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Abstract: RNA binding proteins (RBPs) have multiple and
essential roles in transcriptional and posttranscriptional
regulation of gene expression in all living organisms. Their
biochemical identification in the proteome of a given cell or
tissue requires significant protein amounts, which limits
studies in rare and highly specialized cells. As a conse-
quence, we know almost nothing about the role(s) of RBPs in
reproductive processes such as egg cell development,
fertilization and early embryogenesis in flowering plants. To
systematically identify the RBPome of egg cells in the model
plant Arabidopsis, we performed RNA interactome capture
(RIC) experiments using the egg cell-like RKD2-callus and
were able to identify 728 proteins associated with poly(A™¥)-
RNA. Transcripts for 97 % of identified proteins could be
verified in the egg cell transcriptome. 46 % of identified
proteins can be associated with the RNA life cycle. Proteins
involved in mRNA binding, RNA processing and metabolism
are highly enriched. Compared with the few available
RBPome datasets of vegetative plant tissues, we identified
475 egg cell-enriched RBPs, which will now serve as a
resource to study RBP function(s) during egg cell develop-
ment, fertilization and early embryogenesis. First
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candidates were already identified showing an egg cell-
specific expression pattern in ovules.
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1 Introduction

The generation of a functional organism from a single cell
requires the spatially coordinated formation of numerous cell
identities involving transcriptional and post-transcriptional
regulation of gene expression. During embryo development,
the amount and activity of gene products is highly regulated
e.g. during transcription by transcription factors and DNA
accessibility, at the mRNA level by its processing, translation,
and degradation, and at the protein level by post-translational
modifications and degradation. Genetic studies have identified
many transcription regulators involved in egg cell formation
and embryogenesis in animals and plants. In the model plant
Arabidopsis thaliana (Arabidopsis), for example, MYB and AGL
together with RWP-RK domain-containing transcription factors
are involved in the specification of female gametophyte (em-
bryo sac) cells (Hater et al. 2020; Kasahara et al. 2005; K6szegi
et al. 2011; Punwani et al. 2007). Moreover, during mega-
gametogenesis, cellularization of the eight nuclei containing
coenocyte depends on the transcription factors MYB119 and
MYB64 (Rabiger and Drews 2013), while MYB98 is essential for
synergid and AGL61 together with AGL80 for central cell
specification (Bemer et al. 2008; Kasahara et al. 2005; Portereiko
et al. 2006; Steffen et al. 2008). All five plant-specific RWP-RK
domain-containing transcription factors (RKDs) are expressed
during ovule development and RKD1 as well as RKD2 are
involved in the specification of the egg cell (Erbasol Serbes et al.
2019; K6szegi et al. 2011; Tedeschi et al. 2017). During zygote
formation, WUSCHEL Related Homeobox (WOX) transcription
factors WOX2, WOX8 and WOX9 are involved in the estab-
lishment of the first embryo axes (Breuninger et al. 2008;
Haecker et al. 2004; Palovaara et al. 2016; Wu et al. 2007).

In other model organisms, like Drosophila, Xenopus or
mice, RNA-binding proteins (RBPs) were shown to act as key
regulators during oocyte formation and the first steps of
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embryogenesis (Jiang et al. 2023; Pushpa et al. 2017), but so
far little is known about the role of RBPs during egg cell
development, fertilization and early embryogenesis in
plants. The RBP ARGONAUTE 9 (AGO9) was shown to be
required to inhibit somatic cells surrounding the megaspore
mother cell (MMC) to acquire female germ cell fate (Olmedo-
Monfil et al. 2010; Petrella et al. 2021; Rodriguez-Leal et al.
2015), but its role in the egg cell remained unclear similar to
other egg cell expressed AGOs (Sprunck et al. 2019). A major
limitation of further (biochemical) studies is the access to
this cell type, which is deeply embedded in the tissue.

At the onset of embryogenesis, it was further shown in
plants like Arabidopsis and maize, that maternal-to-zygotic
transition (MZT) of gene expression pattern occurs shortly
after fertilization in zygotes (Chen et al. 2017; Dresselhaus
and Jurgens 2021; Kao and Nodine 2019; Nodine and Bartel
2012; Zhao et al. 2019), whereby maternal transcripts and
proteins are degraded and gradually replaced by products of
the zygotic genome, which are necessary for proper em-
bryonic development. In various species, several studies
indicated the involvement of RBPs during maternal tran-
script degradation as well as the activation and silencing of
zygotic transcripts during early embryo development (Cor-
ley et al. 2020; Deng et al. 2022; Zavortink et al. 2020). This
precise control of the available gene products is essential to
allow normal progression during embryogenesis in non-
plant model organisms, but so far it is not known for plant
embryogenesis.

Cell type- and tissue-specific identification of RBPs is
possible due to the establishment of RNA interactome capture
(RIC), which was first applied to mammalian cell cultures (Baltz
et al. 2012; Castello et al. 2012) and represents a powerful tool to
identify all RBPs (RBPome) in a given cell or tissue. Since then
RIC was applied to many model organisms using, for example,
cell cultures (Dvir et al. 2021), but also to analyze the RBPome
during maternal to zygote transition in Zebrafish (Despic et al.
2017) or in Drosophila (Sysoev et al. 2016). These studies pro-
vided valuable insights into the role of RBP-mediated processes
in that developmental stage. In response to the request for a
comprehensive RBPs database in plant research, RIC has also
been performed in different tissues of Arabidopsis such as
leaves (Bach-Pages et al. 2020; Zhang et al. 2016), seedlings
(Reichel et al. 2016), root cell cultures (Marondedze et al. 2016)
or seeds (Sajeev et al. 2022), but not from reproductive tissues or
specialized cell types so far.

In the present study, we tried to overcome the ahove-
described limitations to perform RIC on specialized and
deeply embedded reproductive cell types by first generating
and propagating callus material with egg cell identity as an
example. The so-called RKD2-callus was obtained after over-
expressing the egg cell-specific RKD2 transcription factor in
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sporophytic cells (Sprunck et al. 2019). The transcriptome of
RKD2-callus was previously reported to possess egg cell-like
and early embryo identity (K8szegi et al. 2011; Sprunck et al.
2019). mRNA interactome capture was then performed in
Arabidopsis using the RKD2-callus representing a biochem-
ical accessible resource for egg cell-like tissue. The identified
RBPome showed that proteins involved in RNA processes
were highly enriched. With 728 identified potential RBPs,
this study now provides a valuable resource for future RBP
research in egg cell development, zygote formation and
early embryogenesis in plants and will serve as a starting
point for identifying their possible regulatory role in these
processes. Moreover, in addition to RBPs with known
RNA-binding domains, this study identified novel candidate
RBPs, which can now be tested for direct and indirect
binding to RNA and thus serve as a source to identify novel
RBPs.

2 Results and discussion

2.1 RNA interactome capture in the egg cell-
like RKD2-callus

As described above, ectopic expression of the plant-specific
RWP-RK domain-containing (RKD) transcription factor RKD2 is
sufficient to induce callus formation in seedlings with an egg
cell-like transcriptome (Készegi et al. 2011). In wild-type plants
RKD?2 is expressed in the egg cell of the female gametophyte
(Figure 1A) and the ectopic expression of an RKD2-GFP fusion
protein under the control of the cauliflower mosaic virus
(CaMV) 35S promoter (35Sp:RKD2-GFP) leads to callus forma-
tion in sporophytic tissues of transgenic seedlings (Kszegi et al.
2011; Sprunck et al. 2019). We cultivated and propagated the
RKD2-callus (Figure 1B) and verified RKD2-GFP expression in
the proliferating cell masses by confocal microscope to control
cell identity. As described before, RKD2-GFP was stably
expressed in the callus tissue even after years of cultivation
(Sprunck et al. 2019) and the fusion protein localizes to the
nucleus (Figure 1C). The callus has a white color indicating
chloroplast de-differentiation due to egg cell-like cell identity.
To systematically and comprehensively identify RNA binding
proteins (RBPs) in Arabidopsis egg cells, we performed mRNA
interactome capture (RIC) experiments using this RKD2-callus
(Figure 1D). About 9500 proteins could be detected in the input
data, with 95 % overlap with a previous proteomic analysis of
the RKD2 callus (Mergner et al. 2020). The callus was irradiated
by ultraviolet (UV) light leading to the formation of covalent
bonds between RNAs and proteins. Cell lysis took place under
denaturing conditions, so that only covalent bound proteins
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remained attached to the RNA and protein complexes were
dissolved. mRNAs containing poly(A) stretches were isolated
using oligonucleotide-deoxythymidine (OligodT) conjugated
resin under stringent wash conditions. Since this takes place
under denaturing conditions, only proteins that were in direct
contact with the mRNA are purified and not entire protein
complexes. After the mRNA was eluted from beads, it was
degraded using RNase and isolated proteins were identified by
quantitative liquid chromatography mass spectrometry
(LC-MS). Therefore, all identified proteins should represent
RBPs (Baltz et al. 2012; Castello et al. 2013; Kwon et al. 2013).
Separation of obtained proteins from RIC experiments in an
SDS-PAGE showed that UV cross-linking (CL) greatly enhanced
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protein isolation after poly(A)+ RNA capture (Figure 1E). The
protein pattern differed fundamentally from the non-cross-
linked (nCL) sample as well as from the input sample. To test
whether eluted proteins were enriched in RBPs, we performed
Western Blot experiments to detect the known weak RNA
binder Heat shock protein 70 (Hsp70) and found that it is pre-
sent in UV-irradiated samples and absent from the control
(Figure 1F). In contrast, common impurities such as histone H3
were not detected in the precipitates by Western Blot
(Figure 1F). By LC-MS we identify 889 proteins specifically
enriched in the CL samples (Figure 1G and Supplementary
Table S1). Furthermore, 728 of those 889 proteins were identi-
fied by more than one peptide in the LC-MS and represent the
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Figure 1: RNA interactome capture (RIC) of RBPs expressed in the egg cell-like callus. (A) Expression pattern of the egg cell-specific RKD2 transcription
factor in the ovule of Arabidopsis. (B) RKD2-callus induced by ubiquitously expressing RKD2 in seedlings. (C) Protein localization of RKD2 in the nuclei of
RKD2-callus cells. (D) Schematic representation of RKD2 callus mRNA interactome capture (RIC). (E) Trichloroethanol (TCE) stained SDS-PAGE gel showing
mRNA-protein complexes that were isolated from non-crosslinked (nCL) and cross-linked (CL) RKD2-callus samples. The RNase enzymes used for protein
elution are loaded on the right side as control. (F) Western blot to analyze cytosolic heat shock protein HSP70 and histone H3 enrichment in RIC
experiments using inputs (whole cell lysates) and eluates of nCL and CL samples, respectively. (G) Boxplots comparing protein abundance in nCL and CL
RKD2-callus samples. Scale bars are 20 pm.
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Egg Cell-Like RKD2-callus RNA Interactome (ECL-RI; Supple-
mentary Table S2).

2.2 475 candidate RBPs are enriched in the
egg cell-like callus

We next addressed the question whether the 728 RBPs iso-
lated from the RKD2-callus are also expressed in Arabidopsis
egg cells. Analyzing published Arabidopsis egg cell and
zygote transcriptome data (Zhao et al. 2019), transcripts of
703 RBPs (97 %) could be detected in the egg cell and 722 RBP
transcripts (99 %) could also be detected at the zygote stage
(Figure 2A). This indicates that the ECL-RI likely represents
an egg cell/zygote RBPome. To identify stage-specific RBPs,
we performed a cluster analysis based on transcriptomic
data of Arabidopsis egg cells, zygotes (Zhao et al. 2019) and
early embryos (Zhou et al. 2020). 12 different expression
patterns of the 728 RBP genes were detected in the datasets
(Supplemental Figure S1, Supplementary Table S3). 104 egg
cell-enriched RBP transcripts (genes down-regulated after
fertilization; Clusters 10 and 11) encode especially proteins
involved in metabolic processes, while 109 transcripts
(Clusters 2 and 3) that are up-regulated in early zygotes (ZY,
14 h after pollination (HAP)) encode RBPs involved in tran-
scription (Figure 2C).131 RBP genes up-regulated in late zy-
gotes (ZY24HAP) that are represented by Cluster 1, 4 and 12
encode proteins involved in translation. At embryo stages,
transcripts that are up-regulated at the one cell embryo (1C)
stage (Cluster 8) and in globular embryos (32C; Clusters 6, 7
and 9), respectively, encode RBPs involved in various RNA
processes including catabolic, metabolic and protein
biosynthesis processes.

In the past years, several studies analyzed the mRNA
interactome of Arabidopsis tissue creating individual,
partially overlapping RBPomes. For example, 299 RBPs were
identified in etiolated seedlings, 717 RBPs in leaves, 325 RBPs
in protoplasts, and 434 RBPs in seeds (Figure 2B, Bach-Pages
et al. 2017; Marondedze et al. 2016; Reichel et al. 2016; Sajeev
et al. 2022; Zhang et al. 2016). Comparing the ECL-RI with
those five published data sets showed that only six common
RBPs are present in all seven data sets analyzed. These
represent ribosomal proteins (RPs) (Figure 2B, Supplemen-
tary Table S4). It was expected that a big portion of RBPs
should overlap between the different tissues, as many RBPs
are expected to be involved in general cellular processes
including, for example, translation-associated proteins like
RPs that represent a major group of the identified proteins
(22 % in ECL-RI). However, as RPs show a high diversity in
plants and each RP is encoded by three to eight paralogs in
Arabidopsis (Barakat et al. 2001; Browning and Bailey-Serres
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2015; Martinez-Seidel et al. 2020), we likely identified many
egg cell-specific or -enriched gene family members. How-
ever, in most cases more than 100 tissue-enriched RBPs are
present (Figure 2B). For the RKD2-callus we were able to
identify 475 unique RBPs that have not been isolated previ-
ously (Figure 2D; Supplementary Table S4). This could have
different reasons: on the one hand they could (i) represent
genes that are only expressed particularly strongly in the egg
cells and/or zygotes or (ii) proteins that show their mRNA
binding capacity only in this cellular context. We were
therefore wondering whether transcripts encoding the
ECL-RI are also present in other tissues analyzed by RIC.
Comparing complex tissues like 4-weeks rosette leaf tran-
scriptome (Wang et al. 2022) and root transcriptome data
(Ware et al. 2023) with the ECL-R, transcripts of 720 and 722
RBPs, are also present in leaf and root tissue, respectively. Of
course, this analysis does not take protein concentrations
into account which strongly influence its appearance in MS
studies, and it should be considered that more than 70 % of
all genes are expressed in such complex tissues.

2.3 High abundance of annotated RBPs in
the mRNA-bound proteome

291 of the identified 728 proteins can be associated with the
mRNA live cycle and 158 with translation based on their GO
term annotation (Figure 3A; Supplementary Table S5). The
ribosomal macro-protein complex is crosslinked during
translation to the mRNA as well as to the internal rRNA,
which stabilizes the entire complex leading to its isolation
during RIC even though not every single protein contains an
RNA binding motif itself. Those two groups, which can be
associated with the RNA live cycle and its translation show a
big overlap in their GO annotations and form a group of 332
proteins. 396 proteins were so far not associated with the
RNA live cycle and represent egg cell-specific or enriched
new RBPs. Analyzing the Gene Ontology (GO) terms based on
their molecular function (GOMF) describing the protein ac-
tivities, it becomes obvious that the majority of isolated RBP,
which have a GO term description, can bind to RNA, act on
RNA and/or are part of the translation machinery, respec-
tively (Figure 3B). Studying the biological process GO terms
(GOBP), the main enrichment can be seen in the GO terms
gene expression and RNA processing (Figure 3C). Moreover,
of the 10 most enriched GOMF Clusters 9 of 10 are
RNA-related (Figure 3D) indicating the high enrichment of
proteins involved in RNA biology. The close relationship
between the most enriched terms is visible in the clustering
tree (Figure 3E) that shows again processes associated with
the life cycle of mRNAs.
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Figure 2: 475 proteins are enriched in the RBPome of the egg cell-like RKD2 callus. (A) Venn diagrams showing the overlap between the identified RBPome
(eqg cell-like RKD2-callus RNA interactome; named ECL-RI) and published transcriptomes of egg cell, zygote (14 h after pollination (HAP)), leaf and roots. 97-99 %
of the ECL-RI is also present in the transcriptomes of the four cell types and tissues, respectively. (B) Venn diagrams showing the overlap between ECL-RI and
published egg cell-enriched transcripts (which are down-regulated after fertilization), zygote-enriched transcripts which are upregulated 14 and 24 h after
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2.4 InterPro domains in identified RNA
binding proteins of egg cell-like cells

RBPs have different domains to bind to RNA. These RNA
binding domains (RBDs) are usually very small (<100 amino
acids) and only a few amino acids take part in the interaction
with RNA at all. To generate specificity, several (same or
different) RBDs within a protein often act together and some
RBDs are also capable to mediate protein-protein or protein-
DNA interactions in parallel to their RNA binding activity
(Cienikovd et al. 2015; Corley et al. 2020; Yang 2002). Analysis of
the ECL-RI regarding their InterPro classification (Paysan-
Lafosse et al. 2023) shows strong enrichment of known RBDs. In
total, 1220 different InterPro annotations could be identified in
the ECL-RI (Supplementary Table S7). However, only 77 do-
mains are present in at least three proteins, which we further
analyzed. For a better overview we sub-grouped the identified
domains/repeats into known RBDs (kRBDs), which were
described in their InterPro description as RNA binding
(Figure 4A), DNA or protein binding domains (DPDs), which are
described to permit binding to other molecules such as proteins
or DNA (Figure 4B) and into associated RBD (aRBD) which
mostly represents enzymatic domains (Figure 4C). 202 proteins
contain a kRBD, where one protein can have multiple RBDs of
the same or different kind. Within the kRBD group, the RNA
Recognition Motif (RRM) is the most abundant RBD in general
and also in our ECL-RI dataset. Within the kRBD term helicase
group, all proteins of the superfamilies 1 and 2 contain a heli-
case ATP-binding domain, a C-terminal DEAD/DEAH box heli-
case domain, Q motif and/or a helicase-associated domain. In
total 29 RBPs could be identified that contain all or several of
those domains and are therefore classified as helicase.
Furthermore, different Zinc Finger (Znf) domains, penta-
tricopeptide repeats (PPRs), K homology (KH), WD40 repeats,
Pumilio (PUM), YT521-B homology (YTH), ribosomal domains
L18e/L15P, S1 and S10, La and the Mei2-like Rrm domains were
identified and categorized as kRBD. Among the 58 identified
Znf-containing proteins, the CCCH, CCHC, RING, PHD and
RanBP2 types were the most abundant. The identification of
YTH containing RBPs, a domain that in mammals and plants
was shown to bind to N6-methyladenosine (Arribas-Herndndez
et al. 2021; Li et al. 2014; Wang et al. 2014) indicates a potential
function of N6-methyladenosine in egg cell mRNAs that likely
affects the RNA life cycle including mRNA stability, splicing,
and/or translation, and are therefore involved in post-
transcriptional regulation.
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An interesting aspect of the ECL-RI is the absence of
PIWI/PAZ-domain containing RBDs in our RIC data. The PAZ
(Piwi Argonaut Zwille)-domain is present in proteins that
cleave RNA: DICER and Argonaut (AGO) proteins. Although
AGO1, AGO2, AGO4, AGO5 and AGO9 were previously
detected in RKD2-callus protein extracts by (Sprunck et al.
2019) and even though we could detect AGO1-7 and AGO9 in
our input samples with different intensities (Supplementary
Table S6), we could not identify any AGO protein in the
ECL-RI. In other RIC data, at least two AGO proteins/PIWI/
PAZ-domain containing RBPs could be identified (Bach-
Pages et al. 2020; Marondedze et al. 2016; Reichel et al. 2016;
Sajeev et al. 2022). AGO9, a protein involved in RNA-directed
DNA methylation, is reported to control female gamete for-
mation by restricting the specification of gametophyte pre-
cursors to a single subepidermal megaspore mother cell
(Olmedo-Monfil et al. 2010). It is further known that AGO1/2
and AGO4-9 are expressed in the egg cell (Jullien et al. 2022;
Sprunck et al. 2019), but so far, no phenotype for their
function in mature egg cells and during zygote formation is
described. The absence of AGO proteins in our ECL-RI sug-
gests that AGO/mRNA interactions are either short-lived in
the egg cell or occur at very low levels and are therefore
difficult to detect. Alternative, corresponding small RNAs
could be induced or AGOs could be activated after fertiliza-
tion to act on mRNAs, for example, during the transition
from maternal-to-zygotic phase.

In the group of DPD we found many domains which are
described to have a DNA-binding capacity, such as histones,
Ars-like, Sant/Myb, Homeobox, FoP and NABP. Furthermore,
we found many domains which are described as protein-
protein interaction motifs such as Dna], Tetratricopeptide
(TPR) repeat, LisH, Ankyrin and Armadillo repeats. It will
now be interesting to investigate if these domains also
participate in RNA binding in the egg cell.

In total 36 identified proteins contain diverse domains of
unknown functions (DUF). However, only DUF3447 and
DUF4005 are present in five and four, respectively, different
RBPs. DUF3447 (IPR020683) most likely contains divergent
Ankyrin repeats, which are classically known as protein
interacting domain, but that might also have the potential to
bind to RNA. Recently, the binding of DUF4005 to microtubules
was shown (Li et al. 2021). We also isolated tubulin and cate-
gorized it as aRBD, which can serve as platforms to form
RNA-rich liquid-liquid phase-separated compartments (Mau-
cuer et al. 2018). Most of the other aRBD represent enzymatic

pollination (HAP) (ZY14 and ZY24), respectively, and transcripts which are upregulated in the one and 32 cell stage embryos (1C and 32C), respectively. (C)
Expression heatmap and enrichment analysis of highly expressed ECL-RIC transcripts during zygote development and early embryogenesis according to their
GO terms. The color bars indicate relative expression levels. (D) Venn diagrams showing the overlap between ECL-RI and the six available Arabidopsis RNA
interactomes. The tissues and references are indicated. The number of identified RBPs in each study is shown on the right side.
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Figure 3: Enriched GO termsin the ECL-RIRBPome. (A) Proportions of the ECL-

and not linked to RNA biology, respectively. (B) GO analysis showing ten of the
terms, respectively. (D) and (E) display the hierarchical clustering of enriched
enrichment of RNA-associated functions and processes is visible in the ECL-RI

RIwith gene ontology (GO) annotation related to RNA life cycle, translation

most significantly enriched molecular function and (C) biological processes
molecular function and biological function terms, respectively. A clear

. Diagrams (B-E) were generated with the ShinyGO graphical enrichment

online tool (Ge et al. 2020) using LC-MS dataset of the nCL input sample as background (Supplementary Table S6).

domains. An example of this category is the glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) defining domain which is
capable to hind to many different RNAs, including tRNA,
numerous mRNAs, rRNA and TNF-a hammerhead ribozyme
(Balcerak et al. 2019; Ciesla 2006; Tristan et al. 2011; White and
Garcin 2016). We should note that we did not find RBPs con-
taining specific domains or domain arrangements that were
enriched in the egg cell-enriched gene expression clusters
described above. Finally, we would like to mention that in the
InterPro classification intrinsic disordered regions (IDRs) are

not listed. IDRs in proteins can play a central role in interacting
with RNA molecules. They allow proteins to adapt to different
RNA sequences and accommodate structural variations present
in RNA molecules (Tamarozzi and Giuliatti 2018; Uversky 2013).

2.5 Validation of egg cell expressed RBPs

To show that the ECL-RI represents a useful dataset to
identify RBP acting in Arabidopsis egg cells, four RBP genes
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Figure 4: Occurrence of RNA binding domains (RBDs) in the egg cell-like RBPo

me. (A-C) Number of proteins containing known (A), potential (B) and associated

(C) RNA binding domains, respectively. Only InterPro domains or repeats with at least three hits were considered. kRBD are those domains/repeats, classified as
RNA binding domain/repeat in its InterPro description site. DPDs are domains with a known function in protein or DNA binding. aRBD are mostly enzymatic
domains and those which could not be classified as kRBD or DPDs. Note that some proteins contain several RBDs of the individual classes.

containing RRM domains were selected and checked for
their expression pattern in mature ovules by generating
promoter-reporter lines. We choose RNA-binding glycine-
rich protein A7 (RBGA7; AT5G61030); polyadenylate-binding
protein 3 (PABN3; AT5G65260), Ras-GTPase—activating pro-
tein SH3-domain-binding protein 1 (G3BP1; AT5G48650) and
RNA-binding glycine-rich protein D1 (RBGD1, AT1G17640).
RBGA7 contains one RRM domain and a region of low
complexity and is part of the ECL-RI but was also identified
in leaf RIC experiments (Bach-Pages et al. 2017, 2020). The

reporter line shows an egg cell-specific expression pattern in
the ovule (Figure 5A). The same pattern was found for G3BP1
which has one RRM domain, one nuclear transport factor
motif and one region of low complexity (Figure 5B). Genes
encoding PABN3, which contains one RRM domain and a
region of low complexity and RBGD1 that contains two RRM
domains and four regions of low complexity are expressed in
all cells of the embryo sac including the egg cell (Figure 5C
and D). RBGD1 is also expressed in surrounding sporophytic
tissue and the GFP signal in the egg cell is relatively weak.
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PRBGA7::NLS-3xVenus
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PPABN3::2xGFP-N7

PRBGD1::2xGFP-N7

Figure 5: Promoter activity of four RBP genes identified in the ECL-RI. Promoter activity of four exemplary RBP genes in mature ovules of Arabidopsis.
The expression study was performed by expressing 3xVenus-NLS fusion proteins in the case of RBGA7 and G3BP1 as well as 2xGFP-N7-NLS fusion proteins
in the case of PABN3 and RBGD1 each under the control of their endogenous promoter sequences. Arrowheads mark the nucleus of the egg cell. (A-A") The
promoter of RBGA7 and (B-B’) G3BP1 is specifically active in egg cells. (C-C") The promoter of PABN3 is active in all cells of the embryo sac (egg cell, synergid
cells and central cell) with similar expression strength. (D-D’) The promoter activity of RBGD1 is detected in all cells of the embryo sac with different
strength of reporter signals. The lowest GFP signal is visible in the nucleus of the egg cell. A few cells of the surrounding sporophytic tissue also show weak
GFP signals. Note that GFP signals were generally very low for RBGD1, thus autofluorescence derived from plastids is also visible in the sporophytic tissue
due to longer exposure. GFP channel and the merge image with the brightfield are displayed. Scale bar represents 50 pm.

The expression pattern of these selected genes indicates that
the RBPs identified in the presented ECL-RI represent indeed
egg cell-expressed RBPs. In conclusion, we have demon-
strated that it is possible to identify the RBPome of a highly
specialized and deeply embedded cell type and provide a
useful resource for further studies to identify functions of so
far uncharacterized RBPs during egg cell development,
fertilization and early embryo development in plants.

3 Materials and methods
3.1 Plant materials and growth conditions

A. thaliana ecotype Columbia (Col-0) was grown on soil under long day
conditions (16 h light at 8500 lux, 21°C and 65 % humidity). The RKD2-
callus was propagated on selection medium as described (Sprunck et al.
2019). Transgenic lines carrying the BAR resistance gene were selected
by spraying 0.2mg/ml glufosinate/0.1%Tween20 on germinated
seedlings.

3.2 Plasmid construction and transgenic plant
generation

For promoter-reporter constructs, 2000 bp 5-upstream of respective start
codons were amplified using promoter-specific primers (Table S8). Frag-
ments were cloned into the SPL4pro:3xVENUS-N7 vector (Heisler et al. 2005)
using BamHI and Xbal restriction sites to generate Prpga7::NLS-3xVenus
and Pg3ppi:NLS-3xVenus constructs. For constructs Ppapns::2XGFP-N7 and
Prpop1i:2XGFP-N7, amplified promoter fragments were cloned via the
GreenGate cloning system into the vector pGGA000 creating pGGA-Ppaps
and pGGA-Pgpgp;- Promoter containing plasmids were assembled with
PGGB-meGFP-GAGAGS, pGGC-meGFP-GAGAGS, pGGD007 (linker:NLS (N7)),
PGGE_HSP18; pGGF009 (BastaR) into pBLAX000 (Lampropoulos et al. 2013)
Transgenic plants were generated by applying the floral dip method
(Clough and Bent 1998). Three independent transgenic lines were each
analyzed by confocal microscopy.

3.3 RNA interactome capture (RIC)

For UV crosslinking, RKD2-callus containing petri dishes were placed on
ice into the Stratalinker® UV Crosslinker 2400 for UV irradiation. The
callus was crosslinked three times with 150 mJ/cm? of UV light at 254 nm
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wavelength with 30 s pause between irradiations. For the non-crosslinked
(nCL) negative control, callus was placed on ice for the same time. After
irradiation, callus was immediately placed into liquid nitrogen. Both, CL
and nCL samples were processed in parallel. Frozen tissue was transferred
into liquid nitrogen prechilled grinding jar and grinded via the Tissue Lyser
II (Qiagene; 2 times 30 Hz for 1min). Between the two grinding steps the
grinding jar was chilled with liquid nitrogen. 2g of tissue powder was
mixed with 12 mL of lysis buffer (20 mM Tris-HCl (pH 7.5), 500 mM LiCl,
1mM EDTA, 0.5 % LiDS (w/v), 0.02 % IGEPAL, 2.5 % PVP40 (w/v), 1% B-ME
(v/v), 5mM DTT, protease inhibitor and RNase inhibitor). Lysates were
homogenized using the BANDELIN SONOPULS HD 2200 ultrasonic ho-
mogenizer (on ice for 2 x 30 s at 30 % intensity; 1 min break). Afterwards
lysates were clarified by centrifugation (4000 rpm, 10 min, 4 °C) and the
supernatant filtered through pluriStrainer® $/30 um (Cell Strainer). To
shear genomic DNA, lysates were passed three times through a narrow
needle (27 G). Lysates were cleared again by centrifugation (4000 rpm,
10 min, 4 °C) and mRNA captured from supernatants by activated Oligo(dT)
beads. We followed the ptRIC protocol for Oligo(dT) capture described in
(Bach-Pages et al. 2020) with small modifications. Oligo(dT) magnetic beads
(NEB, cat. no. S1419S) of 800 pl/sample were activated by washing three
times with lysis buffer. 5 ml lysate were added to Oligo(dT) and incubated
overnight rotating at 4 °C. After hybridization, beads were washed several
times. Each washing step was performed with 5ml of above buffers with
gentle rotation for 5min, followed by 10 min magnet capture. Oligo(dT)
beads were washed two times with ice-cold lysis buffer, one time with
harsh buffer (20 mM Tris-HCI (pH 7.5), 2 M LiCl, 1 mM EDTA, 1 % LiDS (w/v),
0.02% IGEPAL (v/v), 5mM DTT) at room temperature, two times with
buffer I (20 mM Tris-HCl (pH 7.5), 500 mM LiCL, 1 mM EDTA, 0.1 % LiDS (w/v),
0.02 % IGEPAL (v/v), 5mM DTT), one time with buffer II (20 mM Tris-HCl
(pH 7.5), 500 mM LiCl, 1mM EDTA, 0.02 % IGEPAL (v/v), 5mM DTT), one
time with buffer III (20 mM Tris-HCl (pH 7.5), 200 mM LiCl,1 mM EDTA,
0.02 % IGEPAL (v/v), 5mM DTT), and one time with buffer III without
detergent (20 mM Tris-HCI (pH 7.5), 200 mM LiCl, 1 mM EDTA, 5 mM DTT).
Finally, beads were incubated with 450 pl elution buffer (20 mM Tris-HCL
(pH 7.5), 1 mM EDTA) for 3 min at 55 °C to release poly(A)-tailed RNAs from
beads. This eluate containing mRNA-protein complexes were treated with
6 ul RNase A (Sigma-Aldrich, cat. no. R4642) and T1 (Sigma-Aldrich, cat. no.
R1003) mix (RNase A and RNase T1 mixed at equal proportions and diluted
1/100) for 1h at 37 °C followed by incubation for 15 min at 50 °C.

3.4 Protein concentration and Western blotting

For Western blot analyses, 900 pl eluate was concentrated to 45-60 pl by
centrifugation using an Amicon centrifugal filter (Merck) of 3kDa cut-
off. Inputs and eluates were mixed with 6x protein loading buffer and
incubated for 10 min at 90 °C. Proteins were separated in a 4-20 % Mini-
PROTEAN TGX Stain-Free precast gels (Bio-rad No. 456094) followed by
Western Blot. Primary antibodies used were Anti-HSP70 (AS08 347,
Agrisera) and Anti-Histone H3 (AS10 710; Agrisera). As secondary anti-
body Anti-rabbit-horseradish peroxidase (HRP)-conjugated immuno-
globulin G (IgG) (AS09 602; Agrisera) was used.

3.5 SP3 protein purification, digestion and peptide
desalting

Protein precipitation and cleanup was performed with a variation of the
Single-Pot Solid-Phase-enhanced Sample Preparation (SP3) (Hughes
et al. 2014). Therefore, eluates of the RIC pull-downs with a total volume
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of 800 ul were combined with 100 ul SDS (20 %) and incubated at 37 °C
for 30 min at 700 rpm shaking for complete protein denaturation. In
parallel, 20 ul of SP3 beads per sample (GE, 44152105050250) were
washed with 1ml MilliQ water three times and reconstituted in 20 pl
MilliQ water. Beads were mixed with each sample, combined with 1 ml
acetonitrile, and again mixed thoroughly by vortexing. Protein aggre-
gation was allowed to occur for 15min at room temperature before
tubes were collected on a magnetic rack for two additional minutes.
Beads were washed 4 times with 2ml EtOH 70 %, spun down and
collected again on the magnet to remove any residual ethanol. Protein
was digested off the beads in 200 pl digestion buffer (EPPS 50 mM pH 8.5,
DTT 10 mM, 0.3 pg trypsin/LysC (Promega V5073)) for 18 h at 37 °C with
700 rpm shaking. Cysteines were alkylated by addition of 15 mM chlor-
oacetamide (CAA) for 1h before the end of digestion. Beads were
collected on the magnet and the supernatant transferred to a fresh tube.
Peptides were cleaned up with C18 StageTips and fractionated into three
fractions by elution with high pH buffer (50 mM ammonium formate
supplemented with 10, 20, 40 % acetonitrile) (Rappsilber et al. 2007). 10
and 40 % acetonitrile containing fractions were combined and samples
dried in a SpeedVac to yield two fractions per sample.

3.6 LC-MS analysis

Peptides were dissolved in 10 pl 0.1% formic acid and injected on a
Dionex UltiMate 3000 nano high-performance liquid chromatography
system (HPLC) coupled to an Orbitrap Lumos mass spectrometer (both
Thermo Fisher Scientific). Peptides were loaded on a trap column
(100 pm x 2 cm, packed in-house with Reprosil-Gold C18 ODS-3.5 um
resin, Dr. Maisch) and washed for 10 min with 0.1 % formic acid at 5 pl/
min flow. Consequently, peptides were eluted onto an analytical column
(75 pm x 40 cm, packed in-house with Reprosil-Gold C18 3 um resin)
using a 50 min gradient ranging from 4 to 32 % solvent B (0.1 % formic
acid, 5% DMSO in acetonitrile) in solvent A (0.1% formic acid, 5%
DMSO) at a flow rate of 0.3 pl/min. The MS was operated in a data
dependent top 20 method with MS1 scans in the orbitrap at 60,000
resolution, scan range 360-1300, RF lens 50 %, AGC target 4E5, maximum
injection time 50 ms. MS2 scans occurred after filtering for monoisotopic
peak determination towards ‘Peptide’, intensity threshold 2.5E4, charge
state 2—-6, a dynamic exclusion of 1 during 20s with 10 ppm mass
tolerance. MS2 isolation occurred with a 1.7 m/z quadrupole isolation
window, HCD fragmentation at 30 % and detection in the orbitrap at
30,000 resolutions, AGC target 2.0E5, and 50 ms maximum injection time.

3.7 Mass spectrometric data analysis

Raw files were searched with MaxQuant 2.1.2.0 (Cox and Mann 2008),
with default settings except protein and peptide FDR set to 100 %,
against the Uniprot A. thaliana proteome (UP00000654, downloaded
2023.03.21). Search results were subsequently rescored with Prosit
(Gessulat et al. 2019) and protein FDRs calculated with our recently
published Picked Protein FDR approach (The et al. 2022). The
RNA-binding proteome was derived from the iBAQ intensities of the RIC
experiments using the approach initially described by Marondedze et al.
(Marondedze et al. 2016). Briefly, iBAQ intensities in crosslinked samples
and non-crosslinked controls, respectively, were median-centered.
Proteins without intensity in the non-crosslinked controls and in-
tensity in the crosslinked replicates were considered RNA-binding. For
proteins with intensities in the crosslinked replicates and at least one of
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the non-crosslinked controls, iBAQ values were imputed to apply Stu-
dent’s T-test and apply the thresholds p <0.05 and foldchange iBAQ-
crosslinked/iBAQnoncrosslinked > 2 for calling RNA-binding proteins.

3.8 Bioinformatic analyses of the RBPome

Gene set enrichment analyses were performed via ShinyGO tool (Ge
et al. 2020). The RBPome of the RKD2-induced callus gene list was used to
compare frequencies of GO terms in either the reference A. thaliana
proteome annotation form input proteomics of the RKD2-induced callus.
FDR cutoff was default 0.05, GO term selected by FDR < 0.05 and sorted by
fold enrichment. Comparison analysis with different RBPome data of
other A. thaliana tissues was performed on the jvenn website (Bardou
et al. 2014). InterPro Domain annotation and GO Terms of proteins was
downloaded from UniPort (Bateman et al. 2023; Paysan-Lafosse et al.
2023). Gene expression data analysed here were downloaded from (Zhou
et al. 2020). The data were clustered using the fuzzy c-means (FCM)
clustering algorithm implemented in the Bioconductor Mfuzz package
(Futschik and Carlisle 2005). The expression heatmap was generated by
R package pheatmap (version 1.0.12; https://CRAN.R-project.org/pack-
age=pheatmap), and the GO enrichment was performed via AgriGO
(Tian et al. 2017).

3.9 Microscopy

Confocal microscopy and image analysis of ovules were performed us-
ing a spinning disc microscope system (Visitron system VisiScope)
equipped with an HC PL APO 63x/1.3 NA water DIC and 20x/0.75 IMM
CORR HC PL APO objective. GFP was excited at 488 nm and emission
detected at 500-550 nm.

3.10 Accession numbers

Accessions of all genes and proteins analyzed in this study can be found
in Supplementary Table S1.
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