Abstract
For the determination of heat transfer coefficients in air-water spray cooling, two methods are presented that are capable of characterizing multi-nozzle cooling set-ups. The methods are based on the quenching of thin-walled tubes or massive cylinders on which cooling curves are recorded at given positions with thermocouples. The temperature dependent heat transfer coefficients were calculated by an inverse calculation and the measured temperature-time-curves could be reproduced with these data in numerical cooling simulations. Next, the determined heat transfer coefficients were used for the calculation of an air-water-spray quenching process of a forging part with more challenging geometry. The calculated results were compared with thermocouple measurements. Different calculation variants for the heat transfer on component surfaces not directly exposed to the air-water spray are shown and discussed. ◼
Kurzfassung
Zur Bestimmung von Wärmeübergangskoeffizienten bei der Luft-Wasser-Spraykühlung werden zwei Methoden vorgestellt, die geeignet sind, mehrdüsige Abkühlvorrichtungen zu charakterisieren. Die Methoden basieren auf dem Abschrecken von dünnwandigen Rohren bzw. massiven Zylindern, an denen Abkühlverläufe an definierten Positionen mit Thermoelementen erfasst werden. Die temperaturabhängigen Wärmeübergangskoeffizienten wurden durch eine inverse Berechnung bestimmt und die gemessenen Temperatur-Zeitverläufe konnten mit diesen Werten in numerischen Abkühlsimulationen reproduziert werden. Die ermittelten Wärmeübergangskoeffizienten wurden dann für die Berechnung eines Luft-Wasser-Spray-Abschreckprozesses eines Schmiedeteils verwendet. Die berechneten Ergebnisse wurden mit Thermoelementmessungen verglichen. Es werden hierfür verschiedene Berechnungsvarianten für den Wärmeübergang an nicht direkt vom Luft-Wasser-Spray beaufschlagten Bauteiloberflächen gezeigt und diskutiert. ◼
Acknowledgement
Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 252662854 – SFB 1153.
Danksagung
Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) – Projektnummer 252662854 – SFB 1153.
References
1 Herbst, S.: Inverse Prozessauslegung der prozessintegrierten Wärmebehandlung von Großschmiedebauteilen mittels Luft-Wasser-Spraykühlung. Dissertation, Leibniz Universität Hannover; TEWISS – Technik und Wissen GmbH, 2018. – ISBN: 978-3-95900-237-0Search in Google Scholar
2 Herbst, S.; Maier, H. J.; Nürnberger, F.: Strategies for the Heat Treatment of Steel-Aluminium Hybrid Components. HTM J. Heat Treatm. Mat. 73 (2018) 5, pp. 268–282, DOI:10.3139/105.11036810.3139/105.110368Search in Google Scholar
3 Behrens, B.-A.; Diefenbach, J.; Chugreeva, A.; Kahra, C.; Herbst, S.; Nürnberger, F.: Tailored Forming of Hybrid Bevel Gears with Integrated Heat Treatment. Procedia Manufacturing 47 (2020), pp. 301–308, DOI:10.1016/j.promfg.2020.04.23410.1016/j.promfg.2020.04.234Search in Google Scholar
4 Schüttenberg, S.; Lütjens, J.; Hunkel, M.; Fritsching, U.: Adapted spray quenching for distortion control. Mat.-wiss. u. Werkstofftech. 43 (2012) 1-2, pp. 99–104, DOI:10.1002/mawe.20110089510.1002/mawe.201100895Search in Google Scholar
5 Hornig, N.; Rose, A.; Fritsching, U.; Hehl, A. von: Kontrollierte Abschreckung von Aluminiumbauteilen durch Sprühkühlen. HTM J. Heat Treatm. Mat. 68 (2013) 4, pp. 179–187, DOI:10.3139/105.11019410.3139/105.110194Search in Google Scholar
6 Ravikumar, S. V.; Jha, J. M.; Tiara, A. M.; Pal, S. K.; Chakraborty, S.: Experimental investigation of air-atomized spray with aqueous polymer additive for high heat flux applications. International Journal of Heat and Mass Transfer 72 (2014), S. 362–377, DOI:10.1016/j.ijheatmasstransfer.2014.01.02410.1016/j.ijheatmasstransfer.2014.01.024Search in Google Scholar
7 Puschmann, F.: Experimentelle Untersuchung der Spraykühlung zur Qualitätsverbesserung durch definierte Einstellung des Wärmeübergangs. Dissertation, Ottovon-Guericke-Universität Magdeburg, 2003Search in Google Scholar
8 Hernández-Bocanegra, C. A.; Castillejos, E. A. H.; Acosta-González, F. A.; Zhou, X.; Thomas, B. G.: Measurement of heat flux in dense air-mist cooling. Part I – A novel steady-state technique. Experimental Thermal and Fluid Science 44 (2013), pp. 147–160, DOI:10.1016/j.expthermflusci.2012.06.01510.1016/j.expthermflusci.2012.06.015Search in Google Scholar
9 Chakraborty, S.; Sarkar, I.; Pal, S. K.; Chakraborty, S.: Heat transfer enhancement using air-atomized spray cooling with water–Al2O3 nanofluid. International Journal of Thermal Sciences 96 (2015), pp. 85–93, DOI:10.1016/j.ijthermalsci.2015.04.01210.1016/j.ijthermalsci.2015.04.012Search in Google Scholar
10 Zhang, X.; Wen, Z.; Dou, R.; Zhou, G.; Zhang, F.: Experimental study of the airatomized spray cooling of high-temperature metal. Applied Thermal Engineering 71 (2014) 1, pp. 43–55, DOI:10.1016/j.applthermaleng.2014.06.02610.1016/j.applthermaleng.2014.06.026Search in Google Scholar
11 Tan, Y. B.; Xie, J. L.; Duan, F.; Wong, T. N.; Toh, K. C.; Choo, K. F.;Chan, P. K.; Chua, Y. S.: Multi-nozzle spray cooling for high heat flux applications in a closed loop system. Applied Thermal Engineering 54 (2013) 2, pp. 372–379, DOI:10.1016/j.applthermaleng.2013.01.03310.1016/j.applthermaleng.2013.01.033Search in Google Scholar
12 Lin, L.; Ponnappan, R.: Critical Heat Flux of Multi-Nozzle Spray Cooling. Journal of Heat Transfer 126 (2004) 3, pp. 482–485, DOI:10.1115/1.173841810.1115/1.1738418Search in Google Scholar
13 Herbst, S.; Steinke, K. F.; Maier, H. J.; Milenin, A.; Nürnberger, F.: Determination of heat transfer coefficients for complex spray cooling arrangements. IJMMP 11 (2016) 3/4, pp. 229–246, DOI:10.1504/IJMMP.2016.07914910.1504/IJMMP.2016.079149Search in Google Scholar
14 Herbst, S.; Besserer, H.-B.; Grydin, O.; Milenin, A.; Maier, H. J.; Nürnberger, F.: Holistic consideration of grain growth behavior of tempering steel 34CrNiMo6 during heating processes. Journal of Materials Processing Technology 229 (2016), pp. 61–71, DOI:10.1016/j.jmatprotec.2015.09.01510.1016/j.jmatprotec.2015.09.015Search in Google Scholar
15 Martienssen, W.; Warlimont, H.; Spittel, M.; Spittel, T. (eds.): Metal Forming Data of Ferrous Alloys – deformation behaviour // Steel symbol/number. X5CrNi18–10/ 1.4301. Springer, Berlin, 2009, DOI:10.1007/978-3-540-44760-3_9310.1007/978-3-540-44760-3_93Search in Google Scholar
16 Martienssen, W.; Warlimont, H.; Spittel, M.; Spittel, T. (eds.): Metal Forming Data of Ferrous Alloys – deformation behaviour // Steel symbol/number. GS–34CrNiMo6/ 1.6582. Springer, Berlin, 2009, DOI:10.1007/978-3-540-44760-3_15410.1007/978-3-540-44760-3_154Search in Google Scholar
17 Puschmann, F.; Specht, E.: Transient measurement of heat transfer in metal quenching with atomized sprays. Experimental Thermal and Fluid Science 28 (2004) 6, pp. 607–615, DOI:10.1016/j.expthermflusci.2003.09.00410.1016/j.expthermflusci.2003.09.004Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany
Articles in the same Issue
- Inhalt/Contents
- Influence of the Material State of Ground, Case-Hardened Steels on the Barkhausen Noise Depending on the Surface Integrity*
- Suitable Material Selection for Large Size Cylindrical Gears*
- Experimental and Numerical Investigation of the Surface Layer Conditions after Carbonitriding of Powder Metallurgical Steels. Part 1: Diffusion in Components of Graded Porosity
- Plasma Nitriding Mechanisms of Low-Density Sintered Metal Products
- Heat Transfers Coefficients of Directly and Indirectly Cooled Component Areas during Air-Water Spray Cooling
- Impressum/Imprint
- From and for Practice / Praxis-Informationen
- AWT-Info / HTM 01-2021
- HTM Praxis
Articles in the same Issue
- Inhalt/Contents
- Influence of the Material State of Ground, Case-Hardened Steels on the Barkhausen Noise Depending on the Surface Integrity*
- Suitable Material Selection for Large Size Cylindrical Gears*
- Experimental and Numerical Investigation of the Surface Layer Conditions after Carbonitriding of Powder Metallurgical Steels. Part 1: Diffusion in Components of Graded Porosity
- Plasma Nitriding Mechanisms of Low-Density Sintered Metal Products
- Heat Transfers Coefficients of Directly and Indirectly Cooled Component Areas during Air-Water Spray Cooling
- Impressum/Imprint
- From and for Practice / Praxis-Informationen
- AWT-Info / HTM 01-2021
- HTM Praxis