Supplemental Information: ATP binding and ATP hydrolysis in full-length MsbA monitored via time-resolved Fourier transform infrared spectroscopy Daniel Mann^{1,2}, Kristin Labudda^{1,4}, Sophie Zimmermann¹, Kai Vocke¹, Raphael Gasper^{1,3}, Carsten Kötting^{1,4} * and Eckhard Hofmann¹ * ¹ Department of Biophysics, Ruhr University Bochum, 44780 Bochum, Germany ² Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C-3): Structural Biology, 52425 Jülich, Germany ³ Max-Planck-Institute of Molecular Physiology, 44227 Dortmund, Germany ⁴ Biospectroscopy, Center for Protein Diagnostics (PRODI), Ruhr University Bochum, 44780 Bochum, Germany * shared corresponding authors Running title: FTIR of full-length MsbA To whom correspondence should be addressed: Prof. Dr. Eckhard Hofmann, Protein Crystallography, Department of Biophysics, Ruhr- University Bochum, Universitätsstraße 150, 44780 Bochum, Germany, Telephone (+49)234 32 24463, E-mail: eckhard.hofmann@ruhr-uni-bochum.de Dr. Carsten Kötting, Department of Biophysics, Ruhr University Universitätsstraße 150, 44780 Bochum, Germany, Telephone (+49)234 32 18069, E- mail: carsten.koetting@ruhr-uni-bochum.de Figure S1: Valence structures of the photocaged nucleotides that were utilized in this study. The photolabile NPE and pHP groups at the terminal phosphate of ATP, ADP and AppNHp were cleaved with a UV laser flash at 308 nm. Figure S2: Asymmetric stretching vibrations of a/b/g-ATP and a/b-ADP and their corresponding atom displacement vectors. The depicted vibrations typically dominate the FTIR difference spectrum due to their high transition dipole moment.