Home Integrated machine learning and multimodal data fusion for patho-phenotypic feature recognition in iPSC models of dilated cardiomyopathy
Article
Licensed
Unlicensed Requires Authentication

Integrated machine learning and multimodal data fusion for patho-phenotypic feature recognition in iPSC models of dilated cardiomyopathy

  • Ruheen Wali , Hang Xu , Cleophas Cheruiyot , Hafiza Nosheen Saleem , Andreas Janshoff , Michael Habeck and Antje Ebert ORCID logo EMAIL logo
Published/Copyright: April 24, 2024

Abstract

Integration of multiple data sources presents a challenge for accurate prediction of molecular patho-phenotypic features in automated analysis of data from human model systems. Here, we applied a machine learning-based data integration to distinguish patho-phenotypic features at the subcellular level for dilated cardiomyopathy (DCM). We employed a human induced pluripotent stem cell-derived cardiomyocyte (iPSC-CM) model of a DCM mutation in the sarcomere protein troponin T (TnT), TnT-R141W, compared to isogenic healthy (WT) control iPSC-CMs. We established a multimodal data fusion (MDF)-based analysis to integrate source datasets for Ca2+ transients, force measurements, and contractility recordings. Data were acquired for three additional layer types, single cells, cell monolayers, and 3D spheroid iPSC-CM models. For data analysis, numerical conversion as well as fusion of data from Ca2+ transients, force measurements, and contractility recordings, a non-negative blind deconvolution (NNBD)-based method was applied. Using an XGBoost algorithm, we found a high prediction accuracy for fused single cell, monolayer, and 3D spheroid iPSC-CM models (≥92 ± 0.08 %), as well as for fused Ca2+ transient, beating force, and contractility models (>96 ± 0.04 %). Integrating MDF and XGBoost provides a highly effective analysis tool for prediction of patho-phenotypic features in complex human disease models such as DCM iPSC-CMs.


Corresponding author: Antje Ebert, Department of Cardiology and Pneumology, Heart Research Center, University Medical Center, Göttingen University, Robert-Koch-Strasse 40, D-37075 Göttingen, Germany; and Partner Site Göttingen, DZHK (German Center for Cardiovascular Research), Robert-Koch-Strasse 40, D-37075 Göttingen, Germany, E-mail:
Ruheen Wali and Hang Xu contributed equally to this work.

Funding source: DZHK German Center for Cardiovascular Research

Award Identifier / Grant number: 81X2300194 (AE), 81X4300123 (AE)

Award Identifier / Grant number: Clinic for Cardiology and Pneumology (AE)

Funding source: Carl Zeiss Foundation

Award Identifier / Grant number: CZS Stiftungsprofessuren (MH)

Award Identifier / Grant number: SFB 1002 Projekt A12 (AE)

Funding source: Germany’s Excellence Strategy

Award Identifier / Grant number: EXC 2067/1-390729940 (AE, AJ)

Acknowledgments

This study was supported by the Deutsche Forschungsgemeinschaft (German Research Foundation), Sonderforschungsbereich 1002, project A12 (A.E.), and under Germany’s Excellence Strategy – EXC 2067/1–390729940. We are grateful for support by the DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany, project IDs 81X2300194, 81X4300123. We thank for funding by the Clinic for Cardiology and Pneumology at the University Medical Center, Goettingen University and support by the Central Service Unit for Cell Sorting at the University Medical Center, Goettingen University. M. H. gratefully acknowledges funding by the Carl Zeiss Foundation within the program “CZS Stiftungsprofessuren”.

  1. Research ethics: All protocols for studies with human iPSCs were approved by the Goettingen University Ethical Board (IDs 15/2/20 and 20/9/16).

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission. Ruheen Wali, data analysis and visualization, manuscript writing; Hang Xu, performed experiments, data analysis, manuscript writing; Cleophas Cheruiyot, performed experiments; Nosheen Saleem, performed experiments; Andreas Janshoff, provided essential infrastructure and advise; Michael Habeck, provided essential methods and advise; Antje Ebert, project management, supervision, manuscript writing.

  3. Competing interests: The authors declare no conflict of interest.

  4. Research funding: Deutsche Forschungsgemeinschaft (German Research Foundation), Sonderforschungsbereich 1002, project A12 (A.E.), Under Germany’s Excellence Strategy – EXC 2067/1–390729940 (A.E., A.J.), DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany, project IDs 81X2300194, 81X4300123 (A.E.), Clinic for Cardiology and Pneumology at the University Medical Center, Goettingen University (A.E.), Carl Zeiss Foundation within the program “CZS Stiftungsprofessuren” (M.H.).

  5. Data availability: The raw data can be obtained on request from the corresponding author upon reasonable request.

References

Al’Aref, S.J., Anchouche, K., Singh, G., Slomka, P.J., Kolli, K.K., Kumar, A., Pandey, M., Maliakal, G., Van Rosendael, A.R., Beecy, A.N., et al.. (2019). Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging. Eur. Heart J. 40: 1975–1986, https://doi.org/10.1093/eurheartj/ehy404.Search in Google Scholar PubMed

Burnham, M.P., Harvey, R., Sargeant, R., Fertig, N., and Haddrick, M. (2021). A scalable approach reveals functional responses of iPSC cardiomyocyte 3D spheroids. SLAS Discov. 26: 352–363, https://doi.org/10.1177/2472555220975332.Search in Google Scholar PubMed

Carvajal-Vergara, X., Sevilla, A., D’souza, S.L., Ang, Y.S., Schaniel, C., Lee, D.F., Yang, L., Kaplan, A.D., Adler, E.D., Rozov, R., et al.. (2010). Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nature 465: 808–812, https://doi.org/10.1038/nature09005.Search in Google Scholar PubMed PubMed Central

Chen, G., Gulbranson, D.R., Hou, Z., Bolin, J.M., Ruotti, V., Probasco, M.D., Smuga-Otto, K., Howden, S.E., Diol, N.R., Propson, N.E., et al.. (2011). Chemically defined conditions for human iPSC derivation and culture. Nat. Methods 8: 424–429, https://doi.org/10.1038/nmeth.1593.Search in Google Scholar PubMed PubMed Central

Chityala, R. and Pudipeddi, S. (2020). Image processing and acquisition using Python. CRC Press, New York.10.1201/9780429243370Search in Google Scholar

Dai, Y., Amenov, A., Ignatyeva, N., Koschinski, A., Xu, H., Soong, P.L., Tiburcy, M., Linke, W.A., Zaccolo, M., Hasenfuss, G., et al.. (2020). Troponin destabilization impairs sarcomere-cytoskeleton interactions in iPSC-derived cardiomyocytes from dilated cardiomyopathy patients. Sci. Rep. 10: 209, https://doi.org/10.1038/s41598-019-56597-3.Search in Google Scholar PubMed PubMed Central

Dai, Y., Ignatyeva, N., Xu, H., Wali, R., Toischer, K., Brandenburg, S., Lenz, C., Pronto, J., Fakuade, F.E., Sossalla, S., et al.. (2023). An alternative mechanism of subcellular iron uptake deficiency in cardiomyocytes. Circ. Res. 133: e19–e46, https://doi.org/10.1161/circresaha.122.321157.Search in Google Scholar PubMed

Desroches, B.R., Zhang, P., Choi, B.R., King, M.E., Maldonado, A.E., Li, W., Rago, A., Liu, G., Nath, N., Hartmann, K.M., et al.. (2012). Functional scaffold-free 3-D cardiac microtissues: a novel model for the investigation of heart cells. Am. J. Physiol. Heart Circ. Physiol. 302: H2031–H2042, https://doi.org/10.1152/ajpheart.00743.2011.Search in Google Scholar PubMed PubMed Central

Ebert, A.D., Diecke, S., Chen, I.Y., and Wu, J.C. (2015). Reprogramming and transdifferentiation for cardiovascular development and regenerative medicine: where do we stand? EMBO Mol. Med. 7: 1090–1103, https://doi.org/10.15252/emmm.201504395.Search in Google Scholar PubMed PubMed Central

Ebert, A., Joshi, A.U., Andorf, S., Dai, Y., Sampathkumar, S., Chen, H., Li, Y., Garg, P., Toischer, K., Hasenfuss, G., et al.. (2019). Proteasome-dependent regulation of distinct metabolic states during long-term culture of human iPSC-derived cardiomyocytes. Circ. Res. 125: 90–103, https://doi.org/10.1161/circresaha.118.313973.Search in Google Scholar

Ebert, A.D., Kodo, K., Liang, P., Wu, H., Huber, B.C., Riegler, J., Churko, J., Lee, J., De Almeida, P., Lan, F., et al.. (2014). Characterization of the molecular mechanisms underlying increased ischemic damage in the aldehyde dehydrogenase 2 genetic polymorphism using a human induced pluripotent stem cell model system. Sci. Transl. Med. 6: 255ra130, https://doi.org/10.1126/scitranslmed.3009027.Search in Google Scholar PubMed PubMed Central

Eng, G., Lee, B.W., Protas, L., Gagliardi, M., Brown, K., Kass, R.S., Keller, G., Robinson, R.B., and Vunjak-Novakovic, G. (2016). Autonomous beating rate adaptation in human stem cell-derived cardiomyocytes. Nat. Commun. 7: 10312, https://doi.org/10.1038/ncomms10312.Search in Google Scholar PubMed PubMed Central

Eschenhagen, T. and Carrier, L. (2019). Cardiomyopathy phenotypes in human-induced pluripotent stem cell-derived cardiomyocytes-a systematic review. Pflugers Arch. 471: 755–768, https://doi.org/10.1007/s00424-018-2214-0.Search in Google Scholar PubMed PubMed Central

Eschenhagen, T., Didie, M., Heubach, J., Ravens, U., and Zimmermann, W.H. (2002). Cardiac tissue engineering. Transpl. Immunol. 9: 315–321, https://doi.org/10.1016/s0966-3274(02)00011-4.Search in Google Scholar PubMed

Gao, J., Li, P., Chen, Z., and Zhang, J. (2020). A survey on deep learning for multimodal data fusion. Neural Comput. 32: 829–864, https://doi.org/10.1162/neco_a_01273.Search in Google Scholar PubMed

Greener, J.G., Kandathil, S.M., Moffat, L., and Jones, D.T. (2022). A guide to machine learning for biologists. Nat. Rev. Mol. Cell Biol. 23: 40–55, https://doi.org/10.1038/s41580-021-00407-0.Search in Google Scholar PubMed

Hinata, Y., Kagawa, Y., Kubo, H., Kato, E., Baba, A., Sasaki, D., Matsuura, K., Sawada, K., and Shimizu, T. (2022). Importance of beating rate control for the analysis of drug effects on contractility in human induced pluripotent stem cell-derived cardiomyocytes. J. Pharmacol. Toxicol. Methods 118: 107228, https://doi.org/10.1016/j.vascn.2022.107228.Search in Google Scholar PubMed

Hinson, J.T., Chopra, A., Nafissi, N., Polacheck, W.J., Benson, C.C., Swist, S., Gorham, J., Yang, L., Schafer, S., Sheng, C.C., et al.. (2015). Titin mutations in iPS cells define sarcomere insufficiency as a cause of dilated cardiomyopathy. Science 349: 982–986, https://doi.org/10.1126/science.aaa5458.Search in Google Scholar PubMed PubMed Central

Hirsch, M., Schölkopf, B., and Habeck, M. (2011). A blind deconvolution approach for improving the resolution of cryo-EM density maps. J. Comput. Biol. 18: 335–346, https://doi.org/10.1089/cmb.2010.0264.Search in Google Scholar PubMed

Hirt, M.N., Boeddinghaus, J., Mitchell, A., Schaaf, S., Bornchen, C., Muller, C., Schulz, H., Hubner, N., Stenzig, J., Stoehr, A., et al.. (2014a). Functional improvement and maturation of rat and human engineered heart tissue by chronic electrical stimulation. J. Mol. Cell. Cardiol. 74: 151–161, https://doi.org/10.1016/j.yjmcc.2014.05.009.Search in Google Scholar PubMed

Hirt, M.N., Hansen, A., and Eschenhagen, T. (2014b). Cardiac tissue engineering: state of the art. Circ. Res. 114: 354–367, https://doi.org/10.1161/circresaha.114.300522.Search in Google Scholar

Itzhaki, I., Maizels, L., Huber, I., Zwi-Dantsis, L., Caspi, O., Winterstern, A., Feldman, O., Gepstein, A., Arbel, G., Hammerman, H., et al.. (2011). Modelling the long QT syndrome with induced pluripotent stem cells. Nature 471: 225–229, https://doi.org/10.1038/nature09747.Search in Google Scholar PubMed

Joutsijoki, H., Penttinen, K., Juhola, M., and Aalto-Setala, K. (2019). Separation of HCM and LQT cardiac diseases with machine learning of Ca2+ transient profiles. Methods Inf. Med. 58: 167–178, https://doi.org/10.1055/s-0040-1701484.Search in Google Scholar PubMed

Juhola, M., Penttinen, K., Joutsijoki, H., and Aalto-Setala, K. (2021). Analysis of drug effects on iPSC cardiomyocytes with machine learning. Ann. Biomed. Eng. 49: 129–138, https://doi.org/10.1007/s10439-020-02521-0.Search in Google Scholar PubMed PubMed Central

Lakdawala, N.K., Dellefave, L., Redwood, C.S., Sparks, E., Cirino, A.L., Depalma, S., Colan, S.D., Funke, B., Zimmerman, R.S., Robinson, P., et al.. (2010). Familial dilated cardiomyopathy caused by an alpha-tropomyosin mutation: the distinctive natural history of sarcomeric dilated cardiomyopathy. J. Am. Coll. Cardiol. 55: 320–329, https://doi.org/10.1016/j.jacc.2009.11.017.Search in Google Scholar PubMed PubMed Central

Lan, F., Lee, A.S., Liang, P., Sanchez-Freire, V., Nguyen, P.K., Wang, L., Han, L., Yen, M., Wang, Y., Sun, N., et al.. (2013). Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient-specific induced pluripotent stem cells. Cell Stem Cell 12: 101–113, https://doi.org/10.1016/j.stem.2012.10.010.Search in Google Scholar PubMed PubMed Central

Levin, A., Weiss, Y., Durand, F., and Freeman, W.T. (2011). Understanding blind deconvolution algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 33: 2354–2367, https://doi.org/10.1109/tpami.2011.148.Search in Google Scholar PubMed

Li, D., Czernuszewicz, G.Z., Gonzalez, O., Tapscott, T., Karibe, A., Durand, J.B., Brugada, R., Hill, R., Gregoritch, J.M., Anderson, J.L., et al.. (2001a). Novel cardiac troponin T mutation as a cause of familial dilated cardiomyopathy. Circulation 104: 2188–2193, https://doi.org/10.1161/hc4301.098285.Search in Google Scholar PubMed

Li, D., Czernuszewicz, G.Z., Gonzalez, O., Tapscott, T., Karibe, A., Durand, J.B., Brugada, R., Hill, R., Gregoritch, J.M., Anderson, J.L., et al.. (2001b). Novel cardiac troponin T mutation as a cause of familial dilated cardiomyopathy. Circulation 104: 2188–2193, https://doi.org/10.1161/hc4301.098285.Search in Google Scholar

Lian, X., Hsiao, C., Wilson, G., Zhu, K., Hazeltine, L.B., Azarin, S.M., Raval, K.K., Zhang, J., Kamp, T.J., and Palecek, S.P. (2012). Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc. Natl. Acad. Sci. U. S. A. 109: E1848–E1857, https://doi.org/10.1073/pnas.1200250109.Search in Google Scholar PubMed PubMed Central

Lian, X., Zhang, J., Azarin, S.M., Zhu, K., Hazeltine, L.B., Bao, X., Hsiao, C., Kamp, T.J., and Palecek, S.P. (2013). Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions. Nat. Protoc. 8: 162–175, https://doi.org/10.1038/nprot.2012.150.Search in Google Scholar PubMed PubMed Central

Liang, P., Lan, F., Lee, A.S., Gong, T., Sanchez-Freire, V., Wang, Y., Diecke, S., Sallam, K., Knowles, J.W., Wang, P.J., et al.. (2013). Drug screening using a library of human induced pluripotent stem cell-derived cardiomyocytes reveals disease-specific patterns of cardiotoxicity. Circulation 127: 1677–1691, https://doi.org/10.1161/circulationaha.113.001883.Search in Google Scholar

Lieberman, Y., Rokach, L., and Shay, T. (2018). Correction: CaSTLe – classification of single cells by transfer learning: harnessing the power of publicly available single cell RNA sequencing experiments to annotate new experiments. PLoS One 13: e0208349, https://doi.org/10.1371/journal.pone.0208349.Search in Google Scholar PubMed PubMed Central

Liu, J., Sun, N., Bruce, M.A., Wu, J.C., and Butte, M.J. (2012). Atomic force mechanobiology of pluripotent stem cell-derived cardiomyocytes. PLoS One 7: e37559, https://doi.org/10.1371/journal.pone.0037559.Search in Google Scholar PubMed PubMed Central

Lu, Q.W., Morimoto, S., Harada, K., Du, C.K., Takahashi-Yanaga, F., Miwa, Y., Sasaguri, T., and Ohtsuki, I. (2003). Cardiac troponin T mutation R141W found in dilated cardiomyopathy stabilizes the troponin T-tropomyosin interaction and causes a Ca2+ desensitization. J. Mol. Cell. Cardiol. 35: 1421–1427, https://doi.org/10.1016/j.yjmcc.2003.09.003.Search in Google Scholar PubMed

Malkovskiy, A.V., Ignatyeva, N., Dai, Y., Hasenfuss, G., Rajadas, J., and Ebert, A. (2020a). Integrated Ca2+ flux and AFM force analysis in human iPSC-derived cardiomyocytes. Biol. Chem. 402: 113–121, https://doi.org/10.1515/hsz-2020-0212.Search in Google Scholar PubMed

Malkovskiy, A.V., Ignatyeva, N., Dai, Y., Hasenfuss, G., Rajadas, J., and Ebert, A. (2020b). Integrated Ca(2+) flux and AFM force analysis in human iPSC-derived cardiomyocytes. Biol. Chem. 402: 113–121, https://doi.org/10.1515/hsz-2020-0212.Search in Google Scholar

Mannhardt, I., Breckwoldt, K., Letuffe-Breniere, D., Schaaf, S., Schulz, H., Neuber, C., Benzin, A., Werner, T., Eder, A., Schulze, T., et al.. (2016). Human engineered heart tissue: analysis of contractile force. Stem Cell Rep. 7: 29–42, https://doi.org/10.1016/j.stemcr.2016.04.011.Search in Google Scholar PubMed PubMed Central

Matsa, E., Burridge, P.W., Yu, K.H., Ahrens, J.H., Termglinchan, V., Wu, H., Liu, C., Shukla, P., Sayed, N., Churko, J.M., et al.. (2016). Transcriptome profiling of patient-specific human iPSC-cardiomyocytes predicts individual drug safety and efficacy responses in vitro. Cell Stem Cell 19: 311–325, https://doi.org/10.1016/j.stem.2016.07.006.Search in Google Scholar PubMed PubMed Central

Mcnally, E.M. and Mestroni, L. (2017). Dilated cardiomyopathy: genetic determinants and mechanisms. Circ. Res. 121: 731–748, https://doi.org/10.1161/circresaha.116.309396.Search in Google Scholar PubMed PubMed Central

Mohammed, M., Khan, M.B., and Bashier, E.B.M. (2016). Machine learning: algorithms and applications. CRC Press, Boca Raton.10.1201/9781315371658Search in Google Scholar

Moretti, A., Bellin, M., Welling, A., Jung, C.B., Lam, J.T., Bott-Flugel, L., Dorn, T., Goedel, A., Hohnke, C., Hofmann, F., et al.. (2010). Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N. Engl. J. Med. 363: 1397–1409, https://doi.org/10.1056/nejmoa0908679.Search in Google Scholar PubMed

Ogunleye, A. and Wang, Q.G. (2020). XGBoost model for chronic kidney disease diagnosis. IEEE/ACM Trans. Comput. Biol. Bioinf. 17: 2131–2140, https://doi.org/10.1109/tcbb.2019.2911071.Search in Google Scholar PubMed

Peng, J., Peng, S., Jiang, A., Wei, J., Li, C., and Tan, J. (2010). Asymmetric least squares for multiple spectra baseline correction. Anal. Chim. Acta 683: 63–68, https://doi.org/10.1016/j.aca.2010.08.033.Search in Google Scholar PubMed

Poh, K.K., Ton-Nu, T.T., Neilan, T.G., Tournoux, F.B., Picard, M.H., and Wood, M.J. (2008). Myocardial adaptation and efficiency in response to intensive physical training in elite speedskaters. Int. J. Cardiol. 126: 346–351, https://doi.org/10.1016/j.ijcard.2007.04.051.Search in Google Scholar PubMed

Ramratnam, M., Salama, G., Sharma, R.K., Wang, D.W., Smith, S.H., Banerjee, S.K., Huang, X.N., Gifford, L.M., Pruce, M.L., Gabris, B.E., et al.. (2016). Gene-targeted mice with the human troponin T R141W mutation develop dilated cardiomyopathy with calcium desensitization. PLoS One 11: e0167681, https://doi.org/10.1371/journal.pone.0167681.Search in Google Scholar PubMed PubMed Central

Safavipour, M.H., Doostari, M.A., and Sadjedi, H. (2022). A hybrid approach to multimodal biometric recognition based on feature-level fusion of face, two irises, and both thumbprints. J. Med. Signals Sensor. 12: 177–191, https://doi.org/10.4103/jmss.jmss_103_21.Search in Google Scholar PubMed PubMed Central

Shu, Y.J., He, J.F., Pei, R.J., He, P., Huang, Z.H., Chen, S.M., Ou, Z.Q., Deng, J.L., Zeng, P.Y., Zhou, J., et al.. (2021). Immunogenicity and safety of a recombinant fusion protein vaccine (V-01) against coronavirus disease 2019 in healthy adults: a randomized, double-blind, placebo-controlled, phase II trial. Chin. Med. J. (Engl.) 134: 1967–1976, https://doi.org/10.1097/cm9.0000000000001702.Search in Google Scholar PubMed PubMed Central

Sun, R., Liu, M., Lu, L., Zheng, Y., and Zhang, P. (2015). Congenital heart disease: causes, diagnosis, symptoms, and treatments. Cell Biochem. Biophys. 72: 857–860, https://doi.org/10.1007/s12013-015-0551-6.Search in Google Scholar PubMed

Sun, N., Yazawa, M., Liu, J., Han, L., Sanchez-Freire, V., Abilez, O.J., Navarrete, E.G., Hu, S., Wang, L., Lee, A., et al.. (2012). Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy. Sci. Transl. Med. 4: 130ra47, https://doi.org/10.1126/scitranslmed.3003552.Search in Google Scholar PubMed PubMed Central

Teles, D., Kim, Y., Ronaldson-Bouchard, K., and Vunjak-Novakovic, G. (2021). Machine learning techniques to classify healthy and diseased cardiomyocytes by contractility profile. ACS Biomater. Sci. Eng. 7: 3043–3052, https://doi.org/10.1021/acsbiomaterials.1c00418.Search in Google Scholar PubMed PubMed Central

Tiburcy, M., Hudson, J.E., Balfanz, P., Schlick, S., Meyer, T., Chang Liao, M.L., Levent, E., Raad, F., Zeidler, S., Wingender, E., et al.. (2017). Defined engineered human myocardium with advanced maturation for applications in heart failure modeling and repair. Circulation 135: 1832–1847, https://doi.org/10.1161/circulationaha.116.024145.Search in Google Scholar

Tiburcy, M., Meyer, T., Liaw, N.Y., and Zimmermann, W.H. (2020). Generation of engineered human myocardium in a multi-well format. STAR Protoc 1: 100032, https://doi.org/10.1016/j.xpro.2020.100032.Search in Google Scholar PubMed PubMed Central

Tiburcy, M., Meyer, T., Satin, P.L., and Zimmermann, W.H. (2022). Defined engineered human myocardium for disease modeling, drug screening, and heart repair. Methods Mol. Biol. 2485: 213–225, https://doi.org/10.1007/978-1-0716-2261-2_14.Search in Google Scholar PubMed

Venkatraman, G., Gomes, A.V., Kerrick, W.G., and Potter, J.D. (2005). Characterization of troponin T dilated cardiomyopathy mutations in the fetal troponin isoform. J. Biol. Chem. 280: 17584–17592, https://doi.org/10.1074/jbc.m409337200.Search in Google Scholar PubMed

Way, G.P., Kost-Alimova, M., Shibue, T., Harrington, W.F., Gill, S., Piccioni, F., Becker, T., Shafqat-Abbasi, H., Hahn, W.C., Carpenter, A.E., et al.. (2021). Predicting cell health phenotypes using image-based morphology profiling. Mol. Biol. Cell 32: 995–1005, https://doi.org/10.1091/mbc.e20-12-0784.Search in Google Scholar PubMed PubMed Central

Wu, H., Lee, J., Vincent, L.G., Wang, Q., Gu, M., Lan, F., Churko, J.M., Sallam, K.I., Matsa, E., Sharma, A., et al.. (2015). Epigenetic regulation of phosphodiesterases 2A and 3A underlies compromised β-adrenergic signaling in an iPSC model of dilated cardiomyopathy. Cell Stem Cell 17: 89–100, https://doi.org/10.1016/j.stem.2015.04.020.Search in Google Scholar PubMed PubMed Central

Xu, H., Wali, R., Cheruiyot, C., Bodenschatz, J., Hasenfuss, G., Janshoff, A., Habeck, M., and Ebert, A. (2021). Non-negative blind deconvolution for signal processing in a CRISPR-edited iPSC-cardiomyocyte model of dilated cardiomyopathy. FEBS Lett. 595: 2544–2557, https://doi.org/10.1002/1873-3468.14189.Search in Google Scholar PubMed

Yazawa, M., Hsueh, B., Jia, X., Pasca, A.M., Bernstein, J.A., Hallmayer, J., and Dolmetsch, R.E. (2011). Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. Nature 471: 230–234, https://doi.org/10.1038/nature09855.Search in Google Scholar PubMed PubMed Central

Zhang, Y.D., Dong, Z., Wang, S.H., Yu, X., Yao, X., Zhou, Q., Hu, H., Li, M., Jiménez-Mesa, C., Ramirez, J., et al.. (2020). Advances in multimodal data fusion in neuroimaging: overview, challenges, and novel orientation. Inf. Fusion 64: 149–187, https://doi.org/10.1016/j.inffus.2020.07.006.Search in Google Scholar PubMed PubMed Central

Zimmermann, W.H. (2013). Biomechanical regulation of in vitro cardiogenesis for tissue-engineered heart repair. Stem Cell Res. Ther. 4: 137, https://doi.org/10.1186/scrt348.Search in Google Scholar PubMed PubMed Central

Zimmermann, W.H., Melnychenko, I., Wasmeier, G., Didie, M., Naito, H., Nixdorff, U., Hess, A., Budinsky, L., Brune, K., Michaelis, B., et al.. (2006). Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat. Med. 12: 452–458, https://doi.org/10.1038/nm1394.Search in Google Scholar PubMed


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/hsz-2024-0023).


Received: 2024-02-07
Accepted: 2024-03-27
Published Online: 2024-04-24
Published in Print: 2024-06-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hsz-2024-0023/html
Scroll to top button