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Abstract: Mammalian genomes are extensively tran-
scribed, producing a large number of coding and non-coding
transcripts. Alarge fraction of the nuclear RNAs is physically
associated with chromatin, functioning in gene activation
and silencing, shaping higher-order genome organisation,
such as involvement in long-range enhancer—promoter in-
teractions, transcription hubs, heterochromatin, nuclear
bodies and phase transitions. Different mechanisms allow
the tethering of these chromatin-associated RNAs (caRNA) to
chromosomes, including RNA binding proteins, the RNA
polymerases and R-loops. In this review, we focus on the
sequence-specific targeting of RNA to DNA by forming triple
helical structures and describe its interplay with chromatin.
It turns out that nucleosome positioning at triple helix target
sites and the nucleosome itself are essential factors in
determining the formation and stability of triple helices. The
histone H3-tail plays a critical role in triple helix stabilisa-
tion, and the role of its epigenetic modifications in this
process is discussed.

Keywords: chromatin; chromatin-associated RNA; IncRNA;
nucleosome; RNA-DNA triple helix

1 Introduction

About 2m of DNA must be functionally organised in a
eukaryotic nucleus with a typical diameter of 5-10 pm. DNA
is associated with histone and non-histone proteins and
RNA, forming a complex and highly variable structure called
chromatin. Chromatin is not evenly distributed in the nu-
cleus but is structured into subcompartments (referred to as
membrane-less organelles or nuclear bodies), dynamically
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partitioning the genome in a self-organising manner (Cook
and Marenduzzo 2018; Frank and Rippe 2020; Misteli 2007).

The fundamental packaging unit of chromatin is the
nucleosome, composed of a histone octamer wrapped by 147
base pairs of DNA (Finch et al. 1977; Luger 2003; Luger et al.
1997). The unstructured histone tails are modified by phos-
phorylation, methylation, acetylation, and other post-
translational modifications forming a histone code that
helps to partition the genome into distinct domains such as
euchromatin and heterochromatin (Ruthenburg et al. 2007).

The placement and removal of histone post-translational
modifications are precisely controlled by proteins that set
(“writers”) and erase (“erasers”) these modifications (Zhang
et al. 2015). Histone modifications are dynamically regulated
and established in response to various developmental and
environmental cues. The functional impact on modified chro-
matin domains is exerted by “reader” proteins, resulting in
chromatin structure and gene expression alterations.

Euchromatin is an open chromatin state and is associ-
ated with active transcription, being enriched in specific
histone tail modifications. These modifications include the
di-and tri-methylation of histone H3 at lysine postion 4
(H3K4me2/3), tri-methylation at position 36 (H3K36me3) and
a general hyperacetylation of histone tails (Bannister and
Kouzarides 2011; Talbert and Henikoff 2021). In contrast,
heterochromatin corresponds to inactive genomic domains,
carrying repressing modifications of the histone tails and
being less accessible to the transcription machinery. Het-
erochromatin can be further subdivided into facultative
heterochromatin, formed at genomic regions containing
developmentally regulated genes, and constitutive hetero-
chromatin, maintaining the inactive form of the highly re-
petitive regions of the genome (Trojer and Reinberg 2007).
Constitutive heterochromatin is characterised by repressive
histone marks such as H3K9me3, recruiting Heterochro-
matin Protein 1 (HP1) (Janssen et al. 2018).

The chromatin landscape is not only determined by his-
tone modifications but also RNA is specifically associated with
chromatin, playing central roles in nuclear architecture and
gene regulation (Thakur and Henikoff 2020). In facultative
heterochromatin, for example, mammalian X-chromosome
inactivation is regulated by the long noncoding RNA (IncRNA)
Xist. The well-studied Xist IncRNA is physically associated with
the entire inactive X chromosome and recruits multiple protein
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complexes, including epigenetic modifiers that establish gene
silencing and formation of facultative heterochromatin (Cerase
et al. 2015; Rocha and Heard 2017). Xist is an example of a
chromatin-associated RNA, specifically tethered to chromatin
to exert its regulatory function, resulting in the compaction of
chromatin and formation of the Barr body in mammalian cells.
Also, other IncRNAs play transcriptional regulatory roles by
interacting with various types of proteins or directly with
chromatin and DNA, and they more often regulate chromatin
structure and chromatin remodelling by interacting with
epigenetic regulators (Sasso et al. 2022).

RNA plays a crucial role as an architectural factor, not
only at the inactive X-chromosome but also at ribosomal
genes in the nucleolus, (peri)centromeres, telomeres,
and more globally, RNA shapes the nuclear architecture
(Caudron-Herger and Rippe 2012; Dundr 2012; Li and Fu
2019; Mao et al. 2011; Nozawa and Gilbert 2019). In the last
few years, our view on gene expression has changed due to
the many roles of RNAs in gene regulation.

2 An overview to chromatin-
associated RNAs

Genome-wide RNA expression profile showed that about
80 % of our genome is transcribed, giving rise to various
classes of both protein-coding and noncoding RNAs (Djebali
et al. 2012). The number of different noncoding RNAs in the
human genome is still unknown because of their cell type
specificity and sometimes low abundance in cells (Cabili
et al. 2011). A recent analysis of the FANTOM5 consortium
identified 27.919 different IncRNAs (with a length above
200 nt) in various human cell types (Hon et al. 2017). Many of
these ncRNAs and nascent transcripts are integral compo-
nents of chromatin, changing the organisation of chromatin,
facilitating the recruitment of regulatory factors and serving
as nuclear organisation factors (Caudron-Herger et al. 2011;
Rodriguez-Campos and Azorin 2007; Tsai et al. 2010).

The stable association of RNA molecules with chromatin
was shown more than four decades ago. Chromatin isolated
from different organisms, such as peas, calf, chicken and
fruit flies, exhibited 2—-10 % of the total nucleic acids found in
chromatin being stably associated RNA molecules (Bonner
and Widholm 1967; Bynum and Volkin 1980; Holoubek et al.
1983; Huang and Bonner 1965; Huang and Huang 1969).
Initially, it was suggested that these chromatin-associated
RNAs were nascent transcripts still being tethered to chro-
matin via RNA polymerase or contaminants from the isola-
tion procedure (Artman and Roth 1971; Bonner 1971).
However, studies from the late 1970s described a possible
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role of these caRNAs in chromatin organisation. It was
hypothesised that caRNAs might play an activating role in
the regulation of transcription (Britten and Davidson 1969).
In this hypothesis, caRNA functions as an “activator” for the
transcription of an “acceptor gene” by sequence-specific
interactions between RNA and DNA, suggesting that “chro-
mosomal RNAs may function as a sequence detector for
chromosomal proteins” (Bonner et al. 1968).

Aninitial protocol to purify caRNA was established by the
Schibler group in 1994 (Wuarin and Schibler 1994), extracting
chromatin and its associated RNA in the presence of a high
concentration of urea and detergent. Since then, adaptations
of this protocol and the development of high throughput
techniques identified a heterogenous pool of caRNA species,
being differentially associated with active and inactive
fractions of chromatin (Fang et al. 2019; Kurup and Kidder
2018; Schubert et al. 2012; Soboleva and Tremethick 2018;
Werner and Ruthenburg 2015). Furthermore, crosslinking
and ligation of caRNA-DNA complexes allowed to detect the
genomic binding sites of the caRNAs. Numerous variations of
the techniques, like Red-C, MARGI-Seq, Char-seq, GRID-seq,
RADICL-Seq and others, have been published (Bell et al. 2018;
Bonetti et al. 2020; Gavrilov et al. 2020; Sridhar et al. 2017; Zhou
et al. 2019a). These experiments show, as expected, the asso-
ciation of nascent RNA with chromatin and the genomic target
sites of short and long noncoding RNA molecules. These
methods showed that the RNAs can be bound in cis, close to
their site of synthesis, or in trans, at genomic loci distant from
their site of synthesis.

The RNA molecules preferentially associated with
chromatin can be grouped into long noncoding RNAs
(IncRNAs), circular RNAs (circRNAs), small nuclear RNAs
(snRNAs), small nucleolar RNAs (snoRNAs), enhancer RNAs
(eRNAs), promoter-associated RNAs (paRNAs), antisense
RNAs (asRNAs) and repeat RNAs, as described below.

3 caRNAs as regulators of
transcription

Whereas the Xist RNA forms a repressive chromatin
compartment, there is also growing evidence that non-
coding, nascent RNAs mediate gene activation by changing
the topology of chromatin. The enhancer-derived RNAs
(eRNAs) are one such class of RNAs. These represent short
(50 nt) to long (2000 nt) RNAs originating from enhancer el-
ements (Arnold et al. 2020; Kim et al. 2010; Santa et al. 2010)
and being suggested to bring the enhancer and promoter
sequences into close proximity to promote gene activation
(Arnold et al. 2020). eRNAs can loop DNA sequences by
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interacting with transcription factors, or like the prostate-
specific antigen (PSA) eRNA, by interacting with the positive
transcription elongation factor TEFb that phosphorylates
and activates RNA Polymerase II (Zhao et al. 2016). Also, non-
enhancer transcripts like the chromatin enriched RNAs
(cheRNA), nascent transcripts tethered to chromatin by RNA
Polymerase II, promote gene-enhancer contacts in cis
dependent on transcription factors (Werner et al. 2017; Yang
et al. 2017). Furthermore, the chromatin association of asR-
NAs, paRNAs and repeat RNAS in cis, to the same locus, or in
trans were shown to regulate transcription (Duda et al. 2021;
Kuznetsov et al. 2018).

4 caRNAs organising the higher
order structure of chromatin

Another group of caRNAs acts by stabilising actively tran-
scribed regions. The chromosomes of higher eukaryotes are
organised into topologically constrained functional domains
(Belmont et al. 1989), correlating with transcriptional activity
and gene density (Goetze et al. 2007; Naughton et al. 2013). Such
a chromosomal organisation was shown to depend on
chromatin-associated RNAs that interact with scaffold attach-
ment factor A (SAF-A), a structural nuclear protein. SAF-A in-
teracts with caRNA, forming a de-compacted chromatin mesh
that is dependent on active transcription and required for
genome stability (Nozawa et al. 2017). Also, the function of the
CCCTC-binding factor, CTCF, organising chromatin loops
depended on RNA molecules to maintain the interaction of
specific domains (Saldafia-Meyer et al. 2019). In addition, caR-
NAs were shown to maintain the accessible structure of active
chromatin compartments. RNase microinjection experiments
showed that nuclear-retained coding RNAs retained the
configuration of open chromatin, whereas heterochromatin
domains showed no gross structural changes upon RNA
depletion. The RNAs were found to be enriched long 3-UTRs
and suggested maintaining chromatin accessibility by sta-
bilising RNAP II transcription factories (Caudron-Herger
et al. 2011). caRNA in Drosophila cells was shown to be
enriched in snoRNAs and, together with the decondensa-
tion factor 31 (Df31), enabling the reversible closing and
opening of higher-order chromatin structures and regu-
lating DNA accessibility (Schubert et al. 2012).

5 Tethering caRNAs to chromatin

RNA binding to chromatin occurs in different modes, such as
the global, chromosome-specific binding, or sequence-
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specific recognition of genomic sites, as presented above,
suggesting other mechanisms of RNA recruitment. One of
the first studies suggested that very short chromosomal
RNAs (about 40 nt in length) were covalently linked to his-
tones, an observation that was controversially discussed
(Pederson and Bhorjee 1979). Other modes of linking RNA to
chromatin involve the interaction via a DNA-RNA hybrid
duplexes, so called R-loops, the formation of RNA:DNA-DNA
triplexes, as described in detail below, and non-covalent
interactions with chromosomal proteins.

Newly transcribed RNAs (nascent RNAs) may remain at
their production site due to their association with the RNA
polymerases, representing a cis-interaction. Similarly,
R-loops, RNA-DNA hybrids formed during transcription,
remain tethered to their production site even after synthesis.
RNAs tethered by R-loops were shown to have a functional
impact on genome integrity and are linked to transcriptional
regulation (Chen et al. 2018b; Sollier and Cimprich 2015; Stork
et al. 2016). R-loops are preferentially associated with pro-
moters and enhancers exhibiting GC-skewed sequences
(Chen et al. 2017; Ginno et al. 2012).

In contrast to cis targeting, trans-interactions occur by
directing the RNA to a different genomic location after tran-
scription and releasing the transcript from the RNA poly-
merase. Specific genomic binding sites of these RNAs can be
determined by chromatin-bound proteins, specifically inter-
acting with the RNA, or by the sequence-specific binding of
the RNA to DNA via the formation of RNA:DNA-DNA triple
helices. Even though triple helices have been known for 70
years, the in vivo role of these structures, their abundance
and localisation still need to be studied (Felsenfeld and Rich
1957). In this review, we summarise direct biochemical and
indirect evidence of their potential roles and existence, and
we also shed light on their mechanism in regulating gene
expression.

6 Triple helices

Double-stranded DNA (dsDNA) can form triple-helical
structures by sequence-specific binding of a third nucleo-
tide strand. Triple helical structure formation follows the
Hoogsteen base-pairing rules, allowing the binding of a
single-stranded DNA or RNA strand to the major grove of the
Watson—Crick duplex (Figure 1A).

A dsDNA sequence that can form a triple helix is called a
Triple Helix Targeting Site (TTS), specifically bound by a
Triple Helix Forming Sequence (TFS). The TTS DNA sequence
consists of a polypurine strand, serving for the specific
interaction and Hoogsteen base pairing with three different
kinds of TFS binding motifs (Felsenfeld et al. 1957; Hoogsteen



1040 —— R. Maldonado and G. Langst: Triple helix formation in chromatin

B,

PATS

‘\\E’ 5’ - Y
) @ CTTTCxxCCTTC cum

DE GRUYTER

Purine motif
[ J

Figure 1: Schemes showing triple helix

Maior groove 5 Pyrimidine motif structures and motifs. (A) Model depicting the

Q\'l’f\\ﬁ lorg 5 CUUUCxxCCUUC binding of a third strand of RNA to DNA and

P L ’ G [ ____J . .
O//\f\\o// \0¥§\ @ CTTTCxxCCTTC ammm form|‘ng Hoogsteen pase pa|r|ﬁg, (B) Scheme
o, ////NHZ\\\\\\\\\ Tlo showing the three different triplex forming

S%N \\\\\\\\\\\‘\N‘\(N R 3 Mixed motifs motifs with exemplary sequences. The RNA

i Hoogsteen. AN © % strand is marked in blue, and the DNA strand
[l Watson-Crick GUUUGXXGGUUG
'T N 5 G am» forming the Hoogsteen basepairing is shown
@D CTTTCxXCCTTCam®  in green.

1959; Moser and Dervan 1987; Rajagopal and Feigon 1989).
The TFS can be classified into Pyrimidine-, Purine-, and
Mixed-motifs, consisting of TFS sequences with only py-
rimidine, purine, or both types of nucleotides, respectively
(Figure 1B). The sequence composition of the TFS directs the
third strand’s 5' to 3’ orientation relative to the TTS purine
strand, the Pyrimidine-motif binds in parallel, the Purine-
motif bind anti-parallel, and the Mixed-motif can bind in
both orientations (Beal and Dervan 1991; Morgan and Wells
1968).

The structure of a triple helix has been described to be
more rigid than the dsDNA, and the DNA exhibits an A-B
intermediate conformation (Esguerra et al. 2014). Crystal
structures of DNA:DNA-DNA triple helices showed that the
axis of the third strand is perpendicular to the purine strand
and exhibits sugar-phosphate backbone angles close to
A-DNA-like values (Nunn et al. 1997). The A-B intermediate
form of the DNA in the triplex exhibits a significant major
groove widening, revealing structural changes that affect the
stability of third-strand binding (Esguerra et al. 2014; Nunn
et al. 1997).

The formation of triple helices was suggested to follow a
nucleation-zipping model for pyrimidine triplexes,
following a directional, 5-to-3' binding of the third strand,
with respect to the purine strand of the TTS (Alberti et al.
2002).

7 Biophysical stability of triple
helices

Initial studies described the triple helices as unstable
structures in aqueous solutions, requiring acidic conditions
and protonated cytosine to form stable triplexes (Lipsett
1964). Nevertheless, stable binding was demonstrated at
physiological salt conditions in the presence of positively
charged metabolites like spermine, spermidine and choline-

phosphate that are abundant in cells (Tateishi-Karimata
et al. 2014; Thomas and Thomas 1993). Positive charges
counteract the repulsion forces generated between the
negatively charged backbones of the TFS and the duplex,
forming 4 specific triplets T-AT, G-GC, A-AT, and C*-GC (Buske
et al. 2012; Hoogsteen 1959; Malkov et al. 1993). Accordingly,
ionic strength influences the formation of triple helices,
where the triplet C*-GC is the least sensitive Hoogsteen base
pair to be affected by ionic variations (James and Fox 2003).
Increasing salt concentrations tend to stabilise triplexes,
with divalent cations being more effective (Mg**, Mn**, Co**,
Ni%*, Cd®") than monovalent cations (Na*, K*) (Maldonado
et al. 2017; Malkov et al. 1993; Plum et al. 1990). These
favourable conditions, in terms of stability, are explained by
the affinity of the divalent cations for the phosphate back-
bone and their internal interactions within the triplex
structure (Blume et al. 1999). Thermal dissociation studies
suggest a higher affinity is obtained when the third strand is
RNA instead of DNA due to a different sugar geometry within
the major grove (Dagneaux et al. 1995; Maldonado et al. 2017).

The presence of high concentrations of positively
charged polyamines in the cell suggests that these may
counteract the instability of the Hoogsteen base pairing
observed in vitro, enabling the formation and potential ex-
istence of stable triplexes in vivo. Currently, a web server
that built up energy-minimized triplex helical structures
allows the generation of triplex models designed by the user,
with or without mismatches, creating the first steps for
protein or drug interaction with the triplex of interest (Patro
et al. 2017).

8 The impact of triple helix
sequence on stability

Furthermore, the stability of the triplexes is affected by the
type of motif; its actual sequence, and the length of the TFS.
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The minimal requirement for the third strand to form a
RNA:DNA-DNA triplex is a length of nine bases to reach
significant binding affinities in vitro, matching the mean
length of triplex motifs in vivo, with about 10-30 nt (Buske
et al. 2011; Cheng and Pettitt 1992; Escudé et al. 1993; Frank-
Kamenetskii and Mirkin 2003; Knauert and Glazer 2001;
Morgan and Wells 1968; Roberts and Crothers 1996, 1992).
The affinity between the RNA and DNA strands increases
with the length of the third strand when the sequences
perfectly match (Pasquier et al. 2017).

A direct comparison of purine and pyrimidine motifs
with varying TFS and TTS GC content revealed qualitative
and quantitative binding affinity and stability differences.
Pyrimidine-motifs tend to bind with nanomolar affinity at
physiological conditions in vitro when the GC-content of the
TTS is low. In contrast, the Purine-motifs fail to bind under
such conditions. This effect reverses with increasing
GC-content of the TTS. At an average GC-content of 50 %, both
types of TFS motifs bind with high affinity, whereas at higher
GC-contents (>70 %), only the Purine-motifs form stable tri-
plexes, and the Pyrimidine-motifs fail to do so (Maldonado
et al. 2017). The stability of triplexes is highly sequence-
specific, and single sequence mismatches have profound
effects on their formation and stability. The location of these
mismatches is relevant, with variations occurring close to
the TFS ends having weaker effects than central ones
(Colocci and Dervan 1995; Maldonado et al. 2017; Mergny
et al. 1991). The kind of mutation severely impacts triplex
stability, correlating with the finding that a thymidine and
adenine in the TFS form more stable Hoogsteen hydrogen
bonds with an adenine of the duplex. In contrast, guanine
forms more stable hydrogen bonds with the guanosine of the
TTS compared to other bases (Best and Dervan 1995). When
comparing purine and pyrimidine TFSs against the same
TTS, the pyrimidine motifs formed more stable triplets un-
der slightly acidic conditions (C™-GC) (Keppler and Fox 1997).
Additionally, thermodynamic studies showed that alter-
nating C*-GC and T-AT triplets generate the most stable triple
helices. TFSs must contain at least 19 nt to form a stable
RNA:DNA-DNA triple helix in the presence of no more than
two consecutive mismatches (James and Fox 2003; Kunkler
et al. 2019). Nevertheless, it has been shown that depending
on the sequence context, a single mutation within a 29 nt
long TFS completely abolishes triple helix formation
(Maldonado et al. 2017). Experimental approaches using
modified nucleobases (LNAs and 2-thioU) revealed increased
RNA:RNA-RNA triplexes stability. This was functionally
validated on HeLa cells by inserting the corresponding TTS
on a plasmid coding for GFP, where the transfection of
modified TFSs was associated with GFP silencing (Szabat
et al. 2018).
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9 Potential triple helix binding sites
in the genome

The discovery of the overrepresentation of polypurine and
polypyrimidine sequences within regulatory elements of
both prokaryotic and eukaryotic genes suggested a func-
tional role of triplexes (Bucher and Yagil 1991). Initial
genome-wide searches for triplex targeting sequences (TTS)
in humans and mice identified about 1.9 million of these
sequence elements, being uniformly distributed along the
chromosomes, but highly enriched at regulatory elements
(Wu et al. 2007). The TTSs are mainly located at promoters,
suggesting their potential for gene expression regulation
(Gofii et al. 2004). Furthermore, TTSs are predominantly
increased in the regulatory regions of genes regulating
physiological processes, being highly enriched in transcrip-
tion factor genes (Goiii et al. 2006). The functionality of these
TTSs was supported by potassium permanganate foot-
printing assays, which identified that non-canonical DNA
structures (potential triplexes) are formed on these DNA
elements (Kouzine et al. 2017).

The first computational pipeline for the prediction of
TTS sites was TRIPLEXATOR, which included additional
features to predict the TTS-TFS binding potential, minimal
TTS sequence requirements, and provides the density of
TTSs within the genome (Buske et al. 2012). This pipeline
showed that chromatin-associated RNAs are enriched in TTS
elements and can form triple helices at hundreds of human
genes (Buske et al. 2012). The enrichment of TTSs in gene
promoters and of TFSs in caRNAs suggests a potential reg-
ulatory link between both. After TRIPLEXATOR, TTSMI in-
tegrated the publicly available ENCODE data with the TTS
sites to predict gene function correlations of triplex targeting
sequences, adding an additional functional layer (Jenjar-
oenpun et al. 2015). Currently, different computational tools
are available to predict the triplex formation (LongTarget,
TRIPLEXES, Triplex Domain Finder, TriplexFFP, and Fasim-
LongTarget), which use the basic Hoogsteen base-pairing
rules or, in some cases, employ deep learning networks with
validated TTS-TFS pairs to predict triplexes formation in vivo
(Warwick et al. 2023). For example, a machine learning tool
called TriplexAligner incorporated a kind of “new rules”
based on RNA:DNA interactome studies not covered by the
canonical Hoogsteen interaction rules. However, the bio-
physical data on TTS-TFS pairs and their binding affinities
are scarce, not allowing us to predict in vivo binding affin-
ities with high precision (Warwick et al. 2022).

The large number and specific genomic location of the
TTSs and the enrichment of TFSs in caRNAs suggest a
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regulatory function in chromatin and potentially other
functions unknown to date (Pasquier et al. 2017).

10 Functional triplet targeting sites

Triple helices were shown to exert biological functions, like a
synthetic TFS targeting a conserved purine tract of the HIV
genome that serves as a start site for reverse transcription.
This TFS inhibits HIV retrotranscription in vitro and retro-
virus replication in infected cells (Volkmann et al. 1995).
Similarly, the Purine-motif TFS targeting the interferon-
responsive elements inhibited transcription in vitro and
from reporter genes in transfected cells (Faria et al. 2000;
Roy 1993). These studies show the formation of functional
triple helices in cells, and far more pieces of evidence arose
from studies on IncRNAs. The formation of RNA:RNA-RNA
triple helix structures was shown to inhibit the endonu-
cleolytic degradation of the MALATI and NEATI IncRNAs
(Brown et al. 2014, 2012; Wilusz et al. 2012). Moreover, by
placing these motifs downstream of an ORF, it was demon-
strated that this intramolecular triplex acts as a translational
enhancer in the absence of a poly(A) tail (Wilusz et al. 2012).

During early mouse embryogenesis, in vitro and in vivo
experiments suggested that the reactivation (expression) of
LINE-1 transposons at the 2-cell stage, which are then down-
regulated again in mature stages, is modulated by a triple he-
lical structure formed by LINE-1-derived short RNA triplexes
regulating the LINE-1 ORF1 (Fadloun et al. 2013). Evidence for
the genomic function of RNA:DNA-DNA triplexes comes from
studies in mouse spleen. The chromosomal integration of
multiple TTS sites in the mouse genome and the injection of the
corresponding TFO induced double-strand brakes and activa-
tion of apoptosis in an XPD-dependent manner (Tiwari and
Rogers 2013). Besides other RNA biotypes, microRNAs (miRNAs)
were reported to regulate gene expression at the transcrip-
tional level, in addition to their genuine role. The miR-223 lo-
calises inside the nucleus and targets the NFI-A promoter
region at miR-223 complementary DNA sequences, recruiting
the polycomb complex (PcG) to induce NFI-A transcriptional
silencing (Zardo et al. 2012). Due to their length and sequence
composition, a subset of miRNAs has been proposed to form
triplexes and to bind to regulatory elements in different species
(Paugh et al. 2016; Toscano-Garibay and Aquino-Jarquin 2014).
Recent studies indicate that microRNAs may also play a role in
up-regulating mRNA transcription levels, potentially acting
through triple helix formation. An algorithm designed to
determine the miRNA-triplex formation revealed that genes
containing sequences favouring microRNA triplex formation
are markedly enriched 3.3 fold for genes whose expression is
positively correlated with the expression of microRNAs
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targeting these triplex binding sequences (Paugh et al. 2016).
Further studies supporting a role for miRNA-triplexes in gene
regulation show similar effects on cancer-relevant targets, like
KRAS, TCF7L2, and EGFR (Fadaka et al. 2019).

11 IncRNA mediated triplexes and
gene regulation

Besides the short-noncoding RNAs, many long-noncoding
RNAs are tethered to chromatin and shown to regulate gene
expression, chromatin density and nuclear architecture
(Mercer et al. 2009; Rinn and Chang 2012). Due to their length,
and sequence composition, the IncRNAs present complex
three-dimensional structures recognised by specific pro-
teins, to accomplish their regulatory functions (Chen 2016; Li
and Fu 2019). One mechanism for IncRNAs-dependent gene
expression regulation involves forming triple helices at
regulatory elements. For example, in quiescent cells, tran-
scription from an alternative promoter of the DHFR gene
generates a IncRNA that directly interacts with the gene
promoter through triple helix formation, resulting in
dissociation of the pre-initiation complex and transcrip-
tional repression (Martianov et al. 2007). In a similar
manner, the mouse rDNA promoter-derived IncRNA, called
PRNA (promoter RNA), interacts with the binding site of the
transcription factor TTF-I via triple helix formation,
inducing RNA-dependent DNA methylation and transcrip-
tional silencing by tethering the DNA methyltransferase
DNMTS3b to the gene promoter (Schmitz et al. 2010).

A genome-wide analysis of the MEG3 IncRNA interactions
with chromatin identified the regulation of TGF-f related genes
by forming triple helices on distal regulatory elements. The
triple helices occur due to a GA-rich sequence close to the 5 end
of MEG3, allowing the recruitment of PRC2 and establishing
H3K27me3 histone marks to repress the TGF- related genes
(Mondal et al. 2015). In contrast, the antisense IncRNA Khps1
activates expression of the SPHK1 gene through triple helix
formation on its promoter region and the recruitment of the
transcriptional activator E2F1 (Postepska-Igielska et al. 2015).
This kind of molecular mechanism, based on triple helix for-
mation at regulatory elements and the tethering of chromatin-
effector molecules, was described for several IncRNAs, like
PARTICLE regulating the MAT2A gene through PRC2 (O’Leary
et al. 2015), the WIWOX gene (O’Leary et al. 2017), or the IncRNA
Fendrr regulating genes associated with heart and body wall
development in mice through PRC2 and TrcG/MLL (Grote et al.
2013), HOTAIR regulating senescence-associated genes through
PRC2 on mesenchymal stem cells (Kalwa et al. 2016), LNMAT1
promoting CCL2 expression by the recruitment of hnRNPL to
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the promoter region (Chen et al. 2018a), cis-acting ncRNAs
derived from the FAU and f-globin genes inhibiting the
expression of their source genes (Zhou et al. 2019Db),
CDKNZ2B-AS1 repressing CDKN2B gene expression through
triple helices formation on the promoter region and tethering
CTCF and EZH2 (Ou et al. 2020), HIFa-AS1 repressing EPHA2
and AMD genes through the triplex formation on regula-
tory elements and the recruitment of the HUSH complex
(Leisegang et al. 2022). These many examples led to the
development of computational tools to detect and charac-
terise IncRNA-dependent triplex formation with DNA for
genome-wide detection of triplex target genes (Jalali et al.
2017; Kuo et al. 2019; Wang et al. 2018). Additionally, a newly
defined class of super-IncRNAs are suggested to target
super-enhancers through triple helix formation. The group
identified 442 super-IncRNA transcripts with Purine- and
Pyrimidine-motifs, originating in 27 different human cell and
tissue types, with 70 % of these super-IncRNAs being tissue-
restricted (Soibam 2017). Data from ChIRP (Chromatin Isola-
tion by RNA purification) assays for 12 different IncRNAs in
humans, mice, and Drosophila were used to feed a convolu-
tional neural network, leading to the identification of novel
triplex forming domains for all of these IncRNAs (Wang et al.
2018). Some of these results have been challenged by a method
that isolates RNA associated with DNA in the form of triple
helices. This method did involve protein removal and, there-
fore, discards the possibility of protein-dependent tethering of
the RNA. The results suggest that caRNAs form triple helices
by transcripts originating from coding and noncoding regions
and that triplexes are formed at accessible and transcrip-
tionally active chromatin domains (Senttirk Cetin et al. 2019).

A study aimed to quantify the binding landscape of the
TFS of 23.898 IncRNAs genome-wide. They identified more
than 700 targeting sites on promoter regions, suggesting a
role in chromatin organisation together with the architec-
tural proteins CTCF and NSRF (Jalali et al. 2017). In
Drosophila melanogaster, a survey for potential TFSs on
immature transcripts (13.919 on pre-mRNAs and 2470 on pre-
IncRNAs) found an average TFS length of 24 nt, which were
matched against the genome. The results showed that po-
tential triplexes formed by both pre-mRNAs and pre-
IncRNAs are enriched on genes related to development
and morphogenesis (Pasquier et al. 2017).

12 Proteins stabilising triple helix
structures

The existence of triple helix binding proteins further sup-
ports their presence in the cell. A large list of known triple
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helix binders was reviewed before (Buske et al. 2011) addi-
tions suggest also a role for HP1in triple helix formation and
maintaining the epigenetic silencing of repeat sequences
(Zhang et al. 2022). The abundant and chromatin-associated
high mobility group proteins HMG1 and HMG2 were shown
to bind triplexes (Jain et al. 2005; Reddy et al. 2005; Suda et al.
1996). These proteins are involved in the maintenance of the
chromosome architecture and the distribution of euchro-
matin and heterochromatin domains (Jain et al. 2005; Reddy
et al. 2005; Suda et al. 1996). Even sequence-specific DNA
binding factors, like the GAGA transcription factor, were
shown to bind a Pyrimidine-motif triplex that inhibits the
expression of downstream genes (Orozco et al. 1998). While
in humans, the tumour suppressor P53 was demonstrated to
bind triple helical structures constituted only by T-AT trip-
lets, specifically through its C-terminal DNA binding domain
(Brazdova et al. 2016). The centromere binding protein CDP1
binds a Purine-motif triplex with high affinity, whereas the
corresponding Pyrimidine-motif is bound three orders of
magnitude worse (Musso et al. 2000). Mutation of CDP1
mutants show defects in chromosome segregation during
mitosis and a high level of chromosome fragmentation
(Musso et al. 2000). Sites of triple helix formation in the
genome have been reported as possible sites for genomic
instability (Kaushik Tiwari et al. 2016). Therefore, intensive
research has focused on proteins able to resolve these non-
canonical structures. The human DDX11 gene codes for a
DNA helicase (superfamily 2 with XPD, FANC], and RTEL1)
essential for sister chromatid cohesion. Mutation of this
helicase was found to be associated with the Warsaw
breakage syndrome, a genetic disorder characterised by
high levels of genomic instability (Guo et al. 2015; Parish et al.
2006). Biochemical and cellular studies showed that the
preferential substrates of DDX11 are triplexes, dissolving
inter- and intra-molecular triplexes in an ATP dependent
manner (Guo et al. 2015). Deletion of DDX11 in cells results in
an accumulation of triple helical structures and genomic
instability (Guo et al. 2015).

13 Chromatin architecture and
triplex formation

Chromatin is the natural substrate of RNA-DNA triple helix
formation and presents a major obstacle to its sequence-
specific recognition. The basic packaging unit of chromatin,
the nucleosome, is capable of associating with almost any
DNA sequence. However, clear data is showing that nucle-
osomes adopt well-defined positions on DNA, preferentially
at regulatory regions of the genome (Ramsay 1986; Schones
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et al. 2008; Schwartz et al. 2018). About 30 million nucleo-
somes are arranged on the human genomic DNA, like “pearls
on a string”, separated by a short linker sequence. This
nucleosomal chain is compacting the DNA and presents a
significant barrier to sequence-specific access. Nucleosomal
DNA is not only in-accessible for proteins but also inhibits
the binding of triple helices (Gofii et al. 2006). The interaction
of DNA with nucleosomes presents a problem for triplex
formation as the TFS needs to wrap around the DNA duplex,
which is already wrapped around the histone octamer. If the
third strand spans more than ten bp, then it would have to
thread between the histone octamer and DNA surface to
continually access the DNA major groove. Initial studies
have shown that triplex formation inhibits nucleosomal
assembly on the RNA-bound TTS and functions as a nucleo-
somal barrier (Espinds et al. 1996; Westin et al. 1995).
Furthermore, it was shown that nucleosomes inhibit triplex
formation when located inside the realm of the nucleosome.
However, target sites towards the exit/entry site of nucleo-
somal DNA can still be accessed by TFSs (Brown and Fox
1998, 1996; Maldonado et al. 2019). The reduced accessibility
of chromatin for TFS binding was also shown by using bio-
tinylated- and psoralen-modified TFOs in a capture assay,
comparing naked DNA versus nuclei and whole cells (Besch
etal. 2004). Similarly, LNA-TFSs, used to target specific genes,
showed that triplex formation was more efficient on active
genes with an accessible chromatin structure (Brunet et al.
2006).

These findings leave only the linker DNA in between the
nucleosomes as potential binding sites of triple helices,
requiring a special arrangement of the TTS in the nucleosomal
landscape. The size of the linker DNA is highly variable in
higher eukaryotes, with about 20 bp in Saccharomyces cer-
evisiae and a mean length of about 35 bp in a typical vertebrate
nucleus, albeit with great variations between cell types
(Compton et al. 1976; Woodcock and Ghosh 2010). Therefore,
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linker regions are sufficiently long to accommodate stable tri-
ple helix binding, requiring the precise localisation of the TTS
between two nucleosomes.

Arecent study addressed the genome-wide localisation
of TTS concerning nucleosome positions, showing a pref-
erential localisation of TTS adjacent to nucleosomes. A
newly developed TRIP-seq method was used to show
that the corresponding TTS were bound by RNA and the
neighbouring nucleosomes enriched in activating histone
marks (Maldonado et al. 2019). Furthermore, the detailed
analysis of TTS positioning relative to the nucleosome
revealed a triplex stabilising effect of the nucleosome
(Figure 2A). Triplexes located at the entry/exit site of the
nucleosome are specifically stabilised by the histone H3 tail,
providing clear evidence for the regulatory role of chromatin
in triplex formation (Maldonado et al. 2019). In line with these
results, molecular dynamics simulations show that the bind-
ing of an RNA:DNA-DNA triple helix next to a nucleosome
increases the attraction of the H3 tails, resulting in the stabi-
lisation of this structure (Kohestani and Wereszczynski 2023).

14 Future perspective

The studies above suggest that the binding of TFS to chro-
matin is regulated on different levels. First, the nucleosomal
landscape and the positioning of nucleosomes adjacent to a
TTS is a pre-requisite for TFS binding. The size of the linker
DNA is, in general, large enough to accommodate stable TFS
binding. However, the post-translational code of the histones
is still an unexplored regulatory level in TFS binding that
could determine the stability and half-life of TFS-TTS com-
plexes in chromatin (Figure 2C). Over one-third of the H3-tail
amino acids have been shown to be post-translationally
modified and recognised by various reader proteins
(Musselman et al. 2012). The interaction of the TFS with the
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histone H3 tail could change the accessibility of the tail for
the reader proteins and change epigenetic signaling. Alter-
natively, or in combination, the modifications could also
change the stability of the TFS-TTS interaction and deter-
mine the half-life of triplex-chromatin complexes. It can be
envisioned that histone H3 methylation, retaining the posi-
tive charge of lysine, would maintain stable binding,
whereas histone acetylation would weaken these in-
teractions. Interestingly H3K4methylation is associated with
active chromatin states, whereas H3K9 is found at inactive
chromatin domains. These modifications could stabilise the
specific binding of noncoding RNAs targeted by their triplex-
forming sequences and direct RNA-bound effector proteins
to the associated genomic loci (Figure 2B).

In summary, the chromatin landscape and its changes in
nucleosome positions with development would determine
the accessible TTS pool and thereby determine the sequence-
specific targeting of noncoding RNA to the genome. More
pieces of the puzzle have still to be uncovered to understand
triplex formation in the nucleus of a cell, as we envision a
cooperative effect with the histone post-translational modi-
fications that mark the activity of particular chromatin
genomic domains.
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