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Abstract: The true strain data and true stress data are
obtained from the isothermal compression tests under a
wide range of strain rates (0.1–20 s−1) and temperatures
(933–1,133 K) over the Gleeble-3500 thermomechanical
simulator. The data are employed to generate the con-
stitutive equations according to four constitutive mod-
els, respectively, the strain-compensated Arrhenius-type
model, the modified Zerilli–Armstrong (ZA) model, the
modified Johnson–Cook (JC) model and the JC model. In
the meanwhile, a comparative research was made over
the capacities of these four models and hence to repre-
sent the elevated temperature flow behavior of TA2.
Besides, a comparison of the accuracy of the predictions
of average absolute relative error, correlation coefficient
(R) and the deformation behavior was made to test the
sustainability level of these four models. It is shown
from these results that the JC model is not suitable for
the description of flow behavior of TA2 alloy in α + β
phase domain, while the predicted values of modified JC
model, modified ZA model and the strain-compensated

Arrhenius-type model could be consistent well with the
experimental values except under some deformation con-
ditions. Moreover, the strain-compensated Arrhenius-type
model can be also used to track the deformation behavior
more precisely in comparison with other models.

Keywords: TA2; hot compression test; flow stress;
constitutive equation

Introduction

There are broad applications of TA2 industrial pure tita-
nium, such as chemical, ship building and aviation
industry due to its strong welding property, good
mechanical performance and outstanding corrosion resis-
tance [1, 2]. As a kind of α-phase (hexagonal close-
packed) titanium alloy at the room temperature, its poor
plasticity makes cold forming cracked easily. With the
increase of temperature, the slip systems in the hexago-
nal close-packed increase, facilitating plastic deformation
[3]. Obviously, the deformation behavior of TA2 is sensi-
tive to the processing parameters, such as the strain rate,
strain and deformation temperature. Thus, it is quite
important to analyze its deformation behavior. Because
of the development of numerical simulation method,
finite element method (FEM) has been applied success-
fully and widely into the analysis of the optimization of
hot processing parameters and the metal forming pro-
cesses [4, 5]. The material flow behavior can be repre-
sented through the constitutive equation, which is input
into FEM to trigger the deformation behavior of the mate-
rial in certain loading conditions [6–8]. Thus, the accu-
racy of simulation results relies intensively over the
accuracy of the constitutive equation.

There are massive constitutive models being pro-
posed to illustrate the flow behavior in hot working,
such as the physically based, phenomenological, semi-
empirical and empirical models [9–14]. In general, an
ideal constitutive equation is supposed to involve
massive material constants, which can be assessed
from limited experimental data and should be capable
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to illustrate the flow behavior with great accuracy over
a processing range [15]. The Johnson–Cook (JC) model
has been widely employed in different commercial
FEMs among these models to illustrate the high-tem-
perature deformation behavior of alloys with its rapid
calculation speed, small calculation quantity and sim-
ple form [16]. It is decided by five major material
constants. However, such constitutive model overlooks
the combined effect of the influential factors over the
flow stress, which can reduce the accuracy of the
constitutive equation [17]. Afterward, there is an
improved JC model being proposed by Lin et al. [18]
to deal with the inadequacies of the original JC model.
It has been later successfully used for the estimation
of the flow stress. The Zerilli–Armstrong (ZA) model
serves as a part of the commercial FEM software, con-
sidering the temperature effects and coupled strain
effects. Besides, according to the report, the modified
ZA model can be applied to estimate the elevated
temperature flow behavior on a variety of strains,
temperatures and strain rates [19]. Hongyi Zhan et al.
[20] proposed the modified ZA model to estimate the
flow behavior of Ti–6Cr–5Mo–5V–4Al alloy in β-phase
over a wide range of high strain rates and tempera-
tures. At the same time, the hyperbolic sine Arrhenius-
type constitutive model being proposed by Mc Tegart
and Sellars [21] has been employed successfully to
assess the elevated temperature flow behavior of mate-
rials. Great effort has been made to revise such equa-
tion. Afterward, the strain-compensated parameters
were used to estimate the flow stress of metallic mate-
rials, such as GH4169 [22], 42CrMo steel [23] and
Inconel 718 superalloy [24].

This research aims to generate suitable constitutive
questions according to strain-compensated Arrhenius-
type model, the modified ZA model, the modified JC
model and the JC model to estimate the evaluated tem-
perature flow stress of TA2 in α-phase region. Afterward,
a comparative research over the capacity to estimate the
elevated temperature flow behavior has been made. For
this purpose, isothermal hot compression tests were
made under the temperature range of 933–1,133 K and
a wide range of strain rates ranging 0.1–20 s−1.
Afterward, the experimental stress–strain data were
employed to derive the strain-compensated Arrhenius-
type model, the modified ZA model, the modified JC
model and the JC model. At last, the suitability of
these three models was assessed through the compari-
son of the correlation coefficient (R) and the average
absolute relative error (AARE).

Experimental procedures

The as-received material is a hot-rolled titanium plate
with Grade-2. The chemical composition (mass %) of
TA2 investigated in the present study is given in Table 1.

The hot compression tests mainly adopted the cylindrical
specimens with a height of 12 mm and a diameter of 8 mm.
Afterward, they were cut from the plate along the rolling
direction, which is illustrated in Figure 1. Hot compression
was made over a Gleeble-3500 thermal simulator. Before
the hot compression, every specimen was warmed up to
the deformation temperature under the rate of 5 K·s−1, and
held for 5 min at the isothermal conditions and hence to
guarantee a homogenous temperature distribution of the
specimen. A thermal couple spot was welded to the center
region of the specimen surface under the deformation
temperature. The graphite foil was imposed between the
specimen and the anvil and hence to decrease the friction
and avoid sticking. Compression tests were made from 933
to 1,133 K with 50 K intervals varying the strain rates from
0.1 to 20 s−1. The samples were deformed later to a true
compression strain of 1.2. Afterward, it was quenched in
water immediately to keep the deformed microstructures
while the stress–strain curves were automatically recorded
in the isothermal compression process through the
Gleeble-3500 thermal simulator system. Figure 2 presents
the deformation process.

Table 1: Chemical composition of as-received TA2 billet.

Main component (mass %) Impurities (mass %)

Ti Fe C N H O

Balance . . . . .

Figure 1: Typical appearance of the TA2 specimens.
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Result and discussion

Johnson–Cook model

The basic form of the JCmodel is expressed as following [20]:

σ = A+Bεnð Þ 1 +Clnε*
� �

1−T*m� �
(1)

where σ is flow stress in MPa, ε is the true strain, ε* = ε=ε0
is the dimensionless strain rate with _ε being the strain
rate (s−1) and ε0 the reference strain rate (s−1), A is the
yield stress at reference temperature and strain rate, B is
the coefficient of strain hardening, n is the exponent of
strain hardening and T* is homologous temperature and
expressed as eq. (2):

T* =
T −Tref

Tm − Tref
(2)

where T is the current and reference temperatures (K), Tm
is the melting temperature (1,941 K for TA2) and Tref is the
reference temperature (T ≥Tref). C and m are the material
constants that represent the coefficient of strain rate
hardening and thermal softening exponent, respectively.

Based on the current study, 1 s−1 and 933 K have been
set as the reference strain rate and reference temperature,

respectively. When the strain rate is 1 s−1 and the defor-
mation temperature is 933 K, eq. (1) can be expressed as

σ = A+Bεnð Þ (3)

The value of A is generated from the yield stress of the
flow curve at 933 K as well as 1 s−1 (97.793 MPa). When
the value of A is substituted into eq. (3), the relationship
between ln ε and ln σ −Að Þ can be generated. Figure 3
demonstrates the relationship between lnε at 933 K and
ln σ −Að Þ and lnε at 933 K and 1 s−1. Then, the values of B
and n can be obtained from the fitting curve.

Eq. (1) can be expressed as follows when the deformation
temperature is 933 K:

σ = A+Bεnð Þ 1 +Cln _ε*
� �

(4)

The slope of lines in lines in σ= A+Bεnð Þ − ln _ε* plot can
be used to obtain the values of C. Figure 4 presents the
variation of σ= A+Bεnð Þ with ln _ε* at the temperature of
933 K.

By the same token, the flow stress and the thermal
softening term were independent from each other at the
reference strain rate 1 s−1 since ln _ε* = 0. Thus, eq. (1) can
be expressed as:

σ = A+Bεnð Þ 1− T*m
� �

(5)

Figure 2: Thermomechanical schedule of the compression tests.
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Figure 3: Relationship between ln(σ − A) and lnε at 933 K and 1 s−1.
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The relationship between lnT* and ln 1− σ= A+Bεnð Þ½ � can
be generated at different temperatures for a specific strain.
Afterward, the values of m for these eight different strains
can be generated through the slopes of the linear fitting
curves, which is demonstrated in Figure 5.

The material constants of the JC model for TA2 are pro-
vided in Table 2.

Then, the JC constitutive equation for TA2 can be
obtained:

σ = 97.793 + 162.663ε0.294
� �

1 + 0.0267ln _ε*
� �

1−T*0.992� �
(6)

Using the constitutive equation above, the flow stress data
for TA2 are predicted at various processing conditions.
Comparisons between the experimental and predicted
data at various processing conditions using eq. (6) are
shown in Figure 6.

Based on Figure 6, it can be seen that there is a
dramatic deviation of the predicted flow stresses in the
majority of the deformation conditions. Only under the
temperature of 933 K and the strain rate of 1.0 s−1, the
predicted flow stress data could be consistent with the
experimental flow stress data of TA2. Afterward, when
there is an increase of the temperature, the deviation will
get larger compared with the experimental value. The
flow stress reduces corresponding with the decrease of
the strain rates and the increase of the temperature.

Modified Johnson–Cook model

The modified JC model is expressed as follows:

σ = A1 +B1ε+B2ε2 +B3ε3
� �

1 +C1ln _ε* +C2ln _ε*
2
+C3ln _ε*

3
� �

exp λ1 + λ2ln _ε* + λ3ln _ε*
2
+ λ4ln _ε*

3
� �

T*
h i

(7)

where σ refers to the stress in MPa, ε is the true strain,
ε* = ε=ε0 is the dimensionless strain rate with _ε being the
strain rate (s−1) and ε0 the reference strain rate (s−1), A1,
B1, B2, B3, C1, C2, C3, λ1, λ2, λ3, λ4 are the material con-
stants. T* can be expressed as eq. (8):

T* =T −Tref (8)

where Tref is the reference temperature.
According to the current study, 1 s−1 and 933 K have

been set as the reference strain rate and reference tem-
perature, respectively. When the strain rate is 1 s−1 and
the deformation temperature is 933 K, then eq. (7) can be
expressed as:
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Figure 4: Relationship between (σ= A+Bεnð Þ) and ln _ε* at the tem-
perature of 933 K.
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Figure 5: Relationship between ln 1− σ= A+Bεnð Þ½ � and lnT*.

Table 2: Parameters for the Johnson–Cook model.

Parameter A B n C m

Value . . . . .
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σ =A1 +B1ε+B2ε2 +B3ε3 (9)

The corresponding experimental flow stress data have
been substituted into eq. (9) while the relationship
between ε and σ can be obtained. Then, the values of
A1, B1, B2 and B3 can be obtained from the fitting curves
of Figure 7.

When the deformation temperature is reference tem-
perature, eq. (7) can be expressed as:

σ = A1 +B1ε+B2ε2 +B3ε3
� �

1 +C1ln _ε* +C2ln _ε*
2
+C3ln _ε*

3
� �

(10)

The values of C1, C2, C3 can be obtained from the σ= A1 +ð
B1ε+B2ε2 +B3ε3Þ − ln_ε* plot. Figure 8 shows the variation
of σ= A1 +B1ε+B2ε2 +B3ε3ð Þ with ln_ε* at the temperature of
933 K.

Then, introducing one new parameter λ, which is
expressed as:

Figure 6: Comparison between experimental and predicted flow stress using Johnson–Cook model at the temperatures of (a) 933 K,
(b) 983 K, (c) 1,033 K, (d) 1,083 K, (e) 1,133 K.
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λ= λ1 + λ2ln _ε* + λ3ln _ε*
2
+ λ4ln _ε*

3
(11)

Eq. (7) can be written as follows:

σ

A1 +B1ε+B2ε2 +B3ε3ð Þ 1 +C1ln _ε* +C2ln _ε*
2
+C3ln _ε*

3
� � = eλT

*

(12)

Taking the logarithm of both sides of eq. (12), it generates:

ln
σ

A1 +B1ε+B2ε2 +B3ε3ð Þ 1 +C1ln _ε* +C2ln _ε*
2
+C3ln _ε*

3
� �

2
4

3
5

= λT*

(13)

The values of λ are obtained based on the mean values of

ln σ
A1 +B1ε+B2ε2 +B3ε3ð Þ 1 +C1ln _ε* + C2 ln _ε*

2
+C3ln _ε*

3
� �� �

at different

strains (0.1–1.0). The relationship between ln

σ
A1 +B1ε+B2ε2 +B3ε3ð Þ 1 +C1ln _ε* +C2ln _ε*

2
+C3ln _ε*

3
� �� �

and T* can also

be obtained for different strain rates and deformation
temperatures. Then, the values of λ for four different
strain rates can be obtained based on the slopes of the
linear fitting curves.

Based on eq. (11), the value of λ1, λ2, λ3, λ4 can be
obtained from the λ − ln _ε* plot. Figure 9 demonstrates the
relationship between ln _ε* and λ.

Table 3 presents the parameters of the modified JC model
for TA2.

The modified JC constitutive equation can be gener-
ated, which is listed below:

σ = 128.63 + 488.34ε− 754.22ε2 + 399.00ε3
� �
1 + 0.00534ln _ε* −0.0021ln _ε*

2
+ 0.0034ln _ε*

3
� �
exp

h�
−0.002134 +0.00044ln _ε* − 7.26 × 10− 5ln _ε*

2

− 5.95 × 10− 6ln _ε*
3
�
T*

i
(14)

The constitutive equation listed above is obtained while
the stress data for TA2 is estimated under different proces-
sing conditions. Comparisons between the predicted data
and experimental data at different processing conditions
are made based on eq. (14), which is listed in Figure 10.
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Figure 7: Relationship between σ and ε at 933 K and 1 s−1.
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Based on Figure 10, it can be observed that there is a
good agreement shown in the predicted flow stresses in
the lower temperature of 983 and 933 K. There is a
deviation of the higher temperature. The strain rates

decrease corresponding with the increase in the tem-
perature. The deviation is larger compared with the
experimental value. However, it is better than that of
JC model.

Table 3: Parameters for the modified Johnson–Cook model.

Parameter A B B B C C C λ λ λ λ

Value . . −. . . −. . −. . −. ×− −. × −
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Figure 10: Comparison between experimental and predicted flow stress using Johnson–Cook model at the temperatures of (a) 933 K,
(b) 983 K, (c) 1,033 K, (d) 1,083 K, (e) 1,133 K.
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Modified ZA model

The modified ZA constitutive model has been applied to
estimate the flow stress behavior of the materials under
high temperatures, which are listed as following [19].

σ = C1 +C2εnð Þexp − C3 +C4εð ÞT* + C5 +C6T*
� �

ln _ε*
h i

(15)

where _ε* = _ε= ε0 refers to the dimensionless strain rate
with _ε being the strain rate (s−1) and ε0 the reference

strain rate (s−1), T* = T −Tref and Tref are the current and
reference temperatures (K), respectively. C1, C2, C3, C4, C5,
C6 and n are the materials constants. According to the
current study, 1 s−1 and 933 K are the reference strain rate
and reference temperature, respectively. In addition, the
relative procedures of the evaluation of the material con-
stants are illustrated below:

According to eq. (15), the following expression could
be obtained at _ε* = 1.

σ = C1 +C2εnð Þexp − C3 +C4εð ÞT*� 	
(16)

Then taking natural logarithms on both sides of the for-
mula, eq. (16) could be expressed as follows:

lnσ = ln C1 +C2εnð Þ− C3 +C4εð ÞT* (17)

The correlation between lnσ and T* can be obtained (shown
in Figure 11). Afterward, the values of − C3 +C4εð Þ and the

values of ln C1 +C2εnð Þ can be obtained from the intercept l1
and slope S1 of the line in the plot, respectively. Then,

l1 = ln C1 +C2εnð Þ (18)

And eq. (18) can be transformed as following:

ln expl1 −C1ð Þ= lnC2 + nlnε (19)

C1 is determined based on the yield stress of the stress–strain
curve at T= 933 K and _ε* = 1. Substituting C1 in eq. (18) and
plotting the ln expl1 −C1ð Þ and lnε graph, the C2 and n can be
calculated, as shown in Figure 12. Similarly, the slope of the
line represented by eq. (19) can be written as

S1 = − C3 +C4εð Þ (20)

Thus, C3 and C4 can be generated easily based on the
slope and intercept of the plot of S1 and ε, respectively,
which is shown in Figure 13. The natural logarithms of
both sides of eq. (15) have been applied, which derives
the following expression.

lnσ = ln C1 +C2εnð Þ− C3 +C4εð ÞT* + C5 +C6T*
� �

ln _ε* (21)

As it can be seen from eq. (21), the slope S2 of the lnσ-ln _ε*

curve plot is the value of C5 +C6T*
� �

. Therefore, a group of
slope values under ten different strains and five different
temperatures were generated. There are five different
values of S2 which can be obtained under specific strain
while the slope S2 can be expressed as:
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Figure 11: The relationship between lnσ and T* at the reference strain
rate.
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S2 =C5 +C6T* (22)

Thus, C5 and C6 can be generated easily from the slope
and intercept of the plot of S2 and T*, which can be
observed from Figure 14.

Therefore, all of the constants of the modified ZA model
could be obtained as shown in Table 4.

Then the modified ZA model for TA2 can be obtained:

σ = 97.793 + 93.541ε0.643
� �

exp
h
−
�
0.00211 + 0.00126εÞT*

+
�
0.00962 + 0.000671T*Þln _ε*

i
(23)

The constitutive equation above is used to estimate the
flow stress data for different deformation conditions.
Comparison between the predicted and experimental
values by modified ZA model under different processing
conditions is presented in Figure 15.

Based on Figure 15, it can be seen that there is a
dramatic deviation of the deformation conditions of the
predicted flow stresses. The reason why there is such
phenomenon is might be that the ZA model is applied to
analyze the body-centered cubic (BCC) materials and face-
centered cubic (FCC) materials. However, according to this
study, it is a kind of α-phase hexagonal close-packed
commercially pure titanium.

Arrhenius-type model

Arrhenius-type equation serves as a precise approach to
illustrate the relationships between the deformation tem-
perature, strain rate and flow stress. The common impact
of the high temperature and strain rate over the hot defor-
mation behavior can be shown through the exponent-type
equation. It can be properly expressed through the Zener–
Hollomon parameter (Z). These can be described using the
following equations [25].

Z = _εexp
Q
RT


 �
(24)

_ε=AF σð Þexp −
Q
RT


 �
(25)

F σð Þ=
σn′

exp βσð Þ
sinh ασð Þ½ �n

ασ < 0.8
ασ > 1.2
for all σ

8<
: (26)

where R refers to the universal gas constant [8.314
J/(mol·K)], Q is the activation energy of hot deformation
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Table 4: Parameters for the modified ZA model.

Parameter C C C C C C n

Value . . . . . . .
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(J/mol), A, n′, β, α, and n are the materials constants, and
α= β=n′.

The true stress–strain data from isothermal compres-
sion tests under different processing conditions is applied
to decide the material constants of the Arrhenius-type
constitutive model. The effect of the strain over the mate-
rial constants is quite clear. It impacts the predictability
of the constitutive model dramatically. However, the
strain is not considered in eqs. (24) and (25). Therefore,
the following research over the Arrhenius-type model is

based on the compensation of the strain effect. The strain
of 0.4 is taken as an example to describe the solution
procedures for the material constants.

Under specific deformation temperature, the FðσÞ of
eq. (26) under low stress level (ασ < 0.8) and high stress
level (ɑσ > 1.2) is substituted into eq. (25) in trun, the
following relationships can be obtained, respectively.

_ε=Bσn′ (27)
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Figure 15: Comparison between experimental and predicted flow stress using modified ZA model at the temperatures of (a) 933 K, (b) 983 K,
(c) 1,033 K, (d) 1,083 K, (e) 1,133 K.
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_ε=Cexp βσð Þ (28)

where B and C are the material constants.
Both sides of eqs. (27) and (28) are taken in the

natural logarithms, and then they are transformed into
a correlation function of σ, while the following equations
can be obtained.

ln σð Þ= 1
n′
ln _εð Þ− 1

n′
ln Bð Þ (29)

σ =
1
β
ln _εð Þ − 1

β
ln Cð Þ (30)

The values of the flow stress and corresponding strain
rates under the strain of 0.4 are substituted into
eq. (29) as well as eq. (30), respectively. The values of
n′ and β can be obtained from the slopes of the lines in
the ln(σ) − ln _εð Þ and σ − ln _εð Þ plots, respectively, as
presented in Figure 16(a) and (b).

Then, the value of α= β=n′ can be obtained.
For all stress levels (including low as well as high

stress levels), eq. (25) can be written as follows:

_ε=A sinh ασð Þ½ �nexp −
Q
RT


 �
(31)

Taking the natural logarithm of both sides of eq. (31):

ln sinh ασð Þ½ �= ln _ε
n

+
Q

nRT
−
lnA
n

(32)

For a particular temperature, eq. (32) can be written as:

d ln sinh ασð Þ½ �f g
d ln _εð Þ =

1
n

(33)

The slopes of the lines of ln sinh ασð Þ½ � − ln _ε can be applied
to determine the value of material constant n, which is
presented in Figure 17. The value of n is determined by
averaging the values of n under different temperatures.

For a particular strain, eq. (32) can be written as:

Q =Rn
d ln sinh ασð Þ½ �f g

d 1
T

� � (34)

The slopes of the plot of ln sinh ασð Þ½ � and 1000
T can deter-

mine the value of Q, which can be found in Figure 18
(Q is in KJ/mol). The value of Q is determined by aver-
aging the values of Q under different strain rates.
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Figure 16: Relationship between (a) ln (σ) and ln _εð Þ; (b) σ and ln _εð Þ.
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The values of A can be determined from the intercept of
ln sinh ασð Þ½ � − �P at a particular strain.

According to previous studies, it is usually assumed
that the impact of strain over the flow stress at elevated
temperatures was dramatic. Thus, it was overlooked in
eqs. (24) and (25). However, the effect of the strain over
the material constants (i.e. α, n, Q and lnA) is significant
in the entire strain range.

As a result, the compensation of the strain should
consider the constitutive model and hence to ensure that
model can be more accurate. The influence of the strain
of the constitutive equation is combined by the assump-
tion that the material constants (α, n, Q and lnA) are
polynomial functions of the strain. As illustrated in eq.
(35), it has been found that there is a third-order poly-
nomial to represent the influence of strain on material
constants with a good correlation and generalization, as

shown in Figure 19. In the meanwhile, the polynomial
results of α, n, Q and lnA of TA2 are provided in Table 5.

α=C0 +C1ε+C2ε2 +C3ε3 +C4ε4 +C5ε5

n =D0 +D1ε+D2ε2 +D3ε3 +D4ε4 +D5ε5 +D6ε6

Q =E0 +E1ε+ E2ε2 +E3ε3 +E4ε4 + E5ε5 +E6ε6

lnA= F0 + F1ε+ F2ε2 + F3ε3 + F4ε4 + F5ε5 + F6ε6 (35)

Then the flow stress at a specific strain can be estimated.
The hyperbolic sine function is used while the Zener–
Holloman parameter is used to express the constitutive
equation in the following form:

σ =
1
α
ln

Z
A


 �.7ex1=.7exn
+

Z
A


 �.7ex2=.7exn
+ 1

" #.7ex1=.7ex28<
:

9=
;
(36)

Figure 20 presents the comparison between the predicted
and experimental values by strain-compensated Arrhenius-
type constitutive equation at different processing
conditions.

Figure 20 shows that the flow stress estimated by the
constitutive equation is in line with the experimental
results in the three lower temperatures of 933, 983 and
1,033 K. It has a deviation under the two higher tempera-
tures 1,083 K and 1,133 K with the lower predicted flow
stress compared with the experimental flow stress at high
strain rates of 10 and 20s−1.
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Table 5: Coefficients of the polynomial for α, n, Q and lnA.

α n Q lnA

C=. D=. E=. F=.
C=−. D=−. E=−,. F=−.
C=. D=. E=,. F=,.
C=−. D=−,. E=−,. F=−,.
C=. D=,. E=,. F=,.
C=−. D=−,. E=−,. F=−,.

D=. E=,. F=,.
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Figure 20: Comparison between experimental and predicted flow stress using strain-compensated Arrhenius-type equation at the tem-
peratures of (a) 933 K, (b) 983 K, (c) 1,033 K, (d) 1,083 K, (e) 1,133 K.
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Discussion

According to the calculation results above, it can be
observed that the JC model demonstrates good prediction
only under the reference temperature, which might be the
reason for the fact that the JC model does not take the
coupled effects of the strain rate and temperature into
consideration. The comparison of the predicted and
experimental flow stress has been used to verify the
developed modified JC constitutive equation. It can be
observed that the predicted flow stress value of the con-
stitutive equation should track the experimental data in
most deformation conditions. The experimental data can
not be tracked by the predicted flow stress value of the
constitutive equation. This is probably because of that
the ZA model is applied to analyze the BCC and the FCC
under different strain rates and temperatures. However,
according to the proposed research, it is a type of α-phase
hexagonal close-packed commercially pure titanium.
Thus, the modified ZA model is not suitable for the
materials. At the same time, it is shown from the strain-
compensation Arrhenius-type model that it can give a
good prediction of the elevated temperature flow beha-
vior of TA2 under some deformation conditions. However,
a remarkable variation between experimental and calcu-
lated flow stress data can also be observed.

Besides, all the results obtained from these four
models have variation under some deformation condi-
tions, which is illustrated in Figures 6, 10, 15 and 20.
This is probably due to that deformation behavior of the
material is highly nonlinear at elevated temperatures
and strain rates. The plastic deformation occurs at high
temperature and is nonlinear. In contrast, the elastic
deformation is linear. There are many factors that can
influence the flow stress, which can lead to the low
prediction of the models. Additionally, the fitting of
the material constants might result in the variation
between the experimental and calculated flow stress
data. Thus, there are some mistakes that might be intro-
duced over the determination of the materials constant
values, which influence the accuracy of the constitutive
equation. Meanwhile, there is an increase of the tem-
perature because the deformation heating might lead to
a large part of the flow softening, resulting in the lower
experimental flow stress data.

The standard statistical parameters are used to verify
the accuracy of the described models, such as the corre-
lation coefficient (R) and AARE. Information about the
strength of linear relationship between the predicted
values and experimental values is provided by the

correlation coefficient (R). AARE and R can be expressed
as the following:

AARE %ð Þ= 1
N

XN
i= 1

Ei −Pi

Ei

����
���� × 100 (37)

R =

PN
i= 1 Ei − �E

� �
Pi − �P
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i= 1 Ei − �E

� �2 PN
i= 1 Pi − �P

� �2q (38)

where E and P are the experimental and predicted flow
stresses (MPa), respectively. �E and �P are the mean values
of E and P, respectively. N is the total number of data
used in this study.

The comparisons between the predicted data and the
experimental flow stresses by the three developed models
are presented in Figure 21.

Based on the statistics above, the majority of the
data points are located around the fitting line. Under
the four constitutive models conditions (strain-compen-
sated Arrhenius-type constitutive model, the modified
ZA model, the modified JC model and the JC model),
the values of R are 0.938, 0.911, 0.942 and 0.771 respec-
tively, while the values of AARE are 9.49%, 27.3%,
9.57% and 24.11% respectively. It can be observed from
the combined results of AARE and R that the strain-
compensated Arrhenius-type model demonstrates a bet-
ter correlation between the experimental data and pre-
dicted results compared with others.

Conclusions

A comparative research was made over the capacity of
the strain-compensated Arrhenius-type constitutive
model, the modified ZA model, the modified JC model
and the JC model to describe the elevated temperature
flow behavior of TA2 in the temperature range of 933–
1,133 K and a wide range strain rate range of 0.1–20 s−1.
According to the results of the research, the following
conclusions can be drawn:
(1) The JC and the modified ZA model are not suitable

for the estimation of the high-temperature flow
behavior of TA2 over the entire range of strain
rates, temperatures and strains, while both strain-
compensated Arrhenius-type and modified JC mod-
els can be applied to estimate the flow stress beha-
vior of TA2 at elevated temperatures.
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(2) The predictability of four constitutive equation mod-
els was measured about its correlation coefficient (R)
and AARE, the results of which suggested that the
values of AARE from the strain-compensated
Arrhenius-type, modified ZA, modified JC and JC
models are 9.49%, 27.3%, 9.57% and 24.11% respec-
tively while the correlation coefficients are 0.938,
0.911, 0.942 and 0.771, respectively, indicating that
the strain-compensated Arrhenius-type model could
more accurately represent the elevated temperature
flow behavior in the entire processing area.

(3) All of these results obtained from these four kinds of
models have dramatic variation in some deformation
conditions, the major reasons of which might be that
the deformation behavior of the material is highly
nonlinear at elevated temperatures and strain rates.
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