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Abstract: In fire investigations, the most important aspect
is determining the presence of a liquid accelerant at
the fire scene. The presence or absence of accelerants is
critical evidence during trials for fire cases. Upon expo-
sure to high temperatures, metallic substances undergo
oxidation, which can be imparted by accelerants in the
fire. Oxides and substrates found on metal surfaces offer
valuable information on the characteristics of fire, inclu-
ding exposure temperature, duration, and involvement of
a liquid accelerant. In this study, we investigated the
oxidation behavior of copper at high temperatures in
a simulated flame environment using ethanol combustion.
After oxidation, the morphological, oxide phase composi-
tion, and microstructural features of specimens were
characterized by observation, X-ray diffraction, X-ray
photoelectron energy spectroscopy, transmission electron
microscopy, and scanning electron microscopy with
energy-dispersive spectroscopic analysis. The elemental
carbon with a hexagonal structure deposited on the
sample’s surface was found, which may be incomplete
combustion and the chemical composition of ethanol.
Copper has a preferred orientation of oxide on the (111)
crystal plane, which differs from oxidation in ordinary
hot air that is related to the large Coulomb force of the (111)
crystal plane. Hot air convection due to combustion may
cause large areas of oxide layer on the copper surface to
crack and peel. Oxide properties and surface state of
metals strongly depended on oxidation duration, tempera-
ture, and atmosphere. These data shall offer reference

information for determining the presence of combustion
accelerants at fire scenes.
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1 Introduction

In court trials for fire cases, it is necessary to give scien-
tific evidence. Usually, in order to attain the purpose of
rapid arson, arsonists will choose to use liquid acce-
lerants [1,2]. Thus, determining the presence of a fire
accelerant at the scene is key to the court trial [2–4].
Currently, it is the most widely used method to identify
accelerants in the fire scene; the first step is extracting
suspicious accelerants fragments from fire debris (such
as extraction, physical adsorption, distillation method,
and chemical derivatization) [5–7], and then the che-
mical analysis was used to identify whether there were
accelerant components in the specimen (such as gas
chromatography-mass spectrometry, infrared, and ultra-
violet) [8,9]. However, at the fire scene, the complex
combustion environment and destruction during fire
extinguishing make it not only difficult to extract quality
samples for analysis but even more difficult to extract
volatile combustion accelerants [4,10]. According to the
high-temperature oxidation theory, when metals are oxi-
dized in a fire, the oxidation product will record informa-
tion about the temperature (combustion temperature),
atmospheric composition (accelerants), and oxidation
time (combustion duration). For example, unstable high
temperature from flame combustion affects nucleation and
growth of metal oxides; carbon from incomplete combus-
tion is deposited on metal surfaces; plasma in the flame
greatly accelerates metal oxidation and the air convection
due to turbulence tears the metal oxide layer [11,12]. We
proposed a newmethod of determining the presence of fire
accelerants based on oxidation characteristics of metal,
which may enhance evidence gathering for fire cases
[13–17]. In this study, we used copper, one of the most
common household metals, and ethanol which is also
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widely used in fuels. This research will study the oxidation
behavior of copper in a fire scene with ethanol as accel-
erants, aiming to offer complimentary insight into fire
characteristics such as whether a liquid accelerant is
involved.

2 Methods

In this study, copper (wt%), a widespread metal (Table 1)
was used. The sample was cut into 3mm × 10mm × 20mm
pieces and a 2mm diameter hole was punched at the
top. The surface was polished using SiC water sandpaper
to 2000#. It was then mechanically polished and
degreased using acetone, followed by ultrasonic cleaning
and flushing with absolute ethanol before being dried
with cold air for later use. The experiment simulated
atmospheric oxidation during ordinary indoor fire using
ethanol as a simulated accelerant. The simulation device
is shown in Figure 1. Oxidation was evaluated after
0.5, 1, 2, 3, 4, 5, 10, 20, and 30min and the temperature
curve at each time point was plotted (Figure 2), through
which the oxidation parameters were chosen based on
actual oxidation conditions at the fire scene. After oxida-
tion was completed, specimens were weighed and the
surface was analyzed after surface oxides had naturally
fallen off. Zeiss Sigma scanning electron microscopy
(SEM) was used to examine the morphology of the oxi-
dized sample. Oxford INCA energy-dispersive spectro-
scope (EDS), Shimadzu XRD-6100 X-ray diffractometer

(XRD), Thermo Scientific K-Alpha + X-ray photoelectron
energy Spectroscopy (XPS), and FEI-G2200 transmission
electron microscope (TEM)were used to analyze the com-
position and phase of the sample.

3 Results

The oxide layer generated in the sample in this oxidation
mode was not protective. After oxidation was complete,
a large area of the oxide layer sample’s surface was shed.
In addition, repeated weight gain and loss occurred
(Figure 3). Studies show that large volume changes
between CuO/Cu2O and Cu during oxidation [18] easily
cause internal stress that causes the oxide layer to fall
off easily. The substrate below the oxide layer was
exposed to the combustion atmosphere and continued
to oxidize, resulting in slight weight gain. When this
cycle was repeated multiple times, the sample may not
exhibit weight gain as it may enter a catastrophic oxida-
tion state of weight loss.

The XRD results showed that the oxide layer was
mainly composed of Cu2O and CuO (Figure 4). Copper
matrix peak analysis suggested that the oxide layer was
very thin or the oxide layer peeled off, exposing fresh
copper matrix which was consistent with the quality
change analysis result (Figure 3). When copper was oxi-
dized in the air, the intensity of the diffraction peak of the
(311) crystal plane was much higher relative to the (111)
crystal plane [11]. However, when oxidized under ethanol
combustion, the diffraction intensity of the (111) crystal
plane exceeded that of the (311) crystal plane, possibly
because copper had a face-centered cubic structure and
its (111) crystal plane was closely packed, its high atomic
stacking density generated high Coulomb forces [19].
During oxidation, the (111) crystal plane exhibited rela-
tively good adhesion when the oxide film fell off due to
internal stress and convection caused by combustion.
The XRD pattern showed that the intensity of the (111)
crystal plane was higher relative to that of the (311)
crystal plane.

There was no obvious oxidation on the sample sur-
face after 0.5 min oxidation (Figure 5a). However, after
oxidation for 1 min, the surface of the sample appeared to
fall off. Increased oxidation was time-correlated with
greater falling off of the oxide layer (Figure 5b and c). A
non-shedding oxide layer was also present, generating a
crisscross network structure (Figure 5c). Sections, where
the oxide layer had fallen off, were characterized by gran-
ular protrusions, probably due to nucleation and growth

Table 1: Chemical composition of copper (wt%)

Cu O Impurity

99.90–99.95 0.003–0.03 <0.1

Figure 1: Ethanol combustion atmosphere simulation device.
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of copper oxide crystal grains. The oxide layer results
from the growth of a fusion of these grains, further evi-
dence can be obtained from Figure 5d. The non-shedding
area has a loose and porous network structure. Sections
of the sample surface from which the oxide layer had

fallen off-exhibit apparent nucleation and growth. EDS
analysis revealed cube-shaped crystal grains, indicating
that the atomic ratio of O:Cu was about 0.6 and that the
crystal grains were mainly Cu2O, with a tendency to tran-
sition to CuO, and the results of non-cubic crystal grains
revealed an O:Cu atomic ratio of 0.1–0.2, indicating that
the region was further oxidized after the oxide layer falls
off. Analysis of the sample’s surface morphology after
oxidation for 4 min revealed a three-layer structure and
that the outermost layer was a porous network oxide
(Figure 5e). EDS analysis revealed an O:Cu atomic ratio
of about 1, indicating that the outermost oxide was CuO.
In Figure 5e, the intermediate layer was presumed to result
from the oxide layer incompletely peeling off, hence sep-
aration from the CuO layer. EDS analysis revealed an O:Cu
atomic ratio of about 0.5, indicating a Cu2O layer. Volume
differences due to internal attraction between the two
oxides may have caused a separation of the oxide layers.
The bottom layer was similar to Figure 5c and d. After
the oxide layer had fallen, the matrix began to oxidize,

Figure 3: Sample mass change.

Figure 4: Results of copper surface XRD analysis in an ethanol combustion atmosphere.

Figure 2: Temperature curve of oxidation for (a) 0.5 min, (b) 1 min, (c) 2min, (d) 3min, (d) 4min, (e) 5min, (f) 10min, (h) 20min, and
(i) 30min.
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Figure 5: SEM surface morphology of the copper samples after oxidation at (a) 0.5 min, (b) 1 min, (c) 2 min, (d) 3min, (e) 4min, (f) 5 min,
(g) 10min, (h) 20min, and (i) 30min.
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leading to obvious crystal grain growth, contiguous-
ness, and expansion. The low content of oxygen atoms
of crystal grain showed that in the initial stage of oxida-
tion. The oxide layer was mainly comprised of Cu2O and
CuO. Because the outermost oxygen potential was high,
CuO occurred in the outer layer, and Cu2O was in the
inner layer, corresponding to the O:Cu atomic ratio seen
in the EDS results. Extending oxidation time to 5 and
10 min significantly increased the extent of oxide layer
shedding, with oxidation entering catastrophic oxida-
tion. From the mark in Figure 5h, it can be seen the
growth of the crystal grains, and from the comparison
between the oxide scale and the matrix in Figure 5i, it
can be seen that the oxidation process has cyclically
occurred in between the steps of “oxidation, oxide layer
shedding, re-oxidation” which was consistent with the
mass analysis results (Figure 3). About 15–20% carbon
was deposited on the sample surface, possibly from
incomplete combustion of the accelerant.

To determine the carbon structure of the oxide layer
more accurately, the peeled oxide scale was further obs-
erved by TEM (Figure 6). This analysis found that ele-
mental carbon with a spatial point group of P63/mmc
was formed in the oxide layer, which had a hexagonal
structure with a Miller index of a = b = 2.522 Å, c = 8.237 Å,
α = β = 90°, γ = 120° [20]. There were eight atoms in a
unit cell that fell into two atom types: four occupying the

e-point of the space group and four occupying the f-point
of the space group. The atoms were arranged in a sta-
cking configuration of AaBbCcBb/AaBbCcBb/Aa.

The XPS analysis showed that the main components
of the oxide layer were Cu, C, and O (Figure 7). Cu was
present as Cu(I) and Cu(II), which was consistent with
XRD and SEM results. O mainly existed in the form of
metal oxides and C–O, and C]O, which directly corre-
lates to ethanol composition. C was present in a typical
chemical state of C–C, CO, and C]O. Along with TEM
results, these data show that in the combustion atmo-
sphere of ethanol, high-temperature ethanol cracking
caused some carbon to form an organic carbon ring
with a hexagonal structure. The other part of carbon
existed in the oxide layer in the form of C–O, and C]O.
The carbon deposited in the copper oxide layer directly
correlated to the composition of ethanol (the accelerant).

4 Discussion

Copper oxidation during ethanol combustion differed
from its air oxidation in the following ways: (1) the oxi-
dizing atmosphere generated by ethanol combustion pro-
moted metal oxidation, (2) hot air convection around the
sample due to flame combustion promoted peeling of the
oxide layer, (3) elemental carbon produced by incomplete
ethanol combustion was deposited on the metal surface.

During copper oxidation, the decisive factor in oxide
layer formation was the outward diffusion of copper ions
[18,21]. When copper ions diffuse outward, they leave a
vacancy that diffuses into the interior in two possible
ways. One, the diffusion may be smooth, with the copper
ions being outwards and the vacancies inwards. As oxi-
dation progressed, the oxide layer continued to thicken
and formed a protective oxide layer. However, in actual
metal materials, various defects hinder the vacancy
movement. The other was, vacancies may gather at the
interface between the oxide layer and the substrate until
macroscopic defects such as holes were formed when
diffusion encountered resistance. There were two situa-
tions where the holes existed. One, the oxide layer may
collapse to fill the hole, causing local stress to cause the
oxide layer to fall off, and the collapse return to its ori-
ginal state. The other was that the oxide layer does not
collapse and the hole was not filled. Alternatively, the
oxide layer may incompletely collapse, leaving some
holes that block the channel for copper ions to diffuse
out. Thereby, the internal stress in the oxide layer was
not be released. As oxidation progressed, internal stress

Figure 6: Results from TEM analysis of copper oxide scale after
oxidation in an ethanol combustion environment.
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accumulation caused cracks in the oxide layer. Another
important factor that affected copper oxide layer forma-
tion was the Pilling-Bedworth ratio (PBR ratio), which
refers to the ratio between the oxide volume produced
by the metal during oxidation and the metal volume
consumed. The PBR of Cu2O and CuO were 1.64 and
1.7, respectively [22]. When the PBR value was greater
than 1, the oxide layer will form compressive stress,
which may cause it to crack. Cu2O/CuO has poor tough-
ness and low-stress release ability, worsening oxide
layer cracking. Here, the convection of hot air caused
by flame combustion may have caused the tearing of
an already cracked oxide layer. This was consistent with
the many cracked oxide films observed in SEM analysis.
Because the copper (111) crystal plane was a close-packed
surface of a face-centered cubic crystal, its high atomic
stacking density generated high Coulomb forces. During
tearing of the oxide layer by hot airflow, the (111) crystal
plane possessed a large Coulomb force, hence a large
amount of (111) crystal plane oxide existed after the oxida-
tion was complete. This also illustrated the difference in
the content of (111) crystal planes and (311) crystal planes
in the XRD results and hot air.

In addition to the high temperature that oxidizes
metal in an ethanol combustion environment, H2O and
CO2 enhance copper oxidation. The reaction mechanism
of ethanol in the combustion process is represented by
the reactions below [23–26]

+ → °O hν 2O ,2 (1)

→ +C H O C H H O,2 6 2 4 2 (2)

→ +C H 2 C 2H ,2 4 2 (3)

+ ° →H O H O,2 2 (4)

+ ° →C O CO, (5)

+ →2CO O CO ,2 2 (6)

O° = free oxygen atom, hν = energy.
An alcohol cracking reaction occurs during ethanol

combustion, with the generated carbon being deposited
on the metal surface, which was consistent with EDS
and TEM results. The structure of elemental carbon gen-
erated on the sample surface may correspond to the type
of metal oxide, the type of combustion accelerant, and
oxidation temperature. Studies have shown that metal
oxides can catalyze carbon into carbon nanotubes/carbon

Figure 7: Results from XPS analysis of the oxide layer that peeled off during oxidation.
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fibers [27–29]. Thus, studying the form of carbon in the
oxide layer was expected to reverse deduce the fire environ-
ment, uncovering evidence for court cases. The H2O,
CO2, and other components generated by combustion
accelerated copper oxidation or formed an oxidation
system with other components to accelerate copper oxi-
dation (Reaction (7)–(8)) [30,31]:

+ = +2Cu H O Cu O H ,2 2 2 (7)

( )+ + + =2Cu H O CO O Cu OH CO .2 2 2 2 2 3 (8)

Of these, Cu2(OH)2CO3 is a volatile product [30]. The
H2 generated by copper and water vapor accelerated
the formation and cracking of oxide layers. Since outward
copper ion transmission was a regulatory step in metallic
copper oxidation, and the Cu2O, which accounts for most
of the oxide layer, is a metal-deficient P-type semicon-
ductor [11,30] with high ion vacancy concentration and
low resistivity, it was impossible to prevent copper ions
from diffusing outwards leading to continuous oxida-
tion. The finding that copper metal undergoes cata-
strophic oxidation under the complex environmental
conditions of ethanol combustion, and has characteris-
tics that differ from hot air oxidation, offers a novel
avenue for fire investigation.

5 Conclusion

In this study, the oxidation behavior of metal copper in
the ethanol combustion environment has been studied,
and its relationship with the accelerant in the fire scene
has been clarified, which was expected to provide new
ideas for fire investigations. Based on the results, these
conclusions can be made:
1. Large-area cracking and peeling of the oxide layer

appeared on the surface of the metal is related to the
strong oxidizing gas components generated during
oxidation, and the hot air convection resulting from
combustion that tears the oxide layer.

2. The oxides generated on the (111) crystal plane of
copper are far more than those generated on the
(311) crystal plane, which is contrary to the results of
oxidation via hot air. Because the copper (111) crystal
plane is a close-packed surface of a face-centered
cubic crystal, its high atomic stacking density gener-
ates high Coulomb forces. The large Coulomb force can
maintain good oxide adhesion when the hot air con-
vection caused by combustion tears the oxide layer.

3. Carbon element is deposited on the surface of metallic
copper, which has a hexagonal structure that corresponds

to the chemical composition of ethanol (combustion
accelerants).
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