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Abstract: In order to investigate the hot deformation
behaviors of as-extruded 7075 aluminum alloy, the iso-
thermal compressive tests were conducted at the tempera-
tures of 573, 623, 673 and 723K and the strain rates of
0.01, 0.1, 1 and 10 s−1 on a Gleeble 1500 thermo-mechan-
ical simulator. The flow behaviors showing complex char-
acteristics are sensitive to strain, strain rate and
temperature. The effects of strain, temperature and strain
rate on flow stress were analyzed and dynamic recrystal-
lization (DRX)-type softening characteristics of the flow
behaviors with single peak were identified. An artificial
neural network (ANN) with back-propagation (BP) algo-
rithm was developed to deal with the complex deforma-
tion behavior characteristics based on the experimental
data. The performance of ANN model has been evaluated
in terms of correlation coefficient (R) and average abso-
lute relative error (AARE). A comparative study on
Arrhenius-type constitutive equation and ANN model for
as-extruded 7075 aluminum alloy was conducted. Finally,
the ANN model was successfully applied to the develop-
ment of processing map and implanted into finite element
simulation. The results have sufficiently articulated that
the well-trained ANN model with BP algorithm has excel-
lent capability to deal with the complex flow behaviors of
as-extruded 7075 aluminum alloy and has great applica-
tion potentiality in hot deformation processes.

Keywords: 7075 aluminum alloy, constitutive model, arti-
ficial neural network, processing map, finite element
simulation

Introduction

Aluminum alloys, with attractive combination of physical
and mechanical properties, are widely considered as the
optimal selection in the industry of automobile manufac-
turing, shipbuilding and aircraft manufacturing. As a
typical aluminum alloy with high strength, 7075 alloy is
extensively employed for various critical structural com-
ponents due to its high strength/density ratio and reason-
able high fracture toughness [1–4]. The hot deformation
behaviors of metals, which are significantly affected by
the deformation parameters involving strain, strain rate
and temperature, make a great difference on the dimen-
sional accuracy and mechanical properties of final pro-
ducts in the hot forming process. In the courses of plastic
deformation under various conditions, several intercon-
nected metallurgical phenomena including work harden-
ing (WH) [5], dynamic recrystallization (DRX) [6] and
dynamic recovery (DRV) [7] coexist with one being pre-
dominant. WH increases the flow stress of materials and
reduces the plasticity, while softening phenomena like
DRX or DRV decrease the flow stress and thereby restor-
ing the ductility. The metallurgical phenomena and their
interaction effects in the hot deformation condition issue
in complex deformation behaviors. Consequently, the
understanding of flow behavior at hot deformation con-
dition is of great significance for the analysis of hot
deformation processes and optimization of processing
parameters.

In recent years, abundant efforts have been made to
develop constitutive model by physical and mathematical
simulative techniques to deal with complex flow beha-
viors of materials. At present, two types of constitutive
models, namely analytical and phenomenological mod-
els, are in vogue for modeling hot flow behaviors of
materials [8]. The analytical model is closely associated
with physical theories, which means that this model
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needs a very clear and deep understanding of flow beha-
viors and deformation mechanisms of metallic materials
based on a large amount of experimental data. However,
the phenomenological model, as the name says, is less
rigorously related to physical theories and can be devel-
oped through limited amount of experimental data. The
phenomenological model is widely adopted in practice
for effective modeling of flow behaviors on account of its
reasonable feasibility and availability in comparison with
analytical model.

Typical phenomenological models are Arrhenius-type
constitutive equations and constitutive model based on
artificial neural network (ANN). The Arrhenius-type con-
stitutive equations are obtained through regression ana-
lysis with experimental data. However, the low accuracy
and poor flexibility of constitutive equation have made it
ineffective in the characterization of complex constitutive
relationship. Compared with constitutive equations, the
ANN, as a relatively new artificial intelligence technique,
is able to solve the highly complex problems well by
simulating the behaviors of biological neural systems in
computers. The typical structure of an ANN consists of
one input layer, one output layer and one or more hidden
layers that are connected by the fundamental units of
ANN named artificial neurons with a function of taking
a weighted sum of the inputs. The input layer receives
input data and after processing it, sends them to the
hidden layer. The hidden layer works as a complex net-
work architecture to simulate the nonlinear relationships
between input and output layers, processing the data
calculation and sends a response to the output layer
[9, 10]. The output layer accepts the response and pro-
duces the output result. This approach makes it possible
to cope with the complex constitutive relationships
between flow stress and processing parameters with a
collection of representative examples obtained through
a limited amount of experimental data from the desired
mapping functions for training instead of a well-defined
mathematical model [10–12].

A lot of research groups have been working on the
description of constitutive relationships by ANN method
for the past few years. Quan et al. developed an ANN
model of as-cast Ti-6Al-2Zr-1Mo-1V alloy in a wide tem-
perature range involving phase transformation [13] and
predicted the high-temperature flow behaviors of
20MnNiMo alloy using ANN [14]. Lin et al. established
the optimum hot forming processing parameters for
42CrMo steel based on ANN model [15]. Zhao et al. char-
acterized the hot deformation of Ti600 titanium alloy
using constitutive equations and ANN [16]. The results
of these researches have demonstrated that ANN is an

effective tool to model the nonlinear constitutive
relationships.

In order to study the flow behaviors of as-extruded
7075 aluminum alloy, 16 compression tests were con-
ducted at different temperatures and strain rates. The
true strain–stress data collected in the compression
tests were then employed to develop the ANN model.
The evaluation of ANN model has been performed
based on several statistical parameters. A three-dimen-
sional (3D) response plot for the semi-continuous visua-
lized description of the constitutive relationship was
developed based on several groups of flow stresses at
different strain rates and different temperatures in and
out of experimental conditions predicted by the well-
trained ANN model. Subsequently, a comparative analy-
sis on the ANN model and the Arrhenius-type constitutive
equation of as-extruded 7075 aluminum alloy developed
by Quan et al. [17] have been conducted. The results
indicate that the ANN model has better accuracy and it
is a more excellent approach to model the flow behaviors
of as-extruded 7075 aluminum alloy.

As the well-trained ANN model could provide a wider
range of flow stress data, it can be applied to character-
ization of intrinsic hot workability and numerical simula-
tion with high accuracy. Reddy et al. constructed
processing maps based on predicted flow stresses by
ANN model for Ti-6Al-4V alloy and demonstrated that
ANNs can be effective for generating a more reliable
processing map for industrial applications [18]. Quan
et al. developed an ANN model for 42CrMo high strength
steel and improved the accuracy of finite element method
(FEM) simulation by importing a wide range of flow stress
curves predicted by the ANN model [19]. In the current
work, the well-trained ANN model for as-extruded 7075
aluminum alloy was successfully applied to construct
processing map and incorporated into numerical simula-
tion by using FEM on Deform software, indicating that
the application potentiality of ANN model in hot defor-
mation processes is great.

Materials and experimental
procedure

The chemical compositions of as-extruded 7075 alumi-
num alloy (Al-Zn-Mg-Cu) employed in this study is as
follows (wt%): Zn-5.5, Mg-2.2, Cr-2.2, Cu-1.7, Si-0.4,
Fe-0.3, Mn-0.1, Al (balance). The homogenized ingot
was scalped to 16 cylindrical specimens with a diameter
of 10mm and a height of 12mm. Before compression
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tests, two thermocouple wires, i. e. two dissimilar
conductors, were welded on two spots with a distance of
1mm at the mid-span of each billet where a temperature
differential is experienced by the two different conductors.
In the following, the specimens were placed in a compu-
ter-controlled servohydraulic Gleeble 1500 thermo-
mechanical simulator, and then resistance heated at a
heating rate of 5K/s and held at a fixed temperature for
180 s by thermo-coupled feedback-controlled AC current,
which decreased the material anisotropy in flow behaviors
effectively. Next, all the 16 specimens were compressed to
a fixed true strain of 0.9 (height reduction of 60%) at four
different temperatures of 573, 623, 673 and 723K and four
different strain rates of 0.01, 0.1, 1 and 10 s−1.

During these compressions, the variations of nominal
stress and nominal strain were monitored continuously
by a personal computer equipped with an automatic data
acquisition system during the compression process. The
true stress and true strain were derived from the nominal
data according to the following formula: σT = σN 1− εNð Þ,
εT = ln 1− εNð Þ, where σT is true stress, σN is nominal
stress, εT is true strain and εN is nominal strain.

Results and discussion

Flow behavior characteristics of as-extruded
7075 aluminum alloy

The true stress–strain curves of as-extruded 7075 alumi-
num alloy compressed at different deformation condi-
tions are shown in Figure 1. The flow stresses as well as
the shapes of the flow curves are sensitively dependent
on temperature, strain and strain rate. Comparing these
curves with one another, it is found that the stress level
decreases with temperature increasing or strain rate
decreasing. This is induced by the fact that lower strain
rate and higher temperature provide longer time for the
energy accumulation and higher mobilities at boundaries
that result in the nucleation and growth of dynamically
recrystallized grains and dislocation annihilation [20, 21].
For all these 16 true stress–strain curves, following a
rapid increase to a peak value, flow stress decreases
with two different variation tendencies. At the compres-
sion conditions of 573–723 K and 0.01 s−1, 623–723 K and
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Figure 1: The true stress–strain curves of as-extruded 7075 aluminum alloy at different temperatures and the strain rates of (a) 0.01 s−1,
(b) 0.1 s−1, (c) 1 s−1 and (d) 10 s−1.
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0.1 s−1, 623–723 K and 1 s−1, and 723 K and 10 s−1, flow
stress decreases gradually to a steady state representing
a balance between DRX softening and WH. At the com-
pression conditions of 573 K and 0.1 s−1, 573 K and 1 s−1,
and 573–623 K and 10 s−1, flow stress decreases continu-
ously, which indicates the sustainable development of
DRX softening with an unbalance between DRX softening
and WH. In summary, as for as-extruded 7075 aluminum
alloy, the response of stress to the three deformation
parameters including strain, strain rate and temperature
shows highly nonlinear behaviors.

Development of ANN model for as-extruded
7075 aluminum alloy

ANN model

The back-propagation (BP) algorithm, one of the most
popular learning algorithms for the multilayer feed-for-
ward artificial neuron networks in materials modeling,
was employed in this investigation to get a good under-
standing of the constitutive relationships between the
inputs and outputs since it is a typical means of adjusting
the weights and biases by utilizing gradient descent to
minimize the target error [22] and it has a great represen-
tational power for dealing with complex and strongly
coupled relationships [23].

The structure of ANN employed in the present work
is schematically illustrated in Figure 2. The input vari-
ables in this investigation contain deformation tempera-
ture (T), strain (ε) and strain rate ( _ε), while the output
variable is flow stress (σ), as shown in Figure 2. In
addition, two hidden layers were adopted to ensure the
accuracy of ANN model. About 640 regular datasets

have been extracted from the 16 stress–strain curves, in
which the datasets at strain of 0.05, 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8 and 0.9 were selected for the purpose of
modeling test, while the available datasets remained
work as the training data. The experimental data invol-
ving temperature, strain, strain rate and stress must be
normalized into dimensionless units before training,
since these data were measured in different units,
which results in the decrease of convergence speed and
accuracy of the model. From the experimental data
extracted from the stress–strain curves in Figure 1, it
can be seen that the input strain data vary from 0.025
to 0.9, strain rate data vary from 0.01 to 10 s−1, and the
temperature data vary from 573 to 723 K, the output flow
stress data vary from 23.1 to 264.971MPa. The tempera-
ture data, strain data and the flow stress data were
normalized within the range from 0.05 to 0.3 using the
relation given by eq. (1). Meanwhile, the strain rate data,
after taking logarithm of the values, were normalized
using the relation given by eq. (2), since the range of
the data is much too wide:

yn = 0.05 + 0.25 ×
y −0.95ymin

1.05ymax −0.95ymin
(1)

yn = 0.05 + 0.25 ×
ð3 + yÞ−0.95ð3 + yminÞ

1.05ð3 + ymaxÞ −0.95ð3 + yminÞ (2)

where yn is the normalized value of y, y is the experi-
mental data, ymax and ymin are the maximum and mini-
mum values of y, respectively.

The structural parameters that are of great signifi-
cance for an excellent ANN, i. e. hidden layer number,
transfer function, training function and neuron number
for each hidden layer, could make a big difference to the
convergence speed and accuracy of the ANN model. In
the present work, two hidden layers were adopted to
ensure high accuracy. The functions “tan sigmoid” and
“pure linear” were selected as the associated transfer
function for each hidden layer and output layer, respec-
tively. In addition, the training function is “trainbr.” As
for the neuron number for each hidden layer, it was set
by means of trial-and-error method according to the
experience of designers and the training sample size.
The ANN model may be insufficient to learn the process
correctly when in training if the neuron number of each
hidden layer is too small. On the contrary, too many
neurons may slow down the convergence rates or over
fit the data. As a result, the ANN model in current inves-
tigation was trained first with three neurons in each
hidden layer, and then the neuron number was adjusted
continually (from 3 to 18) for the purpose of getting a
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Strain rate

Temperature

Stress

Input layer Hidden layers Output layer

Error signal back-propagation

Function signal forward feed

Figure 2: Schematic illustration of the artificial neural network
architecture.
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proper neuron number and approaching the expected
accuracy.

Evaluation of the performance of the ANN model

During the training process of ANN model, the value of
mean square error (MSE) is introduced to evaluate the
ability of the ANN training work and determine the
neuron number for each hidden layer, as expressed in
eq. (3) [24]:

MSE=
1
N

XN
i= 1

Ei −Pið Þ2 (3)

where E is the sample of experimental value, P is the
sample of predicted value by ANN model and N is the
number of strain–stress samples.

The MSE values were calculated after the accomplish-
ment of each training process and recorded manually for
different neuron numbers in each hidden layer. As a
result, the MSE values of the different models are in the
range of 0.1774–58.2675. In order to obviously display the
small differences and variation trend with different neu-
ron numbers, the MSE values were measured in loga-
rithm, as shown in Figure 3. It is obviously seen that
the MSE value decreases to the minimum value when
the neuron number of each hidden layer is 14, showing
that the ANN model with 14 neurons in each hidden layer
exhibits excellent performance.

After the ANN model with 14 neurons in each hidden
layer had been well developed, the performance was

measured in terms of the correlation coefficient (R) and
the average absolute relative error (AARE) [13, 15, 25], as
expressed in eqs (4) and (5), respectively. The correlation
coefficient is a widely used evaluator to measure the
strength of linear relationships between experimental
and predicted values, while the AARE reflects the accu-
racy of the prediction. High level of R-values and low
level of AARE values indicate that the predicted flow
stress values agree very well with the experimental value:

R=
PN

i= 1 ðEi −EÞðPi −PÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i= 1 ðEi −EÞ2

PN
i= 1 ðPi −PÞ2

q (4)

AAREð%Þ= 1
N

XN
i= 1

Ei −Pi

Ei

����
���� × 100 (5)

where E is the sample of experimental value, P is the
sample of predicted value by ANN model, E and P are the
mean value of E and P, respectively, and N is the number
of strain–stress samples.

Figure 4(a) and 4(b) shows the correlation relation-
ships of experimental and predicted values for the train-
ing procedure and testing procedure, respectively. As
shown in Figure 4, the correlation coefficient (R) values
for the training procedure and testing procedure were
linearly fitted with a value of 0.99998 and 0.99981,
respectively. Meanwhile the AARE values for the training
procedure and testing procedure were calculated to be
determined percent of 0.2947 and 0.5692, respectively.
The excellent R-values and AARE values indicate a good
correlation between experimental and predicted flow
stress values by the ANN model. As a result, the well-
trained ANN model has achieved the ideal accuracy and
is able to predict the flow behaviors of as-extruded 7075
aluminum alloy well.

As the well-trained ANN model has achieved excel-
lent accuracy, it can be adopted to predict the flow stress
in a wide range of temperature, strain and strain rate.
Figure 5 shows the comparisons between the datasets
predicted by ANN model and the strain–stress curves
obtained from compression tests. It is obviously seen in
Figure 5 that the predicted datasets fit the experimental
curves well in a temperature range of 573–723K, a strain
rate range of 0.01–10 s−1, and a wide strain range of
0.025–0.9.

Generalization capability of ANN model

As stated above, the well-trained ANN model for as-
extruded 7075 aluminum alloy is effective in flow
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Figure 3: Performance of the network at different hidden neuron
levels.

G.-Z. Quan et al.: Flow Stress Prediction by ANN for 7075 Alloy 5



behavior modeling under limited experimental condi-
tions. For the purpose of measuring the generalization
capability of the well-trained ANN model for as-extruded
7075 aluminum alloy, several groups of flow stresses in
and out of experimental conditions were predicted.
Taking the datasets at temperature range of 573–723 K
with an interval of 25 K, logarithm strain rate range from

–2 to 1 with an interval of 0.5, and strain range from 0.05
to 0.9 with an interval of 0.05 as input data, the corre-
sponding flow stresses were outputted through the well-
trained ANN model. Figure 6 shows the true stress–strain
curves of as-extruded 7075 aluminum alloy in and out of
experimental conditions predicted by the well-trained
ANN model. It can be noticed that the predicted stress
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Figure 4: Correlation between experimental and predicted flow stresses for (a) the training procedure and (b) the testing procedure.
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Figure 6: The true stress–strain curves of as-extruded 7075 aluminum alloy in and out of experimental conditions predicted by the well-
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curves in and out of experimental conditions articulate
similar intrinsic characteristics with experimental strain–
stress curves. In addition, a 3D plot for the semi-contin-
uous visualized description of the ANN model within the
temperature range of 573–723 K, logarithm strain rate
ranging from –2 to 1 and strain range from 0.05 to 0.9
were developed, as shown in Figure 7. In Figure 7, the
axes of X, Y and Z represent the strain rate in log,
temperature and strain, respectively. Meanwhile, the
flow stress level was measured in different colors, as
shown in the color bar on the right side. The 3D plot
visually reflects the variation of flow stresses with the
variation of temperature, strain and strain rate. With the
increase of strain, the flow stress increases rapidly to a
peak value and then decreases monotonically toward a
relatively low steady state. Additionally, the increase of
strain rate, as well as the decrease of temperature, results
in the rise of stress level. The variation of flow stresses
matches well with the characteristic of experimental flow
curves within the temperature range of 573–723 K, loga-
rithm strain rate ranging from –2 to 1 and strain range
from 0.05 to 0.9, which indicates good generalization

capability of the well-trained ANN model for as-extruded
7075 aluminum alloy.

Comparison of Arrhenius-type constitutive
equation and ANN model for as-extruded
7075 aluminum alloy

Arrhenius-type constitutive equations for as-extruded
7075 aluminum alloy

Traditionally, the Arrhenius-type constitutive equation is
expressed as eq. (6) in which the strain is not involved.
As mentioned previously, the influence of strain was
incorporated in the Arrhenius-type constitutive equation
by expressing the hot forming parameters (such as Q, n, a
and A) as functions of strain by Lin et al. [20]. The
improved Arrhenius-type constitutive equation is
expressed as eq. (7). The improved Arrhenius-type con-
stitutive equation of as-extruded 7075 aluminum alloy
has been calculated by Quan et al. and reported in

Figure 7: The 3D plot of flow stress within the temperature range of 573–723K, logarithm strain rate range from –2 to 1 and strain range from
0.05 to 0.9.
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Ref. [17]. In that work, a series of coefficients (Q, n, A and
a) were calculated and shown in Table 1:

σ =
1
α
ln

_ε exp Q=8.314Tð Þ
A

� �1=n
(

+
_ε exp Q=8.314Tð Þ

A

� �2=n

+ 1

" #1=2) (6)

where σ is the flow stress (MPa) for given strain, _ε is the
strain rate (s−1), T is the absolute temperature (K), Q is the
activation energy of hot deformation (kJ/mol), A, α and n
are material constants:

σ =
1

g εð Þ ln
_ε exp j εð Þ=8.314Tð Þ

f εð Þ
� �1=h εð Þ(

+
_ε exp j εð Þ=8.314Tð Þ

f εð Þ
� �2=h εð Þ

+ 1

" #1=2)

where f εð Þ, g εð Þ, h εð Þ and j εð Þ are polynomial functions of
strain for A, α, n, Q, respectively, with the detailed
expressions as follows:

Q= j εð Þ =B0 +B1ε+B2ε2 +B3ε3 +B4ε4 +B5ε5 +B6ε6

n= h εð Þ=C0 +C1ε+C2ε2 +C3ε3 +C4ε4 +C5ε5 +C6ε6

ln A= ln f εð Þ=D0 +D1ε+D2ε2 +D3ε3 +D4ε4 +D5ε5 +D6ε6

α= g εð Þ=E0 +E1ε+E2ε2 +E3ε3 +E4ε4 + E5ε5 + E6ε6

Comparison of the performance of two models

In order to evaluate the performance of the two models,
the relative percentage error (η) is introduced to compare
various measurements of the relative difference at strain
rates of 0.3, 0.5 and 0.7. The relative percentage error (η)
is expressed as eq. (8):

η %ð Þ= Pi − Ei

Ei
× 100% (8)

where E is the sample of experimental value, P is the
sample of predicted value by ANN model and N is the
number of strain–stress samples.

The comparison of η -values of the ANN model and
the Arrhenius-type constitutive equation at strain of 0.3,
0.5 and 0.7 are shown in Figure 8. It can be demonstrated
that the η-values obtained from ANN model vary from –
2.70% to 0.91%, whereas for the Arrhenius-type constitu-
tive equation, the η-values are in the range from –4.78%
to 5.63%. Subsequently, the distribution of η-values was
analyzed further since the larger range of η-values does
not mean the poorer performance. Figure 9(a) and 9(b)
shows the distribution of η-values corresponding to the
well-trained ANN model and Arrhenius-type constitutive
equation, respectively, in which the height of each histo-
gram expresses the relative frequency of each η-level. The
two indicators, namely mean value of η-values (μ) and
standard deviation (w), are of great significance for eval-
uating the two distributions. Mean value is an evaluator
obtained by dividing the sum of observed values by the
number of observations to measure the magnitude of the

Table 1: Polynomial fitting results of Q, n, ln A and α of as-extruded 7075 aluminum alloy.

Q n ln A α

B . C . D . E .
B −. C −. D −. E −.
B −. C . D . E −.
B ,. C −. D −,. E .
B −,. C ,. D −,. E −.
B ,. C −,. D −,. E .
B . × 

− C . D ,. E −.
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Figure 8: Comparison of relative percent error of predicted value by
ANN model and Arrhenius-type constitutive equation with experi-
mental value at strain of 0.3, 0.5 and 0.7.

G.-Z. Quan et al.: Flow Stress Prediction by ANN for 7075 Alloy 9



datasets, while standard deviation (w) represents the
degree of dispersion and gives an idea of how close the
entire set of data is to the average value, as expressed in
eqs (9) and (10) [13]:

μ=
1
N

XN
i= 1

ηi (9)

w =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N − 1

XN
i= 1

ηi − μð Þ2
vuut (10)

where η is the sample of relative percentage error, μ is the
mean value of η-values and N is the sample number of
relative percentage errors.

Small values of μ and w indicate tightly grouped,
precise data. As shown in Figure 9(a) and 9(b), μ-value
and w-value of the ANN model are –0.06705% and
0.5417%, respectively, compared with the –0.01079%
and 2.731% from the Arrhenius-type constitutive equation.
The μ-value of the two models are both very small, indicat-
ing that the predicted stress data by the two models are
close to the experimental stress data. However, the w-value
of ANN model is much smaller than that of Arrhenius-type
constitutive equation, i. e. the ANN model is related to a
more centralized distribution of η-values, which means
that the ANN model has better reliability and performance
than the Arrhenius-type constitutive equation.

Application potentiality of ANN model in hot
deformation processes

Processing map

Processing map on the basis of dynamic materials model
(DMM) is widely used in the characterization of intrinsic

hot workability and optimization of processing para-
meters for deformation processes such as hot rolling,
forging, extrusion, and so on. Generally, the processing
map is obtained through the experimental data extracted
from the hot isothermal compression test. The limited
amount of experimental data may cause a loss of accu-
racy since interpolation method was employed during the
development procedure of processing map. However,
with the help of ANN model, reliable processing maps
can be constructed in a wider range of strain, strain rate
and temperature with minimal experimental work.

In current investigation, a processing map at typical
strain of 0.4 was developed with stress data extracted
from the ANN model. The power dissipation and instabil-
ity map were constructed by the calculation of three key
indicators in DMM such as strain rate sensitivity
(m-value), power dissipation efficiency (η-value) and
instability parameter (ξ -value), as shown in Figure 10(a)
and 10(b). A superimposition of an instability map on a
power dissipation map gives a processing map, in which
the stable and unstable regions were clarified clearly.
Figure 11(a) and 11(b) shows the processing map at strain
of 0.4 based on ANN model and experimental data,
respectively. In each processing map, the regions of
flow instability marked with “INST” are distinguished
from the “safe” domains marked with “Domain” by
using thick curves. By avoiding the regions of flow
instability and processing under conditions of higher
efficiency in the “safe” domains, the intrinsic workability
of the material may be optimized and microstructure
control may be achieved. It can easily be found in
Figure 11(a) that the processing maps based on ANN
model at strain of 0.4 exhibit two safe domains. Domain
no. 1–0.4 occurs in temperature range from 573 to 660K
and strain rate ranges from 1 to 10 s−1 and domain no.
2–0.4 with temperature range from 660 to 723 K and

(a) (b)

–3 –2 –1 0 1 2 3
0.0

0.1

0.2

0.3

0.4

0.5

0.6
R

el
at

iv
e 

fr
eq

ue
nc

y

Relative percentage error (%)

–6 –4 –2 0 2 4 6
0.00

0.03

0.06

0.09

0.12

0.15

0.18

R
el

at
iv

e 
fr

eq
ue

nc
y

Relative percentage error (%)

Figure 9: Distribution on relative percentage error by (a) ANN model and (b) Arrhenius-type constitutive equation.
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strain rate range from 0.01 to 0.56 s−1. They are similar
with the two safe domains in the processing map based
on experimental data shown in Figure 11(b) which has
been proved to be reliable in Ref. [26], indicating that the
processing map based on ANN model is reliable as well.
As a result, the processing map based on ANN model is
available in the characterization of intrinsic hot work-
ability and optimization of processing parameters for as-
extruded 7075 aluminum alloy.

Finite element simulation

As stated earlier, the flow stresses predicted by the well-
trained ANN model within the temperature range of 573–
723 K, logarithm strain rate range from –2 to 1 and strain
range from 0.05 to 0.9 agree very well with the experi-
mental flow stress data. In the current work, the flow
stress data extracted from the ANN model were success-
fully implanted in the finite element analysis software

Deform since they were proved to be reliable in flow
behaviors modeling of as-extruded 7075 aluminum
alloy. In order to demonstrate the reliability of finite
element simulation based on predicted flow stress data
by ANN model, simulation procedure of isothermal com-
pression test at temperature of 623 K with strain rate of
0.1 s−1 was conducted in the software Deform. The top die
and bottom die were set as rigid objects, while the billet
was set as plastic object, so as to overlook the elastic
deformation and reflect the computing method of plastic
yielding condition. The thermal radiation and heat
exchange between billet and dies surrounding atmo-
sphere was ignored to approximate the actual experimen-
tal condition of hot isothermal compression test. Graphite
lubricants were used to coat the top and bottom surfaces
of specimen during compression test; hence, a shear
friction coefficient of 0.1 was chosen to simulate the
real friction between the specimens and anvils. In addi-
tion, the movement type of top die was set to hydraulic
press controlled by constant strain rate.
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Figure 10: The development of processing map at strain of 0.4 based on ANN model: (a) power dissipation map and (b) instability map.

(a) (b)

580 600 620 640 660 680 700 720
–2.0

–1.5

–1.0

–0.5

0.0

0.5

1.0

INST #2–0.4

INST #1–0.4

St
ra

in
 r

at
e 

in
 lo

g

Temperature (K)

–2

0

580 600 620 640 660 680 700 720
–2.0

–1.5

–1.0

–0.5

0.0

0.5

1.0

St
ra

in
 r

at
e 

in
 lo

g

Temperature (K)

INST #1–0.4

INST #2–0.4

Domain #1–0.4

Domain #2–0.4

Domain #1–0.4

Domain #2–0.4

Figure 11: Processing maps based on (a) ANN model and (b) experimental data.

G.-Z. Quan et al.: Flow Stress Prediction by ANN for 7075 Alloy 11



The specimen compressed with a height reduction of 60%
(7.2mm) was simulated on software Deform, and the
results were shown in Figure 12. Figure 12(a) shows the
distribution of the effective plastic strain. It can be clearly
found from Figure 12(a) that the deformed workpiece is
inhomogeneous and can be roughly divided into difficult
deformation area, small deformation area and severe
deformation area according to the deformation degree.
On account of the friction between billet and dies, metal
in the vicinity of head face areas is in a state of three-
directional compressive stress and difficult to deform.
Meanwhile, metal in the heart area undergoes severe
deformation due to smaller deformation constraints
aroused by friction. In a word, the simulation agrees well
with the ideal isothermal compression deformation condi-
tion. Figure 12(b) shows the comparison of forming load
between experiment condition and simulation condition.
As shown in Figure 12(b), the simulation load–stroke curve
matches well with the experimental load–stroke curve in
the whole deformation stage with similar variation char-
acteristic in which the forming load increases rapidly
within the stroke of 1mm and then reaches a steady
increasing state in the last deformation stage. It has been
demonstrated that the finite element simulation based on
predicted flow stress data by ANN model is effective.

In the hot deformation processes, the material under-
goes different strain rates and temperatures, which results
in a loss of accuracy in the simulation of typical hot
deformation processes with limited amount of experimen-
tal flow stress data, since a great number of interpolations
have been used in the finite element analysis software.
However, with ANN model, more effective flow stresses
within different strain rate range and temperature range
can be predicted and imported into finite element analysis
software. Thus, the span of interpolation is reduced and
the accuracy of simulation is improved. In order to

demonstrate the higher accuracy of simulation based on
predicted flow stress data in the case of typical deformation
processes where interpolation methods were adopted auto-
matically in the software, two comparative simulation of
isothermal compression tests at the same deformation con-
dition as above with interpolation methods were conducted
in the software Deform. The experimental flow stress data
at temperature of 573, 673 and 723K under strain rate of 0.1
were imported in the simulation procedure no. 1, while the
predicted flow stress data at temperatures of 573, 598, 648,
673, 698 and 723K under strain rate of 0.1 were imported in
the simulation procedure no. 2. Thus, the flow stress data
at temperature of 623K under strain rate of 0.1 were inter-
polated automatically in the finite element analysis soft-
ware during the simulation procedures. Figure 13 shows
the load–stroke curves under experiment condition, simu-
lation condition with interpolation of experimental data
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Figure 12: The results of simulation procedure of isothermal compression test: (a) distribution of the effective plastic strain and
(b) comparison of forming load between experimental conditions and simulation conditions.
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and simulation condition with interpolation of predicted
data. It is obvious that the load–stroke curve under simula-
tion condition with interpolation of predicted data is closer
to the experimental load–stroke curve than that of simula-
tion condition with interpolation of experimental data,
which clearly indicates that the simulation based on pre-
dicted flow stress data shows better performance in the
case of typical deformation processes where interpolation
methods were adopted. In conclusion, the reproducible
simulation of the isothermal compression test have illu-
strated that the well-trained ANN model is available to
numerical simulation for the hot deformation behaviors
with high accuracy.

Conclusions

An ANN model has been developed to deal with the flow
behaviors of as-extruded 7075 aluminum alloy using
experimental data from hot compression tests in the tem-
perature range of 573–723 K and strain rate range of 0.01–
10 s−1. The following conclusions can be drawn:
(1) The flow stress curves of as-extruded 7075 alumi-

num alloy show similar characteristics, in which the
flow stress increases rapidly to a peak value with the
increasing of strain on account of WH and decreases
monotonically toward a steady-state region with a
varying softening rate which typically indicates the
onset of DRX.

(2) The ANN model with BP algorithm for as-extruded
7075 aluminum alloy has been developed on the
basis of the experimental data extracted from the iso-
thermal compression tests on Gleeble 1500 thermal
simulator. The constructed ANN model is effective in
modeling of complex hot deformation behaviors and
has excellent generalization capability in a wide tem-
perature range and strain rate range.

(3) A comparative study on Arrhenius-type constitutive
equation and ANN model for as-extruded 7075 alu-
minum alloy was conducted. Higher R-value, lower
AARE value and better distribution of relative percen-
tage error indicate a better performance of the ANN
model under limited experimental conditions than
that of the Arrhenius-type constitutive equation.

(4) The applications of ANN model on the processing
map and the finite element simulation have been
realized, which show excellent performance. The
great results have demonstrated that the ANN
model has great application potentiality in the
field of hot deformation processes.

Funding: The work was supported by Open Fund Project
of State Key Laboratory of Materials Processing and Die &
Mould Technology (No.P2014-16)

References

[1] Y.C. Lin, L.T. Li, Y.X. Fu and Y.Q. Jiang, J. Mater. Sci., 47 (2012)
1306–1318.

[2] B. Wilshire and P.J. Scharning, J. Mater. Sci., 43 (2008)
3992–4000.

[3] M. Rajamuthamilselvan and S. Ramanathan, J. Alloys Compd.,
509 (2011) 948–952.

[4] P. Choudhury and S. Das, J. Mater. Sci., 40 (2005) 805–807.
[5] C.A.C. Imbert and H.J. McQueen, Mater. Sci. Eng. A, 313 (2001)

88–103.
[6] M. Morakabati, M. Aboutalebi, S. Kheirandish, A. Karimi Taheri

and S.M. Abbasic, Intermetallics, 19 (2011) 1399–1404.
[7] K. Wu, G.Q. Liu, B.F. Hu, F. Li, Y.W. Zhang, Y. Tao and J.T. Liu,

Mater. Des., 32 (2011) 1872–1879.
[8] D. Samantaray, S. Mandal, A.K. Bhaduri, S. Venugopal and

P.V. Sivaprasad, Mater. Sci. Eng. A, 528 (2011) 1937–1943.
[9] Y.C. Zhu, W.D. Zeng, Y. Sun, F. Feng and Y.G. Zhou, Comput.

Mater. Sci., 50 (2011) 1785–1790.
[10] H. Sheikh and S. Serajzadeh, J. Mater. Process. Technol., 196

(2008) 115–119.
[11] S. Malinov and W. Sha, Mater. Sci. Eng. A, 365 (2004)

202–211.
[12] Z. Guo, S. Malinov and W. Sha, Comput. Mater. Sci., 32 (2005)

1–12.
[13] G.Z. Quan, W.Q. Lv, Y.P. Mao, Y.W. Zhang and J. Zhou, Mater.

Des., 50 (2013) 51–61.
[14] G.Z. Quan, C.T. Yu, Y.Y. Liu and Y.F. Xia, Sci. World J., 2014

(2014) 108492.
[15] Y.C. Lin, J. Zhang and J. Zhong, Comput. Mater. Sci., 43 (2008)

752–758.
[16] J.W. Zhao, H. Ding, W.J. Zhao, M.L. Huang, D.B. Wei and

Z.Y. Jiang, Comput. Mater. Sci., 92 (2014) 47–56.
[17] G.Z. Quan, G.S. Li, Y. Wang, W.Q. Lv, C.T. Yu and J. Zhou, Mater.

Res., 16 (2013) 19–27.
[18] N.S. Reddy, Y.H. Lee, J.H. Kim and C.S. Lee, Met. Mater. Int., 14

(2008) 213–221.
[19] G.Z. Quan, J.T. Liang, W.Q. Lv, D.S. Wu, Y.Y. Liu, G.C. Luo and

J. Zhou, Mater. Res., 17 (2014) 1102–1114.
[20] Y.C. Lin, M.S. Chen and J. Zhang, Mater. Sci. Eng. A, 499 (2009)

88–92.
[21] G.Z. Quan, G.S. Li, T. Chen, Y.X. Wang and Y.W. Zhang, Mater.

Sci. Eng. A, 528 (2011) 4643–4651.
[22] P.A. Lucon and R.P. Donovan, Composites Part B, 38 (2007)

817–823.
[23] S.C. Juang, Y.S. Tarng and H.R. Lii, J. Mater. Process. Technol.,

75 (1998) 54–62.
[24] R.X. Chai, C. Guo and L. Yu, Mater. Sci. Eng. A, 534 (2012)

101–110.
[25] Y.C. Lin, D.X. Wen, J. Deng, G. Liu and J. Chen, Mater. Des.,

59 (2014) 115–123.
[26] G.Z. Quan, Y.X. Wang, T. Chen and J. Zhou, J. Funct. Mater.,

42 (2011) 1673–1677.

G.-Z. Quan et al.: Flow Stress Prediction by ANN for 7075 Alloy 13




