NaCl solution and
applied cathode potential, the fracture characteristics of
the base metal and joint changed, and corrosion traces
appeared. Clusters of corrosion products and mud-like
patterns were found on the surface of the fracture, and
the characteristics of rock intergranular cracking appeared
in some areas.

3.4 Stress corrosion crack propagation

Figure 7 shows the stress corrosion crack propagation
path of the base metal 7N01-T4 aluminum alloy tested
by EBSD. It can be seen from Figure 7(a) that the stress
corrosion crack propagation path is discontinuous, and
the crack at grain boundary has not been connected with
the main crack, presenting a mixed fracture mechanism
of transgranular and intergranular. The prefabricated
crack of the sample just stays in the grain of the alu-
minum alloy, inside which the stress corrosion crack
starts to propagate. The aluminum alloy matrix at the
crack tip is constantly dissolved, and accompanying
with the crack propagates through the grain with the
diffusion and aggregation of hydrogen.

Generally, the large angle grain boundary is the posi-
tion of strong trap for hydrogen, whose formation reduces
the mobility of hydrogen atoms, which continue to gather
and compound into hydrogen molecules, resulting in
hydrogen pressure and cracks fracturing along the grain

Figure 7: Stress corrosion crack propagation path of 7N01-T4 aluminum alloy: (a) stress corrosion crack propagation path of base metal
7N01-T4 aluminum alloy and (b) cracks crack path along grain boundary.
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boundary, as shown in Figure 7(b). Meanwhile, it shows
rock sugar pattern and intergranular secondary crack on
the fracture surface, and the existence of micropores
and hairlines on grain boundaries proves that SCC is
related to hydrogen embrittlement. At the same time,
small and shallow dimples without inclusions appeared
on the crystal plane of the sample fracture, reflecting the
deterioration of the toughness of the material. That is
because the dimples were formed by hydrogen aggrega-
tion rather than ductile fracture. According to the theory
of fracture mechanics, the cracks in the middle of the
sample are in plane strain state, which is conducive to
hydrogen enrichment, which is one of the reasons for
the long cracks in the middle of sample. In addition, the
stress corrosion crack propagation zone of heat affected
zone and base material sample is relatively clean and no
corrosion products are attached, also presenting the fea-
ture of hydrogen-induced crack fracture.

4 Conclusion

This work studied the hydrogen-induced stress corrosion
of 7N01-T4 aluminum alloy for railway vehicles by com-
bination of potentiodynamic polarization measurement
and slow strain rate tensile test. Polarization curve ana-
lysis shows that the weld self-corrosion potential is higher
and the base metal self-corrosion potential is lower, indi-
cating that the weld has better corrosion resistance. In
addition, it can be drawn that the fracture morphology
of base metal and joint in non-corrosive medium is mainly
large area dimple distribution, which belongs to ductile
fracture. Clusters of corrosion products and mud-like pat-
terns were found on the surface of the fracture, and the
characteristics of rock intergranular cracking appeared in
some areas. The above conclusions could provide some
reference for investigating the cause and mechanism of
hydrogen-induced stress corrosion of 7N01-T4 aluminum
alloy and other similar materials, providing greater security
for the safety of railway vehicles.
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