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Abstract: Cancer cell fusion represents a rare event. How-
ever, the surviving cancer hybrid cells after a post-hybrid
selection process (PHSP) can overgrow other cancer cells
by exhibiting a proliferation advantage and/or expression of
cancer stem-like properties. Addition of new tumor prop-
erties during hetero-fusion of cancer cells e.g. with mesen-
chymal stroma-/stem-like cells (MSC) contribute to enhanced
tumor plasticity via acquisition of new/altered functional-
ities. This provides new avenues for tumor development and
metastatic behavior. Consequently, the present review
article will also address the question as to whether cancer
cell fusion represents a general and possibly evolutionary-
conserved program or rather a random process?

Keywords: fusion partners; fusogenic state; PHSP; tumor
plasticity.

1 Introduction

Continuously invasive proliferation of cancer cells is paral-
leled by interaction with surrounding tissues to establish a
dynamic tumor microenvironment (TME) in solid tumors.
Such TME represents an orchestration of the extracellular
matrix (ECM) together with various different cell types
eventually forming an organ-like entity (Egeblad et al. 2010;
Ungefroren et al. 2011). Cell populations contributing to the
TME include fibroblasts, adipose cells and stromal cells for

the tumor architecture and endothelial cells for tumor
angiogenesis to support oxygen and nutrient supply. More-
over, immune cells such as T cells, NK cells, dendritic cells,
and macrophages accumulate in this pro-inflammatory
milieu of invasive tissue lesions (Coussens and Werb 2002;
Yang and Zhang 2017). In addition, heterogeneous mesen-
chymal stroma-/stem-like cells (MSC) are predominantly
recruited to tumor sites to assist in repair activities, support
neovascularization, modulate the immune response, and
directly interact with the cancer cells (Mandel et al. 2013;
Melzer et al. 2018a). Accordingly, the TME is underlying
continuous changes based on the various TME-associated
cell populations to communicate within the TME and
mutually acquire new functions (Baghban et al. 2020; Yang
et al. 2015). This tumor-directed focus of altered cellular
functionalities enables the continuous formation of a com-
plex organ-like tumor consisting of cancer cells in distinct
states of development (differentiated, progenitor or cancer
stem-like cells) in combination with a variety of differen-
tially organized cell types. Thus, TME-associated fibroblasts
can be altered to cancer-associated fibroblasts (CAFs) by
reorganizing the tumor architecture and macrophages
acquire new properties of tumor-associated macrophages
also supporting enhanced cancer cell migration and metas-
tases (Fu et al. 2020). Likewise, endothelial colony-forming
progenitors and vascular endothelial cells within the TME
form distinct tumor-associated structures. In contrast to a
normal healthy vasculature, tumor vessels display an aber-
rant physiology due to abnormal and leaky endothelial cell
layers and an altered density (Munn 2003). This discontin-
uous endothelium in tumor vessels supplies insufficient
oxygen contributing to increased hypoxia within the TME
(Muz et al. 2015). A compartmentalization of tumor tissue
like in organs with separated local functionalities is sup-
ported by MSC. According to their tropism to tumors these
cells stimulate regions with both, tumor growth-inhibiting
and tumor growth-promoting activities depending on the
activation status and external stimuli (Hass 2020). Moreover,
MSC can contribute to the formation of flexible cancer stem
cell niches for the maintenance of cancer progenitor or
cancer stem-like cells (Melzer et al. 2017). Beside the
exchange of trophic factors and extracellular vesicles as
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external stimuli MSC also directly interact with cancer cells
at different levels of intensity. Following cell-cell attach-
ment via GAP junctions and notch signaling, MSC can form
nanotubes with cancer cells and exchange membrane
patches via trogocytosis (Melzer et al. 2016). As an ultimate
step of interaction MSC can also fuse with cancer cells to
form new cancer hybrid cells expressing new tumorigenic
and metastatic properties (Melzer et al. 2018b; Melzer et al.
2021). The possibility to form cancer hybrid cells also
applies to other populations within the TME such as CAFs or
macrophages (Clawson et al. 2015; Gast et al. 2018; LaBerge
et al. 2021; Manjunath et al. 2020b; Shabo and Svanvik 2011;
Shabo et al. 2015). In general, cell fusion represents a
physiological process required for distinct tissue develop-
ment and maintenance. However, the necessity of cancer
cell-cell fusion and contributing mechanisms are less
obvious (Dittmar and Hass 2022). On the one hand, cancer
cell-cell fusion within the TME followed by a successful
post-hybrid selection process (PHSP) increases tumor
plasticity (Hass et al. 2021a). Conversely, the fusogenecity of
cancer cells and the overall survival rate of cancer hybrids
are very low (Duelli and Lazebnik 2003; Miroshnychenko
et al. 2021). In terms of the total number of cells in the
tumor, below 0.1 to 1 % of tumor cells fuse (Fortuna et al.
1989; Gast et al. 2018; Lu and Kang 2009; Melzer et al. 2019;
Miroshnychenko et al. 2021; Powell et al. 2011; Ram-
akrishnan et al. 2013; Rizvi et al. 2006; Wakeling et al. 1994;
Yan et al. 2015). Similar amounts apply to the PHSP survival
rate of cancer hybrids, which is also far less than 1 % (Duelli
and Lazebnik 2003).

According to this negligibly low fusion ratewhydo cancer
cells fuse at all? Further distinct questions arise which will be
addressed in the present review article: Does cancer cell-cell
fusion represent a general or even evolutionary-conserved
mechanism for a facilitated adaptation to the microenviron-
ment to increase tumor plasticity andmetastatic options? Is it
a random process that occurs spontaneously in the tumor
tissue despite of tightly regulated extracellular events (Ditt-
mar and Hass 2022) paired with intrinsic molecular signaling
factors (Dittmar and Hass 2023)?

2 Cancer cell-cell fusion: a general/
evolutionary-conserved
mechanism or rather a random
spontaneous process?

Cancer cell-cell fusion is commonly associated with tumor
progression since various studies have demonstrated that

cancer hybrids exhibit an increased malignancy. This is
associated with enhanced metastatic capacity, drug resis-
tance and cancer stem/initiating cell (CS/IC) properties (for
review see: (Demin et al. 2021; Dittmar 2022; Dittmar and
Hass 2022, 2023; Hass et al. 2021a,b; Manjunath et al. 2020b;
Shabo et al. 2020; Wang et al. 2021)). Data of Gast et al., Dietz
et al., and Manjunath et al. further revealed that dissemi-
nated circulating cancer hybrids, harboring macrophages
and neoplastic cells, outnumbered conventionally defined
circulating tumor cells in cancer patients (Dietz et al. 2021;
Gast et al. 2018; Manjunath et al. 2020a). These high
numbers of circulating cancer hybrids were correlated
with advanced disease progression and overall poor prog-
nosis of pancreatic ductal adenocarcinoma patients (Gast
et al. 2018).

Various studies supported the hypothesis of cancer cell
fusion as a general and possibly evolutionary-conserved
program (Clawson et al. 2012; Dietz et al. 2021; Gast et al. 2018;
LaBerge et al. 2017; LaBerge et al. 2021; Lazova et al. 2013;
Manjunath et al. 2020a), however, evidences are not clear yet
and require further substantiation (Figure 1). In fact, cancer
cell-cell fusion appears to be a very inefficient process. As
indicated above, the overall fusion frequency of cancer cells
and the overall survival rate of cancer hybrids are both far
less than 0.1 %. Consequently, only a rare fraction of cancer
cells will be able to merge with other cells at all whereby
the majority of the emerged cancer hybrids will die due to a
failed reorganization of aneuploid chromosomal nuclei
(Dornen et al. 2020b; Duelli and Lazebnik 2003; Hass et al.
2021a; Sieler et al. 2021). Only a very rare fraction of cancer
hybrids, who have successfully passed through the PHSP,
will survive and proliferate (Hass et al. 2021a).

This inefficiency actually does not support a general
and evolutionary-conserved mechanism. Moreover, such
mechanismwould require certain conditions to initiate the
process of cell-cell merger. The chronically inflamed TME
represents awidemixture of different cell types (e.g. cancer
cells, CAFs, immune competent cells, MSC, stromal cells),
connective tissue and intercellular communication struc-
tures (gap junctions, nanotubes), extracellular vesicles/
exosomes, and soluble factors (cytokines, chemokines,
growth factors, proteases and more), all of which are
forming an interaction network (Coussens and Werb 2002;
Hass et al. 2020; Ungefroren et al. 2011; Yang and Zhang
2017). So far, inflammation/inflammatory cytokines have
been identified as well-known triggers of cell-cell fusion
(Davies et al. 2009; Johansson et al. 2008). But with regard to
cancer cell-cell fusion, the in vitro fusion frequency of
cancer cells was only moderately increased from approx-
imately 1 % to 2 % (Mohr et al. 2015; Yan et al. 2017).
Appropriate in vivo data are still missing. Similarly, the
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impact of all other cellular and humoral components of
the chronically-inflamed TME on cancer cell-cell fusion
remains unclear. Thus, if fusion of cancer cells with other
cells would be a general/evolutionary-conserved mecha-
nism, the overall fusion frequency of cancer cells would be
expected much higher, as numerous cancer cells would be
affected by these environmental conditions by changing
their functionality.

Moreover, cancer cell-cell fusion appears as a random
mixing and segregation of parental chromosomes to
daughter cancer hybrid cells, which is further associated
with massive DNA damage and induction of aneuploidy
(Dornen et al. 2020b; Hass et al. 2021a; Sieler et al. 2021).
However, it is well-known that sexual and parasexual
recombination of DNA as well as aneuploidy represent
general and evolutionary conserved mechanisms in spe-
cies development and adaptation processes (Beaupere
et al. 2018; Bennett 2015; Chunduri and Storchova 2019;
Duncan et al. 2012; Yang et al. 2019). This suggests that not
the process of cancer cell-cell fusion itself, but rather the
selection events during a subsequent PHSP are general/
evolutionary-conserved (Figure 1). Nevertheless, cell-cell
fusion is a highly complex, tightly regulated, energy
dependent, and still not fully understood process (for
review see: (Brukman et al. 2019; Dittmar and Hass 2023;
Dittmar et al. 2021; Hass et al. 2021a; Hass et al. 2021b;
Hernandez and Podbilewicz 2017; Petrany and Millay 2019;
Whitlock and Chernomordik 2021)). Therefore, it cannot
be ruled out that certain evolutionary-conserved mecha-
nisms may also play a role in cancer cell-cell fusion
after all.

Although the mixing and segregation of parental
chromosomes, DNA damages and induction of aneuploidy

appear randomized during cancer cell fusion it remains
unclear why cancer hybrids preferentially exhibit a more
malignant phenotype. At least, cancer hybrids displaying
active cell survival and/or stemness signaling pathways
may express a selection advantage for surviving the PHSP
(Figure 1).

3 The contrasting phenomenon of
high syncytin-1 expression but
low fusogenecity of cancer cells

A variety of different proteins, cytokines, chemokines,
adhesion molecules, cytoskeletal proteins, proteases, have
been associated with (cancer) cell-cell fusion. So-called
fusogens are essential for cell-cell merger as they catalyze
the fusion of two negatively charged and, thus, usually
repelling phospholipid bilayer membranes (Brukman et al.
2019; Hernandez and Podbilewicz 2017; Whitlock and
Chernomordik 2021). Considering that cancer cells can fuse
with other cells, they must express fusogens. The human
endogenous retroviral (HERV) element syncytin-1 remains
the best characterized human fusogen to date andmediates
the syncytialization of villous trophoblasts to syncytio-
trophoblasts during placentation (Durnaoglu et al. 2021;
Malassine et al. 2010). Besides, syncytin-1 is also involved in
osteoclastogenesis (Soe et al. 2011) and myogenesis (Frese
et al. 2015). Moreover, syncytin-1 has also been associated
with cancer cell-cell fusion (Benesova et al. 2017; Bjerregaard
et al. 2006; Chignola et al. 2019; Dittmar and Hass 2022; Fei
et al. 2019; Fu et al. 2021; Larsen et al. 2009; Larsson et al. 2007;
Liu et al. 2019; Strick et al. 2007; Uygur et al. 2019; Yan et al.

Figure 1: Hypothetic model of spontaneous randomized cancer cell fusion associated with the subsequent general/evolutionary-conserved PHSP
whereby a PHSPmay also apply to entosis, cannibalism, or even chromothripsis-like chromosomal aberrations/reorganization (adapted from (Hass et al.
2021a)).
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2017; Yu et al. 2014). Whether cancer cell-cell fusion is also
mediated by fusogens other than syncytin-1 is unknown,
since this has not yet been investigated.

Even though physiological cell-cell fusion events and
the merger of cancer cells appear to be different in terms of
induction, regulation and outcome of evolving hybrids,
they represent mechanistically similar conserved pro-
cesses (Brukman et al. 2019; Dittmar and Hass 2022; Dittmar
and Hass 2023; Hernandez and Podbilewicz 2017; Whitlock
and Chernomordik 2021). Cell merger is a multifactorial
process and depends on the concerted interplay of the
phospholipid phosphatidylserine and various proteins,
including fusogens, cell adhesion molecules, cytokines,
chemokines, cytoskeletal proteins and proteases (Brukman
et al. 2019; Dittmar and Hass 2022; Dittmar and Hass 2023;
Hernandez and Podbilewicz 2017; Whitlock and Cherno-
mordik 2021). Thus, the knowledge how physiological cell-
cell fusion processes are directed and running might be
helpful for the understanding how the merger of cancer
cells is facilitated.

As physiological examples for cell fusion placentation
and myogenesis represent tightly regulated and highly effi-
cient fusion process during embryonic development (Cheng
et al. 2014; Isobe et al. 2022; Johnson et al. 2021; Quinn et al.
2017). Placentation is characterized by formation of high
numbers of multinucleated cells which is attributed to a
continuous expression of syncytin-1 in villous cytotropho-
blasts until about 37 weeks of gestation (Chen et al. 2006).
Similarly, a peak expression of fusion relevant proteins and
generation of multinucleated muscle fibres was observed
during muscle development in animal studies (Chen et al.
2020). This indicates that cells in a physiological context
could become fusogenic at a certain point of time due to an
inherent up-regulation of fusion relevant protein expres-
sion, such as fusogens. Similarly, they retain to a non-
fusogenic state later, which is related to down-regulation of
the cellular fusion machinery. Whether this turn on/turn off
characteristic of physiological cell merger also applies to
cancer cells is not clear. Previouswork suggested that cancer
cell-cell fusion is facilitated by syncytin-1 (Benesova et al.
2017; Bjerregaard et al. 2006; Chignola et al. 2019; Dittmar
and Hass 2022; Fei et al. 2019; Fu et al. 2021; Larsen et al. 2009;
Larsson et al. 2007; Liu et al. 2019; Strick et al. 2007; Uygur
et al. 2019; Yan et al. 2017; Yu et al. 2014) indicating that
syncytin-1 expression was induced in cancer cells. However,
the underlying mechanism is still unclear.

Thus, the knowledge how syncytin-1 expression in
placental cells is induced and terminated might be helpful
for the development of anti syncytin-1 expression strategies
in cancer cells. Briefly, this applies as well to other fusion
relevant proteins.

The fact that increased syncytin-1 expression levels
were found in different cancer cells/tissues (Bjerregaard
et al. 2006; Chignola et al. 2019; Fei et al. 2019; Fu et al. 2021;
Liu et al. 2019; Strick et al. 2007; Yan et al. 2017) suggests that
this fusogen might also be significantly involved in cancer
cell-cell fusion. However, the degree of syncytin-1 expression
in cancer cells/tissues does not correlate with the overall
very weak fusogenecity of the cells, which is below 0.1–1 %
(Fortuna et al. 1989; Gast et al. 2018; Lu and Kang 2009;
Melzer et al. 2019; Miroshnychenko et al. 2021; Powell et al.
2011; Ramakrishnan et al. 2013; Rizvi et al. 2006; Wakeling
et al. 1994; Yan et al. 2015). Likewise, little if anymultinuclear
cancer cells were found in cancer biopsies despite increased
syncytin-1 expression levels (Benesova et al. 2017; Bjerre-
gaard et al. 2006; Fei et al. 2019; Fu et al. 2021; Liu et al. 2019;
Uygur et al. 2019; Yu et al. 2014; Zhou et al. 2021).

This raises the question why the overall fusogenecity of
cancer cells remains rather low despite enhanced syncytin-1
expression levels? Cell-cell fusion is a multifactorial process
and depends on the interaction of different proteins/factors
in a timely coordinated manner. If fusion-relevant compo-
nents are missing, mutated or masked, the merger of two
cells cannot take place. Interestingly, syncytin-1 or syncytin
homologous proteins, respectively, were mainly detectable
in the cytoplasm and only slightly in the plasma membrane
of cancer cells (Bjerregaard et al. 2006; Chignola et al. 2019;
Fei et al. 2019; Fu et al. 2021; Liu et al. 2019; Strick et al. 2007;
Yan et al. 2017). Since syncytin-1 only exhibits fusogenic
properties when it is localized in the cell membrane, this
could be one possible explanation for the low fusion fre-
quency of cancer cells.

The processes by which syncytin-1 translocates to the
plasma membrane are unclear. Cellular stresses, such as
irradiation, may promote this translocation, but even then
only a few cancer cells have fused (Chignola et al. 2019).
Hypoxia and TME-related (pro-inflammatory) conditions
can both trigger cancer cell-cell fusion (Huang et al. 2018;
Mohr et al. 2015; Yan et al. 2017), but it remains unknown
whether these conditions support syncytin-1 translocation to
the plasma membrane of cancer cells. Interestingly, both
syncytin-1 expression and syncytialization of trophoblasts
were markedly diminished under hypoxic conditions (Alsat
et al. 1996; Kudo et al. 2003). Thus, it cannot be ruled out that
cancer cells in neoplastic tissues respond differently to
hypoxia and syncytin-1 expression when compared to
normal trophoblasts.

Studies in astrocytes and muscle cells revealed that
sycncytin-1 impaired the expression of its own receptor
alanine, serine, cysteine transporter 2 (ASCT2), which was
associated with a decreased fusion frequency (Antony et al.
2007; Frese et al. 2015). It remains to be clarified whether a
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similar mechanism might exist in syncytin-1 expressing
cancer cells. Indeed, markedly lower ASCT2 expression
levels were observed in the syncytin-1 overexpressing cell
line M13_Syn1 as compared to wildtype human M13SV1
breast epithelial cells (Figure 2). In contrast, high ASCT2 and
moderate syncytin-1 expression levels were observed in
MDA-MB-231, MDA-MB-435S and HS578T human breast
cancer cells (Figure 2). Nonetheless, the overall fusion fre-
quency of these cells was only about 1 % (Mohr et al. 2015),
which was most likely attributed to cytosolic localization of
syncytin-1.

4 Cell-cell fusion independent
effects of syncytin-1 on cancer
progression

Syncytin-1 in cancer cells is commonly associated with cell-
cell merger due to its fusogenic properties. However, recent
findings indicate that proliferation, invasion, metastasis
and immune escape of cancer cells are also positively
triggered by syncytin-1, which is in line with other HERV
elements, such as HERV-K (HML-2) (Gao et al. 2021; Liu et al.
2019; Strick et al. 2007; Zhou et al. 2021) (Dervan et al. 2021;
Meyer et al. 2017). This may attribute possible cell-cell
fusion independent effects of syncytin-1 on cancer

progression. Thus, alternative to its involvement in the
fusion of cancer cells and other cells, syncytin-1 also con-
tributes to cellular processes that have a direct impact on
tumor growth andmetastasis. This assumption is in further
agreementwith the positive correlation between syncytin-1
expression in tumor tissues, disease progression and
overall poor prognosis (Benesova et al. 2017; Fu et al. 2021;
Liu et al. 2019; Uygur et al. 2019; Yu et al. 2014; Zhou et al.
2021). While a cytosolic localization of tumor-promoting
syncytin-1 effects needs to be verified, these data could
indicate alternative syncytin-1 functions according to the
intracellular localization in cancer cells.

5 Wound healing-driven cancer
cell-cell fusion

With regard to cell-cell fusion in tumors it is commonly
assumed that cancer cells “actively” fuse with normal cells.
However, as summarized above with high syncytin-1
expression levels but low fusion frequencies of cancer cells
theremight be further alternative pathways that can explain
the fusion of cancer cells with other cells.

The TME resembles chronically inflamed tissue (Balk-
will and Mantovani 2001; Dvorak 1986; Mantovani et al.
2008) and various pro-fusogenic cell types, such as fibro-
blasts, macrophages, bone marrow-derived cells (BMDCs)
and MSC (Clawson et al. 2015; Dietz et al. 2021; Dornen et al.
2020a; Gast et al. 2018; Hass et al. 2019; Kemeny et al. 2016;
Lizier et al. 2016; Melzer et al. 2018c; Shabo et al. 2015; Sottile
et al. 2016) accumulate within this pro-inflammatorymilieu
of invasive tissue lesions (Coussens andWerb 2002; Mandel
et al. 2013; Melzer et al. 2018a; Yang and Zhang 2017). In this
regard, it is well-known thatMSC, BMDCs andmacrophages
can regenerate damaged tissues by cell-cell fusion and that
this process is triggered by inflammation (Camargo et al.
2004; Davies et al. 2009; Ferrand et al. 2011; Johansson et al.
2008; Silk et al. 2013; Vassilopoulos et al. 2003; Wang et al.
2003; Willenbring et al. 2004). Accordingly, MSC, BMDCs
and macrophages recruited to the TME may recognize
damaged cancer cells and try to regenerate themby cell-cell
fusion. Tissue regeneration by cell merger represents an
universal process. MSC, BMDCs and macrophages are not
able to distinguish between damaged normal cells/tissue
and damaged cancer cells/tumor tissue and exhibit their
regenerative capacity according to the requirements of the
damaged tissues (Dittmar and Zanker 2015; Dittmar et al.
2006; Hass and Otte 2012; Melzer et al. 2016). Moreover,
MSC, BMDCs and macrophages have all been identified as
fusion partners for cancer cells (Clawson et al. 2015; Dietz

Figure 2: Syncytin-1 and ASCT2 expression in human breast epithelial
cells and different cancer cell lines. All wildtype cells possess comparable
syncytin-1 expression levels, whereas ASCT2 was predominantly
expressed in cancer cells. M13_ASCT2KO cells lack ASCT2 expression due
to previous CRISPR/Cas knockout. Interestingly, overexpression of
syncytin-1 in M13SV1 breast epithelial cells (M13_Syn1) was associated
with a markedly reduced ASCT2 expression.
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et al. 2021; Dornen et al. 2020a; Gast et al. 2018; Hass et al.
2019; Kemeny et al. 2016, Lizier et al. 2016; Melzer et al.
2018c; Shabo et al. 2015; Sottile et al. 2016). Whether this
possible mechanism would be independent of syncytin-1
expression in cancer cells remains to be explored. So far, it
is only known that MSC, BMDCs and macrophages could
regenerate damaged tissues by cell merger and this process
is triggered by inflammation. However, which fusion-
relevant proteins/factors are expressed byMSC, BMDCs and
macrophages, how the cell fusion machinery is induced in
these cells and how damaged cancer cells are recognized by
them remains completely unknown.

6 Conclusions

In this review, we tried to address the questions whether
fusion of cancer cells might be a general/evolutionary-
conservedmechanism and if so, why only a certain fraction
of cancer cells alter their functionality and fuse. Although
some studies revealed that (circulating) tumor hybrids
were found in cancer patients and correlated with disease
stage and tumor progression (Dietz et al. 2021; Gast et al.
2018; Manjunath et al. 2020a), these cases are too rare to
conclude that cell-cell merger could be general/evolu-
tionary conserved mechanism in cancer. In addition, the
process of fusion of cancer cells is very inefficient, as both
the fusion rate and the survival rate are very low.
Undoubtedly, this contributes to intratumoral heterogeneity
and increased tumor plasticity. However, with a general/
evolutionary conserved process, it would be expected that
more cancer cells should fuse and more tumor hybrids
should survive. On the other hand, the process of cell-cell
fusion remains scarcely understood, and many processes
and regulatory mechanisms have not yet been discovered.
Nonetheless, it might be speculated whether evolutionary-
conserved processes that enable cells to survive under
adverse conditions might help tumor hybrids to successfully
survive the PHSP (Figure 1).

Due to its fusogenic properties expression of syncytin-1
in cancer cells is commonly associated with cell-cell
merger, but the overall high syncytin-1 expression levels
are in contrast to the overall weak fusogenecity of the
cancer cells (Dittmar and Hass 2023). This may be due to the
fact that syncytin-1 is predominantly localized in the cyto-
plasm and hardly in the plasma membrane of cancer cells.
Why cancer cells express syncytin-1 andwhy themajority is
present in the cytoplasm is poorly understood. The same is
true for those processes that control translocation of
syncytin-1 to the plasma membrane, which again occurs
only in a certain subpopulation of cancer cells. Recent

studies suggest cell-cell fusion independent processes
controlled by syncytin-1, such as proliferation, metastasis
and immune escape. But again, these cases are too rare to
conclude a generalized mechanism.

MSC, BMDC and macrophages represent an alternative
source of fusogenic cells that could merge with cancer cells.
Their fusogenecity and tissue restoration capacity has been
demonstrated in several studies and also in the chronically-
inflamed TME.

Nevertheless, the fusion of cancer cells with other cell
types is still scarcely understood and demands further
research activities.
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