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Abstract: The heat stress response is an essential defense
mechanism in all organisms. Heat shock proteins (Hsps) are
produced in response to thermal stress, with their expres-
sion levels regulated by heat shock transcription factors. In
Escherichia coli, the key transcription factor ¢* positively
regulates Hsp expression. Studies from over two decades ago
revealed that ¢** abundance is negatively controlled under
normal conditions, mainly through degradation mecha-
nisms involving DnakK, GroEL, and FtsH. Beyond this estab-
lished mechanism, recent findings indicate that a small heat
shock protein IbpA also plays a role in the translational
regulation of ¢*, adding a new layer to the established
model. This review highlights the role of a new actor, IbpA,
which strongly suppresses 6** expression under non-stress
conditions and markedly increases it during heat shock.

Keywords: heat shock response; o°% heat shock protein;
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1 Introduction

The heat stress response is an essential protective mecha-
nism for all organisms. Heat shock proteins (Hsps) are
specialized to counteract stress-induced protein denatur-
ation and aggregation, with their expression primarily
triggered by heat shock transcription factors such as HSF1in
eukaryotes and ¢ in prokaryotes (Hipp et al. 2019). These
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Hsps function mainly as molecular chaperones, assisting in
the folding of nascent polypeptides, refolding denatured
proteins, and preventing the aggregation of misfolded pro-
teins. Hsps play a key role in maintaining protein homeo-
stasis, or proteostasis, by responding to environmental
stresses like heat shock, oxidative stress, and heavy metal
exposure (Bukau 1993; Hipp et al. 2019; Richter et al. 2010).
This review summarizes the updated regulatory mechanism
of the 6* subunit of RNA polymerase, which plays a central
role in the heat shock response of Escherichia coli. Beyond
the well-established regulation involving DnaK, GroEL, and
FtsH at the degradation level (Bittner et al. 2017; Guisbhert
et al. 2004, 2008; Guo and Gross 2014; Meyer and Baker 2011),
IbpA, a small Hsp (sHsp) in E. coli, has a critical role in
suppressing 6> expression at the translation level.

2 Heat shock response in E. coli

Proteostasis has become a diverse field in recent years, but its
research roots trace back to studies on heat shock responses.
A key focus is the heat shock response in E. coli. Upon heat
shock, such as at 42 °C, E. coli rapidly increases the expression
of many Hsps (Bukau 1993; Hipp et al. 2019; Richter et al. 2010).
The major Hsps in E. coli include DnaK, GroEL, ClpB, and IbpA-
IbpB, each with specialized roles in protein refolding, stabi-
lization, and disaggregation (Arséne et al. 2000; Dahiya and
Buchner 2019; Hartl et al. 2011). Dnak, a versatile chaperone in
the Hsp70 family, maintains proteostasis with ATP and the
cofactors DnaJ and GrpE (Arséne et al. 2000; Dahiya and
Buchner 2019; Hartl et al. 2011). GroEL, a barrel-shaped
chaperone, binds nonnative proteins and encapsulates them
within its cavity with the aid of the co-chaperonin GroES in an
ATP-dependent manner (Arséne et al. 2000; Dahiya and
Buchner 2019; Hartl et al. 2011). Unlike DnaK and GroEL, IhpA
and IbpB (IbpA/B) function independently of ATP, coag-
gregating with partially denatured or misfolded proteins to
prevent irreversible aggregation (Arséne et al. 2000; Dahiya
and Buchner 2019; Hartl et al. 2011; Mogk et al. 2019). Under
normal conditions, IbpA/B expression is tightly suppressed by
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the binding of IbpA, not IbpB, to ibpA/B mRNAs (Cheng et al.
2023; Miwa et al. 2021), preventing the mild toxicity associated
with their high abundance. IbpA exhibits a stronger binding
affinity for denatured proteins compared to IbpB, whereas
IbpB shows a higher affinity for DnaK and is more prone to
degradation by Lon protease (Bissonnette et al. 2010; Obu-
chowski et al. 2019). These distinctions are pivotal for the
functional difference between IbpA and IbpB as chaperones.
Furthermore, although ibpA and ibpB are encoded within the
same operon, the downstream region containing ibpB un-
dergoes degradation by RNaseE, likely resulting in different
expression levels of IbpA and IbpB (Gaubig et al. 2011). These
variations may underlie IbpA’s specialized role as a trans-
lational repressor. Due to this self-repression mechanism at
the translational level and transcriptional regulation via ¢**
(see below), IbpA/B expression increases rapidly and sub-
stantially in response to heat shock, rising 10- to 50-fold
compared to normal conditions (Calloni et al. 2012; Zhao et al.
2019).

3 Regulation of the heat shock
response in E. coli: established
mechanism

The RNA polymerase subunit ¢* the product of the rpoH
gene, serves as a key regulator of the heat shock response in
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prokaryotes (Arséne et al. 2000). 6°* was identified in E. coli
in the early 1980s when Yura and Neidhardt independently
showed that Hsp induction is controlled by a genetic factor
(Neidhardt and VanBogelen 1981; Yamamori and Yura 1980,
1982). In 1984, Gross and colleagues discovered that ¢*, a
minor sigma factor in E. coli, regulates Hsp transcription
(Grossman et al. 1984). It was also found that the synthesis of
6 is significantly inhibited when excess Hsps accumulate in
cells, revealing a feedback mechanism for controlling the
heat shock response (Straus et al. 1987, 1990; Tilly et al. 1983).
Throughout the 1990s further research revealed that ¢** is
tightly regulated at multiple levels, including synthesis,
activity, and degradation (Figure 1A) (Grossman et al. 1987;
Kamath-Loeb and Gross 1991; Straus et al. 1990). This
multilayered regulation ensures a precise and efficient heat
stress response in E. coli. Under non-stress conditions, 0% is
subject to feedback regulation by the chaperones GroEL and
DnaK (Guisbert et al. 2004, 2008; Tilly et al. 1983). These
chaperones inhibit 6* activity and destabilize it through
direct binding. During stress, these chaperones are recruited
by heat-denatured proteins, releasing ¢** from repression
(Guisbert et al. 2004, 2008; Tilly et al. 1983). Moreover, dele-
tion of the inner membrane protease FtsH stabilizes 6%,
indicating that FtsH is involved in ¢** degradation (Bittner
et al. 2017; Guisbert et al. 2008; Guo and Gross 2014; Meyer
and Baker 2011; Mogk et al. 2011). Even after FtsH’s role in
degrading ¢* was established, in vitro studies suggested the
involvement of other factors. Analysis of mutants showed
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that o2 localization to the inner membrane, crucial for its
degradation, requires a signal recognition particle and its
adaptor (Lim et al. 2013; Miyazaki et al. 2016). This finding
shows that 6* not only responds to cytoplasmic conditions
but also monitors proteostasis in the inner membrane,
underscoring its broader role in maintaining cellular sta-
bility under stress.

In addition to regulating degradation and activity, ¢** has
a cis-regulatory element, an RNA thermometer (RNAT), which
controls translation (Guisbert et al. 2008; Kortmann and
Narberhaus 2012; Morita et al. 1999b; Nagai et al. 1991). RNATs
are temperature-sensitive regulatory elements located in the
5 untranslated regions (UTRs) of certain mRNAs (Kortmann
and Narberhaus 2012). The secondary structures within the
RNATs modulate translation of the downstream coding region
by altering their conformation in response to temperature
fluctuations, thereby controlling gene expression based on
environmental conditions (Kortmann and Narberhaus 2012).
In rpoH mRNA, this element includes the region from the 5'
UTR to the mid-ORF, forming a secondary structure that
masks the Shine-Dalgarno sequence and initiation codon,
preventing translation (Figure 1A) (Morita et al. 1999a, 1999b;
Nagai et al. 1991). This secondary structure unfolds at high
temperatures, enabling temperature-dependent production
of 6® (Morita et al. 1999a, 1999b; Nagai et al. 1991). These
regulatory mechanisms were believed to control the intra-
cellular abundance of ¢*

4 Regulation of ¢** translation by a
new cast, IbpA

In addition to the established mechanism regulating ¢,
regulatory pathway involving feedback translation by IbpA
was recently discovered by Miwa et al. adding another layer
for the tight and rapid control of ¢** abundance (Figure 1A)
(Miwa and Taguchi 2023).

IbpA functions as a chaperone that binds to denatured
proteins (Haslbeck et al. 2019; Mogk et al. 2019). When dena-
tured proteins accumulate in the cell, IbpA binds to them in an
ATP-independent manner, forming coaggregates (Haslbeck
et al. 2019; Mogk et al. 2019). These coaggregates facilitate the
efficient processing of denatured proteins by improving ac-
cess for Dnak, ClpB, and proteases (Haslbeck et al. 2019; Mogk
et al. 2019; Zwirowski et al. 2017). The role of sHsps, including
IbpA, as “sequestrase” explains why sHsps are often referred
to as the first line of defense in the cellular response to ag-
gregation stress (Haslbeck et al. 2019; Mogk et al. 2019). In
addition to its well-known role in managing denatured pro-
teins, IbpA has recently been found to play a crucial role in
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regulating the heat shock response by repressing the trans-
lation of rpoH mRNA (Miwa and Taguchi 2023). This repres-
sion occurs in a 5’ UTR-dependent manner, illustrating IbpA’s
additional function in fine-tuning the heat shock response by
controlling 6* production at the translational level (Miwa and
Taguchi 2023). Overexpression of IbpA reduces rpoH trans-
lation by approximately 50 %, while loss of IbpA increases
rpoH translation by 1.5-fold. This effect can partially be reca-
pitulated in vitro using a reconstituted cell-free translation
system (PURE system), indicating that IbpA represses trans-
lation independently of other intracellular factors (Miwa and
Taguchi 2023). Furthermore, this translational regulation is
distinct from the degradation control by DnaK, GroEL and
FtsH and is independent of known mutations that disrupt ¢**
and DnaK-mediated degradation pathways (Miwa and Tagu-
chi 2023). A close relationship between RNAT and IbpA-
mediated translational repression has also been proposed.
Since the 5' UTR, which contains the RNAT region, is essential
for IhpA-dependent translational repression, it is plausible
that IbpA recognizes RNA secondary structures functioning as
RNATSs to exert its regulatory effects (Miwa and Taguchi 2023).
Notably, other regulatory targets of IbpA, such as ihpA mRNA
itself and ibpB mRNA, also contain an RNAT region in their 5’
UTRs (Miwa et al. 2021). Mutations in the structural elements
of the RNAT abolish IbpA-mediated translational repression
of ibpA, indicating that the RNAT structure is crucial for this
suppression (Miwa et al. 2021). RNAT can be partially dere-
pressed even at normal temperatures, suggesting that IbpA
may act as a “safety catch” to strictly enforce translational
suppression. A similar role is likely attributed to the RNAT in
rpoH mRNA.

Since the oligomer formation motif is essential for the
translational repression activity of IbpA, its oligomeric state
likely functions as a translational repressor (Miwa et al. 2021).
High-molecular-weight oligomers of sHsps are referred to as
the storage form, and in this state, sHsps exhibit low chap-
erone activity (Haslbeck et al. 2019; Miwa and Taguchi 2021;
Mogk et al. 2019). Itis probable that IbpA acts as a translational
repressor when it is not needed as a chaperone — under non-
stress conditions — by functioning in its storage oligomeric
state.

5 ¢° shut-off mechanism during
heat shock recovery

The ¢* level is known to rise rapidly upon heat stress,
peaking within 5 min (Guisbert et al. 2008; Meyer and Baker
2011; Straus et al. 1987). However, its abundance decreases
over time, returning to pre-stress levels about 10 min after
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the onset of heat stress (Guisbert et al. 2008; Meyer and
Baker 2011; Straus et al. 1987). Previous studies identified
degradation control mechanisms as responsible for this
shut-off phase of ¢* (Guisbert et al. 2008; Meyer and Baker
2011; Straus et al. 1987). Recent findings also show that the
abundance of IbpA under stress conditions affects the
duration of this phase (Miwa and Taguchi 2023). Specifically,
E. coli recovery from heat stress is delayed by either excess
or absence of IbpA, indicating that an optimal amount of
IbpA is required for proper ¢** shut-off (Miwa and Taguchi
2023). The observation that shut-off still occurs 30 min after
heat shock onset, even without IbpA (Miwa and Taguchi
2023), suggests that the early phase of shut-off depends on
IbpA-mediated translational suppression, while the later
phase is likely governed by degradation processes.

6 Advantages of sHsp in controlling
the heat stress response

The abundance of ¢ is regulated by IbpA-mediated trans-
lational control and by degradation control involving other
Hsps, including DnaK and GroEL. IbpA differs significantly
from DnaK and GroEL as it sequesters heat-damaged pro-
teins by coaggregating with them during stress. This
sequestration of IbpA leads to an apparent depletion of free
IbpA in the cytosol, temporarily reducing its inhibitory ef-
fects on ¢* translation. This mechanism enables rapid
translation of already transcribed rpoH mRNA when
needed. The pronounced propensity of IbpA to engage in
aggregation likely facilitates the release of rpoH from rapid
translational repression. Additionally, when IbpA coag-
gregates with denatured proteins, it facilitates the recruit-
ment of DnakK, which subsequently releases IbpA from the
coaggregate (Mogk et al. 2019; Zwirowski et al. 2017). Thus,
IbpA is freed once other chaperones take over the manage-
ment of aggregation (Figure 1B). This mechanism supports
IbpA’s critical role in initiating the shut-off of ¢** during heat
stress. The rapid sequestration and release of IbpA reflect
the dynamic state of protein aggregation management,
allowing IbpA to tightly regulate ¢*%. Unlike DnaK and GroEL,
which are constitutively expressed to maintain proteostasis,
IbpA is exclusively regulated by ¢*, enabling it to more
precisely to the repression of 6%

7 Future perspectives

Although IbpA-mediated translation repression of certain
mRNAs is conserved in other y-proteobacteria (Cheng et al.

DE GRUYTER

2023), the detailed mechanism of ¢* regulation by IbpA re-
mains elusive. It is still unclear which features of rpoH mRNA
are recognized by IbpA for translational repression. The
requirement for the 5 UTR suggests that IbpA targets RNATS,
which are complex secondary structures with multiple stem-
loop (Miwa and Taguchi 2023). However, the RNAT in rpoH
does not share structural or sequence similarities with RNATs
in other translation control targets, making it difficult to
identify the elements essential for regulation (Kortmann and
Narberhaus 2012; Miwa and Taguchi 2023; Miwa et al. 2021).
Additionally, the RNA binding site of IbpA remains unidenti-
fied, as no known nucleic acid-binding motifs are present
within this chaperone protein. Thus, the mechanism by which
IbpA regulates 6> requires further investigation.

The characteristics of IbpA, such as the presence of
positively charged amino acids critical for RNA binding and
regulation (Cheng et al. 2023), along with its ability to form
oligomers of various sizes, may resemble liquid-liquid phase
separation (LLPS). Notably, HspB2, an eukaryotic sHsp, un-
dergoes LLPS, with its behavior modulated by another sHsp,
HspB3, in the cell (Morelli et al. 2017). Given these similarities,
it is plausible that LLPS may also occur in bacterial sHsps like
IbpA and that its unique role in translational regulation could
result from such phase separation dynamics.
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