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Abstract: Na+/taurocholate cotransporting polypeptide
(NTCP) is a member of the solute carrier (SLC) family 10
transporters (gene symbol SLC10A1) and is responsible
for the sodium-dependent uptake of bile salts across the
basolateral membrane of hepatocytes. In addition to its
primary transporter function, NTCP is the high-affinity
hepatic receptor for hepatitis B (HBV) and hepatitis D (HDV)
viruses and, therefore, is a prerequisite for HBV/HDV virus
entry into hepatocytes. The inhibition of HBV/HDV binding
to NTCP and internalization of the virus/NTCP receptor
complex has become amajor concept in the development of
new antiviral drugs called HBV/HDV entry inhibitors.
Hence, NTCP has emerged as a promising target for thera-
peutic interventions against HBV/HDV infections in the last
decade. In this review, recent findings on protein–protein
interactions (PPIs) between NTCP and cofactors relevant
for entry of the virus/NTCP receptor complex are summa-
rized. In addition, strategies aiming to block PPIs with NTCP
to dampen virus tropism and HBV/HDV infection rates are
discussed. Finally, this article suggests novel directions for
future investigations evaluating the functional contribu-
tion of NTCP-mediated PPIs in the development and pro-
gression of HBV/HDV infection and subsequent chronic
liver disorders.

Keywords: bile salt transport; entry inhibitor; HBV; NTCP;
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1 Introduction

The hepatitis B virus (HBV) belongs to the Hepadnaviridae
family and infects hepatocytes of humans, nonhuman pri-
mates (chimpanzee, gorilla, orangutan, gibbon), and two
other small mammals (tree shrew and woodchuck) (Bon-
vicino et al. 2014). The HBV infection of humans can be
either transient (<6 months) or chronic and lifelong,
depending on the ability of the host immune response to
clear the infection. This is accompanied by hepatitis and
liver dysfunction. Furthermore, the disease can progress to
chronic infection, cirrhosis, or even hepatocellular carci-
noma (Iannacone and Guidotti 2022; Yuen et al. 2018).
According to the latest global epidemiological statistics,
about 250 million people are chronically infected with HBV,
associated with approximately 1 million lethal cases per
year due to liver failure, fibrosis, and cancer. About 5% of
all chronic HBV carriers are additionally infected with the
hepatitis D virus (HDV), a satellite virus of HBV that bears
the identical envelope proteins. The coinfection of HBV
carriers with HDV causes a more rapid disease progression
and increased mortality rates (Hughes et al. 2011). Based on
this, HBV/HDV infections are considered to be a severe
global health problem (Polaris Observatory 2018).

Although the current anti-HBV therapies are complex
and result in the suppression of HBV replication in the ma-
jority of patients, HBV surface antigen loss and serocon-
version are rarely successful despite long-term antiviral
treatment (Kim et al. 2022). In addition, therapeutic options
against HDV infection are greatly limited. Therefore, there is
an unmet globalmedical need in drug development for novel
potent anti-HBV and -HDV drugs. Strategies targeting the
virus entry process, inter alia, are promising for combina-
tion therapies (Kim et al. 2022; Mokaya et al. 2018).

Due to its distinct tissue tropism and the highly specific
viral and cellular factors involved in virus entry, HBV/HDV
infections are ideal candidates for pharmacological entry
inhibition (Kirstgen et al. 2021a,b; Lucifora et al. 2013;
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Nkongolo et al. 2014; Schulze et al. 2007, 2010). In the last few
years a number of pharmacological studies have already
addressed this strategy, mostly by blocking the interaction
of virus surface proteins with the host receptor Na+/taur-
ocholate cotransporting polypeptide (NTCP) (Nkongolo
et al. 2014; Schulze et al. 2010;Watashi et al. 2014). Following
this concept, bulevirtide (Hepcludex®, formerly known as
Myrcludex B) recently received conditional approval from
the European Medicines Agency as a treatment option for
HDV infections, and, thus, represents the first-in-class entry
inhibitor acting via NTCP inhibition (Bogomolov et al. 2016;
Petersen et al. 2008). Myrcludex B is a synthetic peptide
mimicking the preS1-domain of the HBV envelope L-protein,
and, by high-affinity binding to NTCP, prevents virus-NTCP
complex formation and virus entry into hepatocytes
(Petersen et al. 2008; Tsounis et al. 2021). Since these pro-
cesses depend strongly on many host-derived proteins that
form a protein complex with NTCP, a better understanding
of the NTCP structure and protein–protein interactions
(PPIs) between NTCP and relevant entry cofactors will help
to identify and design novel targets for virus entry inhibition
(Fukano et al. 2021; Gad et al. 2022; Hu et al. 2020; Iwamoto
et al. 2019; Palatini et al. 2022, 2021).

2 NTCP structure and functions

2.1 NTCP structure

Insights into the structure and transportmechanismofNTCP
have come from various sources in the past 20 years: (1)
single point mutation studies on human NTCP or rat Ntcp
and their functional characterization (Fu et al. 2017; Ho et al.
2004; Ruggiero et al. 2021; Saeki et al. 2002; Yan et al. 2012,
2013; Zahner et al. 2003; Zakrzewicz et al. 2022); (2) X-ray
crystal structures of two prokaryotic homologues of NTCP,
named ASBTNM (Hu et al. 2011) and ASBTYf (Zhou et al. 2014);
(3) AlphaFold protein structure prediction of human NTCP
(Varadi et al. 2022; Zakrzewicz and Geyer 2022) and (4) very
recently, four independent cryo-electron microscopy (cryo-
EM) structures of human NTCP (Asami et al. 2022; Goutam
et al. 2022; Liu et al. 2022; Park et al. 2022). In the following,
only the crystal structures of the bacterial ASBT proteins and
the cryo-EM structures of human NTCP are described more
in detail.

The ASBTNM structure (PDB: 3ZUY) adopts an inward-
facing conformation with one taurocholic acid molecule and
two Na+ ions bound (Hu et al. 2011). Regarding ASBTYf, an
inward-facing apo conformation (PDB: 4N7W) was obtained
for the wild-type protein and an apo outward-facing struc-
ture for an E254A mutant that destroys one of the Na+

binding sites (PDB: 4N7X) (Zhou et al. 2014). All three struc-
tures exhibit similar membrane topology with 10 trans-
membrane domains (TMDs) and cytoplasmic N- and
C-termini. The TMDs 1–5 and 6–10 are topologically similar
but oppositely orientated within the membrane, revealing
an internal two-fold pseudosymmetry. Each repeat unit has
an N-terminal V-shaped motif made of TMDs 1 and 2, as well
as TMDs 6 and 7, respectively. These motifs (TMDs 1, 2, 6, 7)
form the panel domain of the protein. In addition, each
repeating unit contributes to the core domain of the protein
with TMDs 3–5 and 8–10, respectively. Within the core
domain, TMDs 4 and 9 are discontinuous and cross each
other (Hu et al. 2011; Zhou et al. 2014). Both inward and
outward open conformations of the bacterial ASBT proteins
have been confirmed by different disulfide cross-linking
mutants of ASBTYf. These revealed 4N7W-like inward-facing
conformations for Y113C/P190C (PDB: 7CYG) and V110C/197C
(PDB: 7CYK) mutants in the free form, and a 4N7X-like
outward-facing conformation in the cysteine cross-linked
form of the Y113C/P190C mutant (PDB: 6LH1) (Wang et al.
2021a). In addition, two inward-facing 4N7W-like structures
were generated from the P10C/S291C mutant ASBTYf protein
after cysteine cross-linking in the apo state (PDB: 6LH0) and
with glycine and two Na+ ions bound (PDB: 6LGY) (Wang
et al. 2021b).

The recent cryo-EM structures of human NTCP show a
high similarity with these bacterial ASBT structures
(Figure 1A) (Asami et al. 2022; Goutam et al. 2022; Liu et al.
2022; Park et al. 2022). All are organized in similarly struc-
tured core and panel domains andmost residues interacting
with the sodium ions are highly conserved (see below).
However, two striking differences occur. (I) The TMD 1 of the
bacterial proteins is missing in all human NTCP structures.
Instead, the N-terminus is at the extracellular side and the
panel domain has only three TMDs, namely, 1, 5, and 6. The
core domain is composed of TMDs 2–4 and 7–9, and TMDs 3
and 8 represent the discontinuous helices that cross over in
the middle of the membrane. Consequently, the human
NTCP protein opens a large amphiphilic cavity framed by
TMDs 6 and 9 to the cytoplasm and laterally to the hydro-
phobic core of the plasma membrane (Asami et al. 2022;
Goutam et al. 2022; Liu et al. 2022). This laterally open cavity
is covered by TMD 1 in all bacterial ASBT proteins. (II) In
addition to one inward-facing conformation stabilized by
nanobody Nb87 (PDB: 7PQG (Goutam et al. 2022)) and several
outward-facing conformations of the wild-type NTCP (PDB:
7WSI (Asami et al. 2022); PDB: 7FCI (Park et al. 2022)) or its
Q261A mutant (PDB: 7VAD (Asami et al. 2022)), two of the
structures were surprisingly captured in an open-pore
conformation (PDB: 7PQQ (Goutam et al. 2022); PDB: 7ZYI
(Liu et al. 2022)). One of these structures was stabilized by
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nanobody Nb91 (Goutam et al. 2022) and opened a wide pore
through the transporter, exposing the sodium binding sites
near the crossover region of TMDs 3 and 8 simultaneously to
both sides of the membrane (Goutam et al. 2022). The other
open-pore structurewas resolved by Liu et al. and revealed a
tunnel through the protein connecting the extracellular
milieu to the cytosolic site and laterally to the inner leaflet of
the bilayer (Liu et al. 2022). At the narrowest section of this
tunnel, two strong EM densities were visible that were
interpreted as two bile salt molecules sitting at two distinct
binding sites (Sout and Sin) inside of the tunnel. This open
pore conformation and the double binding site for bile salts
are in clear contrast to the bacterial ASBT proteins that all
contain a narrow pocket for only one single bile salt
molecule that is shielded from either the extracellular side
(inward-facing conformation) or the intracellular milieu
(outward-facing conformation). The physiological rele-
vance of this open-pore conformation state of human NTCP
in the bile salt transport cycle is still controversial and
needs further investigation.

The core and panel domains within NTCP are con-
nected by a cytoplasmic α-helical “bridge” located between

TMDs 1 and 2 (Figure 1A) (Asami et al. 2022; Liu et al. 2022;
Park et al. 2022) and a flexible extracellular fragment
bridging TMDs 6 and 7 (Goutam et al. 2022). These two
structural elements are also present in other SLC trans-
porters, such as the proton-coupled oligopeptide transporter
family SLC15 (Killer et al. 2021). Although the functional role
of these elements is unclear, they might take part in lipid
sensing or PPIs (Killer et al. 2021). In addition, they are
probably involved in the conformational changes during the
transport cycle bymoving the panel domain against the core
domain (Goutam et al. 2022). It is imaginable that this
movement contributes to the transport process of bile salts
from the extra- to the intracellular side of hepatocytes, a
process that is strictly dependent on sodium cotransport.
The NTCP transports two sodium ions together with each
bile salt molecule (Hagenbuch and Meier 1996; Weinman
et al. 1998). Previous biochemical and structural studies on
the bacterial ASBT proteins have identified several highly
conserved amino acids that are essentially involved in the
binding and translocation of Na+ ions. Two sodium binding
sites conserved among the bacterial ASBT proteins and
NTCP have been identified: Na1 formed by S105, N106, S119,

Panel domain Core domain

180°
90°

S267
Cavity

Y146 R84-N87

K157-L165

G158

90°

G158

K157-L165 R84-N87

Na+

G158

K157-L165

Y146

Cavity

Na+

Panel domain Core domain

A

B
R84-N87

G158

Figure 1: Na+/taurocholate cotransporting polypeptide (NTCP) is a sodium-dependent bile salt transporter and high-affinity hepatitis B/D virus (HBV/
HDV) receptor. (A) Schematic representation and membrane topology of human NTCP and its nine transmembrane domains (TMDs I–IX), which form a
panel domain (TMDs I, IV and V) and a core domainwith two inverted triple-helix repeats (TMDs II–IV and VII–IX). Two sodium ions are colored purple. The
cell surface-exposed virus preS1-peptide binding regions of human NTCP are highlighted: 157KGIVISLVL165, 84RLKN86, and Y146. (B) Transparent surface
presentation of human NTCP (PDB: 7ZYI). Amino acids involved in preS1-peptide binding are labeled. Amino acid position S267 that is relevant for bile salt
binding and transport is indicated. The glycine at position 158 that is essential for preS1-peptide binding is highlighted in red.
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T123, and E257 in human NTCP, as well as by S114, N115,
S128, T132, and E260 in ASBTNM; Na2 formed by Q68 and
Q261 in human NTCP, as well as by Q77 and Q264 in ASBTNM
(Hu et al. 2011; Liu et al. 2022). Both Na+ binding sites are
near the crossing motif of TMDs 3 and 8 in NTCP, or TMDs 4
and 9 in ASBTNM, respectively (Figure 1A) (Asami et al. 2022;
Goutam et al. 2022; Liu et al. 2022; Park et al. 2022).

2.2 NTCP functions

2.2.1 NTCP is a bile salt transporter

The NTCP is a multitasking membrane protein, which plays
fundamental roles in the physiological hepatic bile salt
transport, the development and progression of cholestatic
liver diseases, and HBV/HDV virus entry into hepatocytes
(Anwer and Stieger 2014; Appelman et al. 2021; Döring et al.
2012; Jetter and Kullak-Ublick 2020; Salhab et al. 2022). Its
primary function is related to bile salt transport across the
sinusoidal membrane of hepatocytes and, thereby, the
regulation of bile salt concentrations in the peripheral blood
circulation (Kullak-Ublick et al. 2000; St-Pierre et al. 2001; Vaz
et al. 2015). Uptake of bile salts into hepatocytes occurs
largely in a sodium-dependent manner via NTCP (Hagen-
buch and Meier 1996; Weinman et al. 1998). Nearly all
physiological bile acids are substrates of NTCP, including
cholic acid, chenodeoxycholic acid, deoxycholic acid, urso-
deoxycholic acid, sarcosine cholic acid, glycocholic acid,
glycochenodeoxycholic acid, glycodeoxycholic acid, glyco-
ursodeoxycholic acid, taurocholic acid, taurochenodeox-
ycholic acid, taurodeoxycholic acid, tauroursodeoxycholic
acid, and taurolithocholic acid. In addition, sulfated steroid
hormones, such as estrone-3-sulfate, dehydroepiandroster-
one sulfate, and pregnenolone sulfate, as well as sulfated
jodothyronines are transported via NTCP (Grosser et al. 2018,
2021; Hagenbuch et al. 1991; Kersseboom et al. 2017;
Schroeder et al. 1998; Visser et al. 2010). The NTCP also
transports some clinically used drugs, such as rosuvastatin,
pitavastatin, fluvastatin, and atorvastatin (Bi et al. 2013;
Fujino et al. 2005; Greupink et al. 2011; Ho et al. 2006). In
addition, NTCP transports the drug conjugate taurocholate-
chlorambucil (Kullak-Ublick et al. 1997).

Based on the resolved structural conformations of
the bacterial ASBT proteins and human NTCP, different
transport-associated dynamics have been proposed for these
SLC10 proteins. Some of them are described here. Jardetzky
proposed an alternating-access mechanism to describe the
transporter-mediated movement of substrates across the
plasma membrane more than 50 years ago (Jardetzky 1966).
According to this model, a membrane carrier alternates

between an outward open and an inward open state, in
which the centrally located substrate binding site is acces-
sible to either the outside or inside of the cell. In addition,
occluded conformational states have been described for
many membrane carriers, in which the substrate binding
site is inaccessible from either side of the membrane
(Quistgaard et al. 2016). In the case of sodium-dependent
cotransporters, both outward and inward conformations are
expected to be fully thermodynamically reversible, whereby
the directionality of the substrate flux is determined by the
combined electrochemical potential of the substrate and
the co-substrate (Drew and Boudker 2016). In the case of the
bacterial proteins ASBTNM and ASBTYf, the transition
between the resolved inward-facing (PDB: 4N7W, 3ZUY,
7CYG, 7CYK, 6LH0) and outward-facing (PDB: 4N7X, 6LH1)
conformations best reflects an alternating access mechanism
previously described as an elevator-type transport mecha-
nism (Garaeva and Slotboom 2020; Wang et al. 2021a,b; Zhou
et al. 2014). During this elevator-like conformational transi-
tion, the substrate binding site that is mostly confined to the
core domain (also called the transport domain) undergoes a
large rigid-body rotation against the relatively immobile
panel domain (also called the scaffold domain) (Drew and
Boudker 2016). Itwas proposed for the bacterialASBTproteins
that the two Na+ ions and the bile salt molecule bind to
binding sites near the crossover region of TMDs 4 and 8. These
binding sites have alternating access to the extra- and intra-
cellular milieu in the outward- and inward-facing confor-
mations, respectively. During the transport cycle, the Na+

ions might bind first, thereby, facilitating bile salt binding
to the dual-accessibility region. Alternatively, the bile salt
molecule might bind first and subsequent sodium binding
induces transition to the inward-facing conformation,
from where both substrates are released to the intracel-
lular milieu. Finally, release of the substrates might turn
the transporter back to its outward open conformation
(Lu et al. 2021; Wang et al. 2021a,b; Zhou et al. 2014). During
the transport cycle, the Na+ ions seem to bind to several
different binding sites along their ion translocation path
(Alhadeff et al. 2015) and the bile salt molecule occupies an
additional inward-facing binding site, before it is released
to the intracellular milieu (Hu et al. 2011).

Cryo-EM structures on human NTCP have provided
deeper insight into the conformational transitions of this
humanproteinmore recently. In analogy to the inward-facing
structures of ASBTNM and ASBTYf, human NTCP in complex
with nanobody Nb87 adopted an inward-facing state,
where the core and panel domains are tightly packed
against each other on the extracellular side of the mem-
brane, thereby, occluding the cavity from the outside
(Goutam et al. 2022). In addition, the Q261A Na+ binding site
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mutation of human NTCP, in analogy to the E254Amutation
of ASBTYf, revealed an outward open conformation (Asami
et al. 2022). This conformation was also obtained fromwild-
type human NTCP (Asami et al. 2022; Park et al. 2022). The
transition between these inward- and outward-facing
conformations of human NTCP would fit well with an
elevator-type accessible transport mode of NTCP, as pre-
viously described for the bacterial homologues. However,
when the NTCP was reconstituted in nanodisc structures
and complexed with nanobody Nb91 for cryo-EM, it
revealed an open-pore conformation (Goutam et al. 2022).
Such an open-pore conformation was also found by Liu
et al., with the nanodisc reconstituted NTCP complexed
with Fab12 (Liu et al. 2022). This conformation is apparently
in conflict with the typical alternating-access transport
mechanisms supported by the inward- and outward-facing
conformations of the bacterial ASBT proteins and some of
the human NTCP structures. Finally, it is not clear whether
this open-pore conformation represents an intermediate
state of the protein between the outward and inward open
conformation. Furthermore, it is unclear how such a
conformation would support thermodynamically active
transport.

However, based on these structural realities, two
different transport mechanisms have been proposed.
Goutam et al. indicated a relatively large cavity between the
core and the panel domains in the inward-facing state,
forming an amphiphilic open pore for bulky bile salt inte-
gration and translocation (Goutam et al. 2022). Thereby,
more subtle conformational changes between the core and
panel domains, namely, a transition to the open-pore
conformation, may actively drive the transport of one bile
salt molecule together with 2 Na+ ions through the protein
(Goutam et al. 2022; Park et al. 2022). According to this hy-
pothesis, this pore is transiently open in the presence of
substrate and the thermodynamically coupled sodium and
closes upon release of the substrates into the cytoplasm in
the inward-facing state. Another proposed transport
mechanism of NTCP is purely based on the open pore
conformation of the protein (Liu et al. 2022). Accordingly,
one bile salt molecule binds to Sout and, thereby, prevents
Na+ ion leakage by sealing the open pore. Subsequently, this
bile salt molecule is shifted from Sout to Sin, while the
transporter is reloading two sodium ions and one addi-
tional bile salt molecule to Sout from the outside. Then, only
the bile salt molecule bound to Sin is released together with
the two Na+ ions to the intracellular milieu, while the bile
salt molecule at Sout still prevents ion leakage. In this sce-
nario, smaller conformational changes driven by the
downhill Na+ gradient are sufficient to move the substrate
through the tunnel structure (Liu et al. 2022).

However, it has to be emphasized that such an open-pore
state, in which the substrate binding sites are accessible
from both sides of the membrane, is quite unusual for an
active transporter. In almost all other membrane carriers,
simultaneous access from both sides of themembrane to the
substrate-binding site is excluded by strict conformational
transition between inward- and outward-facing conforma-
tions that allow alternating access of the substrate to a
central binding site (Drew and Boudker 2016).

In addition, it has to be emphasized that NTCP and
bacterial ASBT are the only elevator-like proteins proposed
for which only monomeric crystal and cryo-EM structures
have been determined. Supposing an elevator-like transport
mechanism, it is still unclear whether the panel domain in
NTCP, ASBTNM, and ASBTYf is enough to anchor and support
elevator-like structural transitions of the large 6 TMD core
domain on its own.

2.2.2 NTCP is the high-affinity HBV/HDV entry receptor

During the life cycle of HBV in infected hepatocytes, the
circular, partially double-stranded virion DNA is converted
in the host nucleus to a covalently closed circular DNA that
assembles into a minichromosome, the template for viral
mRNA synthesis (Tsukuda and Watashi 2020). At the same
time, envelope proteins enter the endoplasmic reticulum
and assemble into subviral particles or transfer to multi-
vesicular bodies where the virion is assembled and released
by exosomes (Iannacone and Guidotti 2022; Yuen et al. 2018).
The HBV surface consists of three envelope proteins called
large (L), medium (M), and small (S), which are essential for
virus attachment to hepatocytes in the initial infection
process. The C-terminal S-domain is common to all three
envelope proteins. The M-protein also contains an extra
N-terminal preS2-domain, and the L-protein comprises a
preS1-domain in addition to the preS2- and S-domains
(Iannacone and Guidotti 2022; Yuen et al. 2018). The HDV, as
an HBV satellite virus, depends on the HBV surface proteins
for packing, release, and transmission. Accordingly, HDV
also bears the preS1 domain-containing L-protein that is
essential for the interaction with NTCP.

The HBV/HDV entry into hepatocytes is a multistep
process and consists of the following general phases:
(a) heparan sulfate proteoglycan-dependent low affinity
attachment of HBV/HDV to the cell surface of hepatocytes;
(b) high-affinity binding to extracellular domains of
NTCP; (c) endocytosis of the virus-receptor complex; and
(d) endosomal escape of the virion (Figure 2) (Herrscher
et al. 2020a, b; Yan et al. 2012). The most recent milestone in
understanding the HBV/HDV entry process was the identi-
fication of NTCP as the high-affinity entry receptor for HBV
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in 2012 (Yan et al. 2012) and for HDV in 2013 (Drexler et al.
2013). Thereby, the 2–48 N-terminal amino acids of the
myristoylated preS1-domain of the large HBV surface pro-
tein (myr-preS12–48) are absolutely essential for virus
interaction with NTCP (Meier et al. 2013; Petersen et al.
2008).

Although several cryo-EM structures of human NTCP
have recently been reported (see above), the structural
insights into the virus-NTCP interactions and exact virus
binding sites within NTCP have not been determined thus
far (Asami et al. 2022; Goutam et al. 2022; Liu et al. 2022; Park
et al. 2022). However, comprehensive mutational analyses
of the NTCP protein have previously defined two protein
regions, namely, 84RLKN87, located in an extracellular loop
between TMDs 2 and 3, and 157KGIVISLVL165, belonging to
TMD 5, which are involved in the interaction with preS1
(Figure 1) (Fukano et al. 2021; Iwamoto et al. 2019; Yan et al.
2013, 2014; Zakrzewicz et al. 2022). In addition, tyrosine
146, that belongs to extracellular loop bridging TMDs 4
and 5, is involved in the direct interaction with preS1

(Zakrzewicz et al. 2022). Since all these regions and amino
acids mentioned above are exposed to the extracellular
milieu and not directly to the pore where bile salts bind to
NTCP, single amino acid mutations within these regions
(e.g. G158R or Y146 A/E) mostly abolished preS1-peptide
binding to NTCP, but retained its bile salt transport func-
tion (Asami et al. 2022; Müller et al. 2018; Yan et al. 2013;
Zakrzewicz et al. 2022). Based on this, it is not surprising
that some inhibitors of NTCP selectively block virus-
binding to NTCP without tackling its physiological bile
salt transport function (Chen et al. 2022; Kirstgen et al. 2020;
Passioura et al. 2018).

By contrast, some other amino acids, namely, serine 267
and valine 263, are located more inside the pore and are
essential for both functions of NTCP (Binh et al. 2019; Fu et al.
2017; Hu et al. 2016; Uchida et al. 2021). The NTCP V263A/I
mutants and the genetic variant S267F abolished the trans-
porter function of NTCP, at least for bile salts (Fu et al. 2017;
Ruggiero et al. 2021). In addition, these variantsmade NTCP a
less efficient receptor for HBV entry with a subsequent

Figure 2: Schematic representation of the HBV/HDV entry pathway and cellular NTCP protein-protein interactions (PPIs) relevant for the virus inter-
nalization. HBV particles attach to hepatocytes through cell-surface factors, including heparan sulfate proteoglycans (not shown). Afterwards, HBV binds
with high affinity to the NTCP receptor and entry into hepatocytes occurs via clathrin-dependent endocytosis. All these steps are tightly regulated by PPIs
of NTCP with other membrane proteins, such as E-cadherin, epidermal growth factor receptor (EGFR), and interferon-induced transmembrane protein 3
(IFITM3). Endocytosis of the virus-NTCP complex most probably requires NTCP in an oligomeric state. Trafficking toward the plasma membrane and cell
surface expression of NTCP are post-translationally controlled by phosphorylation and PPI with kinesin familymember 4 (KIF4). NTCP-mediated HBV/HDV
internalization as well as trafficking of NTCP to the plasma membrane can be blocked by pharmacological inhibitors, such as troglitazone, bexarotene,
and others (shown in red).
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decreased susceptibility to HBV and HDV infection in
humans (Fu et al. 2017; Liu et al. 2018; Ruggiero et al. 2021).
This clearly indicates that these amino acids are important
for bile salt transport and preS1 binding to NTCP (Binh et al.
2019; Liu et al. 2018, 2017). This data is supported by the
recent cryo-EM structure of NTCP that was generated in the
presence of glycochenodeoxycholic acid. Within this struc-
ture, S267 directly interacts with the substrate (Liu et al.
2022).

Following the attachment of the virus particles to NTCP
via the preS1-domain, the virus-receptor complex un-
dergoes endocytosis. This process also involves numerous
protein cofactors and PPIs with NTCP (Figure 2) (Fukano
et al. 2018, 2021; Hu et al. 2020). Membrane-localized pro-
teins, such as epidermal growth factor (EGF) receptor
(EGFR) or E-cadherin, are recruited to the virus-NTCP
complex, thereby triggering its clathrin-mediated endocy-
tosis, a process that requires a phosphorylation and, thus,
activation of EGFR (Fukano et al. 2021; Herrscher et al.
2020a; Hu et al. 2020; Iwamoto et al. 2019). In addition to the
interaction with EGFR, NTCP self-assembly seems to play a
pivotal role, not only in the regulation of NTCP biology and
NTCP transporter function but also in facilitating a suc-
cessful entry of the virus-receptor complex into the early
endosomal trafficking pathway toward lysosomes (Fukano
et al. 2018, 2021; Qin et al. 2022). Although the detailed
mechanism underlying HBV/HDV post-attachment entry
remains largely unknown, it is quite clear that the endo-
somal network, with its residing proteins, plays a key role
in this process (Iwamoto et al. 2020). The knockdown of
adaptor molecules belonging to the EGFR endocytosis
machinery, such as adaptor-related protein complex 2
subunit α 1 (AP2A1) and receptor pathway substrate 15
(EPS15), as well as the NTCP cofactor interferon-induced
transmembrane protein 3 (IFITM3), all significantly
affected HBV or HDV infection rates (Iwamoto et al. 2020;
Palatini et al. 2022) (Figure 2 and Table 1).

3 Protein–protein interactions in
NTCP biology

3.1 NTCP dimerization/oligomerization

A number of cellular and membrane proteins in both pro-
karyotic and eukaryotic systems have oligomeric proper-
ties (Kumari and Yadav 2019). These oligomers are
composed of multiple subunits (polypeptide chains), which
may be the same (in homo-oligomeric proteins) or different
(in hetero-oligomeric proteins). The common mechanisms

of protein oligomerization are domain swapping and
ligand-induced dimerization, which has also been reported
for NTCP (Kumari and Yadav 2019; Fukano et al. 2021; 2018).
The NTCP forms homodimers, in which the individual
subunits are functionally active in transporting bile salts in
a sodium-dependent manner (Bijsmans et al. 2012; Noppes
et al. 2019; Qin et al. 2022). Interestingly, although NTCP
homodimers are the predominant form of NTCP in vivo,
recent cryo-EM studies have reported NTCP structures only
in a monomeric state (Asami et al. 2022; Goutam et al. 2022;
Liu et al. 2022; Park et al. 2022). This suggests that either the
purification process of detergent-solubilized NTCP or the
embedding into nanodisc structures preceding cryo-EM
favors the monomeric state. Nevertheless, in vivo NTCP
homodimerization occurs early in the secretory pathway
and persists after its sorting to the plasma membrane.
Furthermore, it has been shown in a series of coprecipita-
tionexperiments that the C-terminus of NTCP is not
involved in NTCP dimerization, as demonstratedwith NTCP
mutants lacking amino acids 308–349 of the C-terminus
(Y307X mutant) (Table 1) (Bijsmans et al. 2012). Interestingly,
after co-expression with this NTCP Y307X mutant or the
NTCP homolog SLC10A4, which are both localized mainly in
intracellular structures in cell culture, wild-type NTCP is
intracellularly trapped, most probably due to the formation
of heterodimers early in the secretory pathway. Conse-
quently, the plasma membrane expression and bile salt
transport function of NTCP are hampered (Bijsmans et al.
2012; Noppes et al. 2019). These data clearly point to func-
tional homo- and heterodimerization of NTCP and a clear
effect on plasma membrane sorting and function.

Domains important for NTCP homodimerization were
first identified by Fukano et al. (Fukano et al. 2018), who
demonstrated that peptides corresponding to amino acids
221–240 or 271–290 of NTCP were able to reduce its homo-
dimerization (Table 1). It is well-known that protein
dimerization occurs between TM helices of single-pass
membrane proteins and often involves certain sequence
motifs, such as “GXXXG/A” (Teese and Langosch 2015). In
the case of NTCP, two potential GXXXG/A dimerization
motifs are present, namely, 60GXXXA64 in TMD 2 and
233GXXXG237 in TMD 7 (Table 1 and Figure 3) (Palatini et al.
2021). It is noteworthy that the 233GXXXG237 motif lays within
one of the NTCP fragments (amino acids 221–240) mentioned
above. Interestingly, G60LXXXA64L and G233LXXXG237L
mutants revealed that both GXXXG/A motifs are important
for the proper folding and plasma membrane sorting of
NTCP, and, indirectly, for NTCP glycosylation, homodimeri-
zation, and its function as a bile salt transporter and HBV/
HDV receptor (Palatini et al. 2021). However, it is still a
matter of debatewhether the homodimerization of NTCP is a
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Table : The list of human NTCP interacting partners identified.

NTCP cofactor
(Uniprot)

Interaction occurs at Functional consequences of the interaction Confirmed
by

NTCP (Q) Plasma membrane – NTCP coprecipitated with NTCP → NTCP homodimerization (Bijsmans
et al. 2012; Noppes et al. 2019)

– Transport negative NTCP E257N mutant still coprecipitated with wild-
type NTCP → individual subunits of the NTCP dimer are functional
(Bijsmans et al. 2012)

– NTCP/NTCP-Y307X and NTCP-Y307X/NTCP-Y307X coprecipitated, and
these dimers were retained in the ER → NTCP dimerization occurs
already in the ER and the C-terminus is not involved in dimerization
(Bijsmans et al. 2012)

– NTCP F274A mutation maintained preS1 binding, but reduced preS1
internalization, NTCP dimerization, HBV infection and bile salt transport
→ F274 involved in NTCP dimerization (Fukano et al. 2021)

– G60LXXXA64L (TMD2) and G233LXXXG237L (TMD7) reduced homodimeri-
zation of NTCP, the G233LXXXG237L mutant in contrast to G60LXXXA64L did
not reach the plasmamembrane, bothmutants showed reduced bile salt
transport and HBV infection → both GXXXG/A motifs are important for
proper folding, sorting, glycosylation and dimerization of NTCP (Palatini
et al. 2021)

– Troglitazone inhibited NTCP oligomerization, preS1 internalization, and
HBV/HDV infection→ troglitazone = entry inhibitor (Fukano et al. 2018)

– NTCP peptides 221–240 and 271–290 inhibited NTCP dimerization, preS1
internalization and HBV infection→ these domains are involved in NTCP
dimerization (Fukano et al. 2018)

– NTCP G144A/G148A mutation reduced NTCP oligomerization → these
amino acids are involved in NTCP dimerization (Fukano et al. 2021)

YH, co-IP, IF

SLCA
(QEP)

Intracellular compartments – SLC10A4 coprecipitated with NTCP and vice versa, heterodimerization
with SLC10A4 retained NTCP in intracellular compartments and reduced
bile salt transport → SLC10A4 hampers plasma membrane sorting of
NTCP (Bijsmans et al. 2012; Noppes et al. 2019)

IF, co-IP

SOAT (QKNW) Plasma membrane – SOAT (SLC10A6) coprecipitated with NTCP and vice versa, plasma mem-
brane sorting and bile salt transport unaffected → homo- and hetero-
dimerization is a common feature of SLC10 carriers (Bijsmans et al. 2012;
Noppes et al. 2019)

IF, co-IP

EGFR (P) Plasma membrane, endosomes – The NTCP peptide 131–150 and NTCP G144A/G148A mutations abolished
interaction with EGFR and reduced HBV and HDV infection, EGFR
knockdown reduced HBV and HDV infection, but retained preS1 binding
→NTCP interactionwith EGFR via 144GXXXG148 is required to fully support
HBV/HDV entry (Fukano et al. 2021; Iwamoto et al. 2019)

KD, co-IP, IF

KIF (O) Cytoplasm – NTCP co-localized with KIF4 across microtubule filaments and copreci-
pitated with KIF4, KIF4 depletion reduced surface expression of NTCP
and HBV/HDV infection→ KIF4 is a critical regulator of NTCP trafficking
to the plasma membrane (Gad et al. 2022)

IF, co-IP

IFITM (Q) Endosome, plasma membrane – IFITM3 coprecipitated with NTCP in hepatoma cells, IFITM3 knockdown
had no effect on bile salt transport and preS1 binding, but reduced HBV
and HDV infection→ IFITM3 promotes virus entry at a post attachment
step (Palatini et al. 2022)

YH, co-IP, IF

SPP (P) Secreted – Prominent hit from Y2H screen, but not yet confirmed by co-IP (Palatini
et al. 2022)

YH

TOMM

(QB)
Mitochondrial outer membrane – Prominent hit from Y2H screen, but not yet confirmed by co-IP (Palatini

et al. 2022)
YH

CD (P) Cell membrane, lysosome membrane,
late endosome, exosome, cell surface

– Prominent hit from Y2H screen, but not yet confirmed by co-IP (Palatini
et al. 2022)

YH

KRTCAP
(QNL)

ER membrane – Prominent hit from Y2H screen, but not yet confirmed by co-IP (Palatini
et al. 2022)

YH
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strict prerequisite for its HBV/HDV receptor function and
the internalization of the virus/NTCP complex into hepa-
tocytes. It was recently demonstrated that HBV/HDV
preS1-peptide binding to NTCP and virus entry into hepa-
tocytes can be significantly reduced with either peptide- or
mutation-based approaches targeting potential dimeriza-
tion motifs of NTCP (Figure 2) (Fukano et al. 2018; Palatini
et al. 2021). In addition, the NTCP oligomerization process
seems to be tightly regulated by several other membrane-
associated proteins, for instance, EGFR (Iwamoto et al.
2019). The latter was identified as an important host
cofactor that is involved in NTCP-mediated virus entry.
Furthermore, it was suggested that NTCP oligomerization
is initiated downstream of the NTCP-EGFR interaction and
then triggers HBV internalization (Fukano et al. 2018,
2021). One of the amino acids that seems to be essential
for this process is phenylalanine 274, which, after muta-
tion to alanine, caused a loss of HBV susceptibility.
Furthermore, the oligomerization of NTCP and HBV
internalization were disrupted by F274A mutation, but
without affecting the viral attachment to the cell surface
(Table 1) (Fukano et al. 2021; Fukano et al. 2018). However,
neither troglitazone, an inhibitor of NTCP oligomerization,
nor F274A mutation affected the interaction of NTCP with
EGFR (Figure 2) (Fukano et al. 2021; 2018). These data indicate
that inhibiting the oligomerization of NTCP can serve as a
new therapeutic strategy for HBV/HDV entry inhibitors.
Troglitazone has been registered as an antidiabetic

and anti-inflammatory drug that activates peroxisome
proliferator-activated receptors (PPARs), particularly PPARα
and PPARγ (Aljada et al. 2001b; Devchand et al. 2018). Tro-
glitazone is also known to influence NFκB signaling, an
important regulator of immune responses, which are
essential in fighting HBV infections (Aljada et al. 2001a).
Therefore, this compound has adverse effects related to its
multi-target mode of action. Hence, it demonstrated high
hepatotoxicity and serious adverse events experienced by
patients, whichfinally resulted in thewithdrawal of the drug
from the market. Nevertheless, the promising in vitro data
on troglitazone-mediated inhibition of NTCP oligomeriza-
tion and HBV infection will stimulate further studies
focusing on the thiazolidinedione drug class (including tro-
glitazone, pioglitazone, lobeglitazone, and some others),
which should particularly focus on the increased target
specificity toward NTCP and reduced hepatotoxicity.
Notably, troglitazone analogs with poor toxicity toward
hepatocytes have already been synthesized and successfully
tested as potential antiproliferative agents for the treatment
of metastatic solid tumors (Komatsu et al. 2014; Murakami
et al. 2014). These modified troglitazone-based thiazolidine-
dione analogs, for instance, efatutazone, could be considered
as potential candidates.

Taking together, HBV/HDV entry inhibitors can target
not only virus-binding to NTCP, but also NTCP oligomeriza-
tion and interaction with cofactors that are essential for
entry of the virus-NTCP receptor complex.

Table : (continued)

NTCP cofactor
(Uniprot)

Interaction occurs at Functional consequences of the interaction Confirmed
by

SELK (QYD) Cell membrane, ER – Prominent hit from Y2H screen, but not yet confirmed by co-IP (Palatini
et al. 2022)

YH

STOM (P) Cell membrane, cytoplasm, lipid rafts – Stomatin overexpression increased NTCP-mediated bile salt transport
without affecting cell surface expression of NTCP (Appelman et al. 2020)

– Stomatin knockdown increased plasma membrane expression of NTCP
and bile salt transport rates (Appelman et al. 2020)

– NTCP lacking its C-terminus (Y307X) can still interact with stomatin
(Appelman et al. 2020)

IF, co-IP, SGU

CLCC (QS) ER, Golgi apparatus and nucleus
membranes

– Neither upregulation nor downregulation of CLCC1 had an effect on bile
salt transport via NTCP (Appelman et al. 2020)

IF, SGU

E-CAD (P) Cell membrane, cell junction, endo-
some, Golgi apparatus

– Overexpression of E-cadherin increased HBV infection in HepaRG cells,
E-cadherin knockdown reduced preS1 binding and HBV infection of pri-
mary human hepatocytes → E-cadherin is important for trafficking of
glycosylated NTCP to the plasma membrane (Hu et al. 2020)

KD, co-IP

CANX (P) ER and ER membrane – Calnexin depletion reduced NTCP expression and decreased bile salt
transport (Robin et al. 2018)

MS, co-IP

CANX, calnexin; CLCC, chloride channel CLIC-like protein ; co-IP, co-immunoprecipitation; E-CAD, E-cadherin; EGFR, epidermal growth factor receptor;
ER, endoplasmic reticulum; IF, immunofluorescence; IFITM, interferon-induced transmembrane protein ; KIF, kinesin family member ; KRTCAP,
keratinocyte-associated protein ; PHH, primary human hepatocytes; PPI, protein–protein interaction; SELK, selenoprotein K; STOM, stomatin; SGU,
sucrose gradient ultracentrifugation; SOAT, sodium-dependent organic anion transporter; SPP, secreted phosphoprotein  (osteopontin); TOMM,
mitochondrial import receptor subunit TOM homolog; KD, knockdown; YH, yeast-two hybrid screen.
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3.2 NTCP cofactors involved in HBV/HDV
entry

Until now, the best characterized PPI is the interaction of
NTCP with EGFR. The EGFR is a plasma membrane protein
with a kinase activity that triggers a cascade of downstream
protein phosphorylation and signaling pathways when it is
engaged by its ligand EGF (Sabbah et al. 2020). Regardless of
its role in the initiation of signal transduction, EGFRhas been
well-documented to drive protein internalization and post-
endocytic protein sorting (Caldieri et al. 2018). Due to this
function, it has been implicated in the entry mechanism of
different virus classes, such as human cytomegalovirus,
hepatitis C virus (HCV), and, more recently, HBV (Iwamoto
et al. 2019). It was shown that after the binding of HBV to
NTCP, ligand-activated EGFR associates with HBV-bound
NTCP and drives the complex to early/late endosomes via
clathrin-mediated endocytosis (Figure 2) (Herrscher et al.
2020a; Iwamoto et al. 2019, 2020). This process is dependent
on the EGFR activation, since the inhibition of the receptor
with gefitinib, a specific inhibitor of the EGFR tyrosine
kinase, significantly impeded HBV entry (Fukano et al. 2021,
Iwamoto et al. 2019). However, it has been suggested
that EGFR downstream signaling has a minor role in HBV

infection, since inhibition of the Ras-MAPK, PI3K-Akt, or
JAK-STAT pathways had no drastic effects on the HBV
infection of HepG2-NTCP cells or primary human hepato-
cytes, with only a marginal reduction of the HBV infection
upon treatment with the PI3K inhibitor wortmannin in both
cell types (Iwamoto et al. 2019). This implies that the NTCP
interaction with activated EGFR itself but not EGFR down-
stream signaling cascades are essential for supporting HBV
internalization. Thereby, conformational changes of the
EGFR after EGF-induced autophosphorylation seem to play
the key role for the interaction with NTCP and internaliza-
tion of the virus-NTCP receptor complex (Kaplan et al. 2016;
Srinivasan et al. 2022). This internalization process involves
EGFR-sorting adaptor proteins, such as EPS15 and AP2A1 (see
above).

Increasing evidence suggests that EGFR assembly with
NTCP involves a short NTCP region localized between L131
and D150 (Figure 3), since the introduction of a decoy peptide
corresponding to the aforementioned protein fragment
attenuated the EGF-induced internalization of preS1-bound
NTCP (Table 1) (Fukano et al. 2021). Moreover, glycine to
alanine mutations within the 144GXXXG148 NTCP motif abol-
ished its interaction with EGFR, indicating that this motif is
important for EGFR-NTCP heterodimerization and HBV/HDV

A

180°

Core domainPanel domain Core domain Panel domain

F274

N271-M290

N271-M290

G60-A64 G233-G237

L221-L240

L221-L240

L131-D150

G148

G144

B

180°
90°90°

N271-M290

L131-D150
L221

G233-
G237

F274
G233-G237

L131-D150 N271-M290

F274

G60-A64

N271-M290

E274

L221-L240

L221-L240
G60-A64

Figure 3: Amino acids and binding motifs required for NTCP PPIs, which are essential for the NTCP-driven HBV/HDV internalization. (A) Protein
surface-exposed regions within NTCP, which are essential for NTCP oligomerization [G60-A64 (yellow), L221-L240 (yellow), G233-G237 (orange),
N271-M290 (yellow), and F274 (red)] and NTCP-EGFR binding [L131-D150 (green), and G144/G148 (light green)]. (B) Protein core-localized amino acids and
motifs, which are required for the respective NTCP PPI.
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internalization into host cells (Table 1) (Fukano et al. 2021).
Based on the recent cryo-EM structures of NTCP, the
144GXXXG148 NTCP motif is localized near the second
extracellular loop bridging TMDs 4 and 5 (Figure 3) (Asami
et al. 2022, Goutam et al. 2022, Liu et al. 2022). In the same
region, NTCP bears a highly conserved tyrosine-rich motif,
139YIYSRGIY146. Within this motif, Y146 was identified to be
essential for preS1-peptide binding to NTCP and HBV
infection of NTCP-expressing hepatoma cells (Zakrzewicz
et al. 2022). Based on this, it can be hypothesized that virus-
binding to NTCP directly interferes with EGFR recruitment
and NTCP/EGFR heterodimerization (Figure 3), making
pharmacological inhibitors targeting this 139Y-G148 domain
of NTCP an attractive tool to block virus binding to NTCP and
NTCP/EGFR heterodimerization in parallel. Such inhibitors
could be identified based on the recent cryo-EM structures of
NTCP by in silico docking with large compounds libraries,
such as ZINC (Irwin et al. 2012).

The EGFR-mediated endocytosis results in the HBV/HDV
transport via a clathrin-mediated pathway toward early/late
endosomes and lysosomes, which are dynamic organelles
that receive and degrade macromolecules from the secre-
tory, endocytic, and phagocytic pathways (Iwamoto et al.
2020; Naslavsky and Caplan 2018). Moreover, endosomes
play a key role in virus trafficking along the endocytic
pathway (Gruenberg 2009; Iwamoto et al. 2020; Kaksonen
and Roux 2018). Their establishment and membrane traf-
ficking routes are dependent on a complex machinery that
involves membrane structures, macromolecules, and a
number of cellular proteins (Naslavsky and Caplan 2018).
Among them, interferon-induced transmembrane protein 3
(IFITM3) seems to be involved in endosome formation and
endosomal protein sorting during viral infection (Amini-
Bavil-Olyaee et al. 2013; Spence et al. 2019). The IFITM3 pro-
tein expression is positively correlated with endosomal
levels of cholesterol, a lipid known to control membrane
sorting and dynamics in this compartment (Amini-Bavil-
Olyaee et al. 2013). Given the general upregulation of
interferon-induced transmembrane proteins, IFITM3 is a
putative host cell factor for HBV infection of hepatocytes.
Interestingly, a membrane yeast two-hybrid screen for
NTCP interacting partners revealed IFITM3 as the promi-
nent hit, at least in yeast cells (Palatini et al. 2022). More-
over, co-immunoprecipitation experiments confirmed
direct NTCP-IFITM3 PPI in HepG2 and HuH7 hepatoma cells
(Table 1). Interestingly, knockdown of IFITM3 reduced HBV
infection rates of primary human hepatocytes. In addition,
NTCP-expressing HuH7 cells showed significantly lower
HDV infection rates under IFITM3 knockdown, while myr-
preS1 peptide binding remained intact (Palatini et al. 2022).
This indicates that IFITM3-mediated HBV/HDV infection

enhancement occurs in a step downstream of the virus
attachment to NTCP. However, domains within NTCP that
are important for PPI with IFITM3 have not been identified
so far.

Another interacting partner of NTCP in hepatocytes,
which closely cooperates with EGFR, is E-cadherin (Table 1)
(Ramirez Moreno and Bulgakova 2021). E-cadherin is a cell
adhesion molecule that regulates EGFR localization and
activity by controlling junctional tissue polarization, tight
junction positioning, and, consequently, the distribution of
cell-surface proteins, such as EGFR (Ramirez Moreno and
Bulgakova 2021; Rubsam et al. 2017). This consequently
modulates the HBV infection process and virus entry into
the host cells (Schulze et al. 2012). It has been reported that
E-cadherin interacts with glycosylated NTCP, facilitates
its plasma membrane distribution, and, subsequently,
influences the NTCP-dependent HBV entry into hepato-
cytes (Table 1 and Figure 2) (Hu et al. 2020). Hence,
E-cadherin may directly interact with the cell surface
virus-NTCP complex. Alternatively, E-cadherin may regu-
late the hepatocyte polarization that is mandatory for the
HBV entry (Hu et al. 2020). Although a direct crosstalk be-
tween surface-associated EGFR, E-cadherin, and NTCP
upon virus infection was suggested, the direct interaction
of E-cadherin and NTCP needs more detailed analysis
to decipher the structural regions critical for NTCP/
E-cadherin PPI.

3.3 Cofactors relevant for NTCP trafficking
to the cell surface

The functional outcome of membrane proteins, such as
ligand-receptor binding, substrate transport, or intracellular
signaling, can be regulated in many ways. Among them, the
regulation of plasma membrane expression is of particular
relevance (Appelman et al. 2021; Magalhaes et al. 2012). This
involves endogenous processes of co-translational trans-
location into the plasma membrane, balance between de
novo protein synthesis and degradation, and, finally, protein
sorting and trafficking to the plasma membrane (Hanya-
loglu 2018; Zakrzewicz et al. 2014, 2018). Membrane proteins
reach the plasma membrane by a constant exocytosis from
the trans-Golgi network (Hanyaloglu 2018; Naslavsky and
Caplan 2018). Once they have reached the plasma mem-
brane, their surface residence is determined by, for
example, clathrin-dependent endocytosis. Thereby, clathrin-
coated vesicles are formed, which transport membrane
proteins to early endosomes, from which they are either
recycled back to the plasma membrane or degraded via late
endosomes and lysosomes (Kaksonen and Roux 2018;
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Naslavsky and Caplan 2018). Based on experimental data, it
is likely that NTCP uses the classical trans-Golgi trafficking
pathway mentioned above to reach the plasma membrane
and undergoes endocytosis to early endosomes via the
clathrin-dependent pathway, at least, during entry of
the virus-NTCP complex (Herrscher et al. 2020a; Iwamoto
et al. 2020). However, it remains unclear whether NTCP
undergoes recycling or degradation in lysosomes after-
wards. The plasma membrane sorting motif of NTCP seems
to be located at the C-terminus starting fromY307 (Bijsmans
et al. 2012; Sun et al. 2001a, b; Zakrzewicz and Geyer 2022).
However, more detailed analysis of single amino acid po-
sitions have only been done for rat Ntcp (rNtcp). One study
revealed that Y307 and Y321, both localized at the cyto-
plasmic C-terminus of rNtcp, are critical for the basolateral
membrane sorting (Sun et al. 2001a). Another amino acid
that is important for the translocation of rNtcp to the
plasma membrane is S226, which can be phosphorylated
(Anwer et al. 2005).Mutation of this residue resulted in a 30%
decrease in the total rNtcp phosphorylation and a significant
increase of rNtcp retention in the plasma membrane and
rNtcp-mediated taurocholate uptake (Anwer et al. 2005). This
suggests, at least for rNtcp, that phosphorylation has a sig-
nificant importance for protein trafficking and overall bile
salt transport in the liver. According to the newest cryo-EM
structure of rNtcp (PDB: 7VAF), S226 is localized in TM7 and
oriented to the inside of the core domain. There, S226 does
not seem to be accessible for post-translational phosphory-
lation (Asami et al. 2022). This may suggest that the phos-
phorylation of S226 within rNtcp occurs co-translationally,
probably to achieve a stable and functionally active protein
conformation.

Regardless of this fact, the question remains whether
human NTCP might be phosphorylated by serine/tyrosine
kinases at all and at which positions, and if this plays a role
in the sorting of the human NTCP toward the plasma
membrane. Adenosine 3′,5′-cyclic monophosphate (cAMP)
is an important intracellular second messenger that acti-
vates the phosphoinositide 3-kinase (PI3K) pathway, con-
sisting of three groups of downstream targets: protein
kinase B (PKB/AKT), P70 S6 kinase (S6K), and protein kinase
C (PKC) (Castel et al. 2021). It has been demonstrated that the
intracellular shuttling of rNtcp and NTCP between plasma
membrane and endosomes is dependent on cellular cAMP
levels, and facilitated by PI3K/PKB/PKC isoforms (McCon-
key et al. 2004; Park et al. 2012; Sarkar et al. 2006; Webster
et al. 2002). The pharmacological activation of PKB resulted
in an increased translocation of NTCP toward the plasma
membrane, while the inhibition of PKB and PKCδ using the
compounds SB203580, rottlerin, and LY294002, respec-
tively, blocked the cAMP-mediated increase in taurocholate

uptake and NTCP translocation (Park et al. 2012; Webster
et al. 2002) (Figure 2). Since the inhibition of cAMP levels
and cAMP-induced PKB activity may markedly reduce the
expression of cell surface-associated NTCP, PKB/C kinase
inhibitors may be applied to dampen the HBV internaliza-
tion, a process which depends strongly on the NTCP pres-
ence in the plasma membrane.

It is probable that numerous cytosolic proteins partici-
pate in the trafficking of NTCP across intracellular com-
partments toward the plasma membrane. Recent studies by
Gad et al. (Gad et al. 2022) identified KIF4 as a critical protein
that contributes to the delivery of NTCP to the cell surface. It
was demonstrated that KIF4 interacts directly with NTCP
and its cellular expression is positively correlated with the
cell-surface levels of NTCP (Gad et al. 2022). Since the
expression level of KIF4 can be inhibited by RAR and RXR
agonists, such as bexarotene in a FOXM1-dependentmanner,
it is not surprising that bexarotene treatment suppressed the
levels of NTCP expressed at the plasma membrane. Accord-
ingly, the NTCP-dependent preS1-peptide binding and sus-
ceptibility of primary human hepatocytes to HBV infection
were significantly reduced by bexarotene treatment (Gad
et al. 2022). This demonstrates that bexarotene, similar to
other RXR agonists such as epigallocatechin-3-gallate (EGCG)
(Zhong et al. 2015) and Ro41-5253 (Tsukuda et al. 2015), are
potent anti-HBV agents by inhibiting NTCP trafficking to the
plasma membrane (Figure 2). However, as the pharmaco-
logical inhibition of both the transcription factors FOXM1
and KIF4 via RXR agonists may result in severe cellular side
effects, including FOXM1-dependent gene regulation, and
the movement of filaments and signaling molecules along
microtubules, a more specific strategy could be a blockage of
the PPI between NTCP and KIF4. This would include the
identification of binding sites of both proteins and muta-
tional analysis of the amino acid residues mentioned above
to corroborate their involvement in KIF4-driven NTCP
trafficking.

4 Conclusions and future directions

There is a growing body of evidence that physical
interactions between NTCP and other membrane and cyto-
solic proteins are critical not only for maintaining the
transport of bile salts through the plasma membrane but
also for HBV/HDV infection in the liver. This process involves
virus attachment and entry into hepatocytes, which are both
highly dependent on plasma membrane-associated NTCP
(Yan et al. 2012; Yuen et al. 2018). Several novel NTCP inter-
acting partners have been identified over the past decade,
and their significant role in the NTCP-driven HBV/HDV
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infection process has been corroborated (Table 1). Potential
binding sites have already been identified within the NTCP
protein for some of the interacting partners (e.g. for EGFR
and NTCP oligomerization), however, for some others, the
relevant domains for PPI are largely unknown (e.g. IFITM3,
E-cadherin, KIF4). Nevertheless, these NTCP/cofactor inter-
action sites represent attractive novel target sites of NTCP
for the development of specific anti-HBV/HDV drugs. Un-
fortunately, most studies on NTCP interactions, except NTCP
oligomerization and EGFR-based research, have missed
detailed analyses of the NTCP-involved protein complex
assembly during the process of virus entry. Hence, based on
the experimental data available, it is still unclear whether
the effects of IFITM3, E-cadherin, or KIF4 proteins on HBV/
HDV infection observed result completely and directly from
PPIs with NTCP. At least, in part, these effects may result
indirectly from the dysregulation of other cellular factors,
such as endosome formation (IFITM3), hepatocyte polariza-
tion (E-cadherin), or the transfer of cargos along microtu-
bules (KIF4) in the cell (Amini-Bavil-Olyaee et al. 2013;
Rubsam et al. 2017; Sheng et al. 2018; Spence et al. 2019).
Regardless of this, NTCP, with its interaction domains for all
these cofactors, remains the most promising drug target for
the discovery of novel HBV/HDV entry inhibitors.

The most relevant NTCP protein domains and single
amino acid residues important for NTCP oligomerization
seem to be 60GXXXA64, L221-L240, 233GXXXG237, N271-M290,
and F274. Most of these sites have also been successfully
assessed regarding their relevance in suppressing the virus
preS1-peptide binding and, consequently, HBV internali-
zation (Table 1 and Figure 3). Therefore, drugs that can
enhance or disrupt NTCP oligomer formation might also
regulate NTCP oligomerization-dependent HBV infection.
According to recently published NTCP structures, these
sites are all localized in the core domain of NTCP, namely, in
TMD 2 (60GXXXA64), TMD 7 (L221-L240 and 233GXXXG237),
TMDs 8b and 9 (N271-M290), and TMD 8b (F274). In addition,
most of them lie in direct proximity to each other, sug-
gesting an orchestrated process of self-assembly of two or
more NTCP molecules that involves several domains of
NTCP (Figure 3). A similar process of oligomerization has
already been proposed for G-protein-coupled receptors
(George et al. 2002; Sleno and Hebert 2018; Takenouchi et al.
2018).

In conclusion, PPI sites of the HBV/HDV entry receptor
NTCP have an immense potential as targets for new antiviral
drugs that inhibit virus entry by preventing NTCP oligo-
merization or cofactor binding. Such drugs would be very
specific and not hamper the physiological bile salt transport
function of NTCP. Small chemical compounds designed using
NTCP structure-based computational methods as well as

short peptides constructed to mimic particular interaction
domains of NTCP would be very effective approaches.
Peptidomimetics or cyclic peptides possess conformational
flexibility, increased selectivity, and, most importantly,
they can be produced at low costs by chemical synthesis or
biological expression (Rhodes and Pei 2017; Stone and
Deber 2017). Peptides that interrupt PPIs have successfully
been used as therapeutic agents to regulate a variety of
biochemical events, including signal transduction, protein
degradation, immune responses, and viral infections (Hall
et al. 2007; Lalonde et al. 2011). Therefore, even more
detailed analyses of NTCP PPIs relevant for HBV/HDV
infections are promising to produce new therapeutic
approaches against virus entry and infection.

Acknowledgements: Molecular graphics were performed
with UCSF Chimera, developed by the Resource for Bio-
computing, Visualization, and Informatics at the University
of California, San Francisco, with support from NIH
P41-GM103311 (Pettersen et al. 2004).
Author contributions: All authors have accepted
responsibility for the entire content of this submitted
manuscript and approved submission.
Research funding: This work was supported by the Deutsche
Forschungsgemeinschaft (DFG,GermanResearchFoundation),
Project-ID 197785619-SFB1021 to J.G., and by the Tenure-Track
Program of the Justus Liebig University Giessen (Germany),
Project number 60001166 to D.Z.
Conflict of interest statement: The authors declare no
conflicts of interest regarding this article.

References

Alhadeff, R., Ganoth, A., and Arkin, I.T. (2015). Mechanistic studies of the
apical sodium-dependent bile acid transporter. Proteins 83: 1107–1117.

Aljada, A., Garg, R., Ghanim, H., Mohanty, P., Hamouda, W., Assian, E., and
Dandona, P. (2001a). Nuclear factor-kappaB suppressive and
inhibitor-kappaB stimulatory effects of troglitazone in obese patients
with type 2 diabetes: evidence of an antiinflammatory action? J. Clin.
Endocrinol. Metab. 86: 3250–3256.

Aljada, A., Ghanim, H., Friedman, J., Garg, R., Mohanty, P., and Dandona, P.
(2001b). Troglitazone reduces the expression of PPARγ while
stimulating that of PPARα in mononuclear cells in obese subjects.
J. Clin. Endocrinol. Metab. 86: 3130–3133.

Amini-Bavil-Olyaee, S., Choi, Y.J., Lee, J.H., Shi, M., Huang, I.C., Farzan, M.,
and Jung, J.U. (2013). The antiviral effector IFITM3disrupts intracellular
cholesterol homeostasis to block viral entry. Cell Host Microbe 13:
452–464.

Anwer,M.S., Gillin, H., Mukhopadhyay, S., Balasubramaniyan, N., Suchy, F.J.,
and Ananthanarayanan, M. (2005). Dephosphorylation of Ser-226
facilitates plasma membrane retention of Ntcp. J. Biol. Chem. 280:
33687–33692.

D. Zakrzewicz and J. Geyer: NTCP interactions upon HBV/HDV infection 685



Anwer, M.S. and Stieger, B. (2014). Sodium-dependent bile salt transporters
of the SLC10A transporter family: more than solute transporters.
Pflugers Arch. 466: 77–89.

Appelman, M.D., Robin, M.J.D., Vogels, E.W.M., Wolzak, C., Vos, W.G., Vos,
H.R., Van Es, R.M., Burgering, B.M.T., and Van De Graaf, S.F.J. (2020).
The lipid raft component stomatin interacts with the Na+ taurocholate
cotransporting polypeptide (NTCP) and modulates bile salt uptake.
Cells 9: 986.

Appelman, M.D., Wettengel, J.M., Protzer, U., Oude Elferink, R.P.J., and
Van De Graaf, S.F.J. (2021). Molecular regulation of the hepatic bile
acid uptake transporter and HBV entry receptor NTCP. Biochim.
Biophys. Acta Mol. Cell Biol. Lipids 1866: 158960.

Asami, J., Kimura, K.T., Fujita-Fujiharu, Y., Ishida, H., Zhang, Z., Nomura, Y.,
Liu, K., Uemura, T., Sato, Y., Ono, M., et al. (2022). Structure of the bile
acid transporter and HBV receptor NTCP. Nature 606: 1021–1026.

Bi, Y.A., Qiu, X., Rotter, C.J., Kimoto, E., Piotrowski,M., Varma,M.V., Ei-Kattan,
A.F., and Lai, Y. (2013). Quantitative assessment of the contribution of
sodium-dependent taurocholate co-transporting polypeptide (NTCP)
to the hepatic uptake of rosuvastatin, pitavastatin and fluvastatin.
Biopharm. Drug Dispos. 34: 452–461.

Bijsmans, I.T., Bouwmeester, R.A., Geyer, J., Faber, K.N., and Van De Graaf,
S.F. (2012). Homo- and hetero-dimeric architecture of the human liver
Na+-dependent taurocholate co-transporting protein. Biochem. J. 441:
1007–1015.

Binh, M.T., Hoan, N.X., Van Tong, H., Sy, B.T., Trung, N.T., Bock, C.T., Toan,
N.L., Song, L.H., Bang, M.H., Meyer, C.G., et al. (2019). NTCP S267F
variant associates with decreased susceptibility to HBV and HDV
infection and decelerated progression of related liver diseases. Int.
J. Infect. Dis. 80: 147–152.

Bogomolov, P., Alexandrov, A., Voronkova, N., Macievich, M., Kokina, K.,
Petrachenkova, M., Lehr, T., Lempp, F.A., Wedemeyer, H., Haag, M.,
et al. (2016). Treatment of chronic hepatitis D with the entry inhibitor
myrcludex B: first results of a phase Ib/IIa study. J. Hepatol. 65:
490–498.

Bonvicino, C.R., Moreira, M.A., and Soares, M.A. (2014). Hepatitis B virus
lineages in mammalian hosts: potential for bidirectional cross-species
transmission. World J. Gastroenterol. 20: 7665–7674.

Caldieri, G., Malabarba, M.G., Di Fiore, P.P., and Sigismund, S. (2018). EGFR
trafficking in physiology and cancer. Prog. Mol. Subcell Biol. 57:
235–272.

Castel, P., Toska, E., Engelman, J.A., and Scaltriti, M. (2021). The present and
future of PI3K inhibitors for cancer therapy. Nat. Cancer 2: 587–597.

Chen, S., Zhang, L., Chen, Y., and Fu, L. (2022). Inhibiting Sodium
taurocholate cotransporting polypeptide in HBV-related diseases:
from biological function to therapeutic potential. J. Med. Chem. 65:
12546–12561.

Devchand, P.R., Liu, T., Altman, R.B., Fitzgerald, G.A., and Schadt, E.E. (2018).
The pioglitazone trek via human PPARγ: from discovery to a medicine
at the FDA and beyond. Front. Pharmacol. 9: 1093.

Döring, B., Lütteke, T., Geyer, J., and Petzinger, E. (2012). The SLC10 carrier
family: transport functions andmolecular structure. Curr. TopMembr.
70: 105–168.

Drew, D. and Boudker, O. (2016). Shared molecular mechanisms of
membrane transporters. Annu. Rev. Biochem. 85: 543–572.

Drexler, J.F., Geipel, A., König, A., Corman, V.M., Van Riel, D., Leijten, L.M.,
Bremer, C.M., Rasche, A., Cottontail, V.M., Maganga, G.D., et al. (2013).
Bats carry pathogenic hepadnaviruses antigenically related to
hepatitis B virus and capable of infecting human hepatocytes. Proc.
Natl. Acad. Sci. U. S. A. 110: 16151–16156.

Fu, L., Hu, H., Liu, Y., Jing, Z., and Li, W. (2017). Woodchuck sodium
taurocholate cotransporting polypeptide supports low-level hepatitis
B and D virus entry. Virology 505: 1–11.

Fujino, H., Saito, T., Ogawa, S., and Kojima, J. (2005). Transporter-mediated
influx and efflux mechanisms of pitavastatin, a new inhibitor of
HMG-CoA reductase. J. Pharm. Pharmacol. 57: 1305–1311.

Fukano, K., Oshima, M., Tsukuda, S., Aizaki, H., Ohki, M., Park, S.Y., Wakita,
T., Wakae, K., Watashi, K., and Muramatsu, M. (2021). NTCP
oligomerization occurs downstream of the NTCP-EGFR interaction
during hepatitis B virus internalization. J. Virol. 95: e0093821.

Fukano, K., Tsukuda, S., Oshima,M., Suzuki, R., Aizaki, H., Ohki,M., Park, S.Y.,
Muramatsu, M., Wakita, T., Sureau, C., et al. (2018). Troglitazone
impedes the oligomerization of sodium taurocholate cotransporting
polypeptide and entry of hepatitis B virus into hepatocytes. Front.
Microbiol. 9: 3257.

Gad, S.A., Sugiyama, M., Tsuge, M., Wakae, K., Fukano, K., Oshima, M.,
Sureau, C., Watanabe, N., Kato, T., Murayama, A., et al. (2022). The
kinesin KIF4 mediates HBV/HDV entry through the regulation of
surface NTCP localization and can be targeted by RXR agonists in vitro.
PLoS Pathog. 18: e1009983.

Garaeva, A.A. and Slotboom, D.J. (2020). Elevator-type mechanisms of
membrane transport. Biochem. Soc. Trans. 48: 1227–1241.

George, S.R., O’dowd, B.F., and Lee, S.P. (2002). G-protein-coupled receptor
oligomerization and its potential for drug discovery. Nat. Rev. Drug
Discov. 1: 808–820.

Goutam, K., Ielasi, F.S., Pardon, E., Steyaert, J., and Reyes, N. (2022).
Structural basis of sodium-dependent bile salt uptake into the liver.
Nature 606: 1015–1020.

Greupink, R., Dillen, L., Monshouwer, M., Huisman, M.T., and Russel, F.G.
(2011). Interaction of fluvastatin with the liver-specific Na+ -dependent
taurocholate cotransporting polypeptide (NTCP). Eur. J. Pharm. Sci. 44:
487–496.

Grosser, G., Bennien, J., Sanchez-Guijo, A., Bakhaus, K., Döring, B.,
Hartmann, M., Wudy, S.A., and Geyer, J. (2018). Transport of steroid
3-sulfates and steroid 17-sulfates by the sodium-dependent organic
anion transporter SOAT (SLC10A6). J. Steroid Biochem. Mol. Biol. 179:
20–25.

Grosser, G., Müller, S.F., Kirstgen, M., Döring, B., and Geyer, J. (2021).
Substrate specificities and inhibition pattern of the solute carrier family
10 members NTCP, ASBT and SOAT. Front. Mol. Biosci. 8: 689757.

Gruenberg, J. (2009). Viruses and endosome membrane dynamics. Curr.
Opin. Cell Biol. 21: 582–588.

Hagenbuch, B. and Meier, P.J. (1996). Sinusoidal (basolateral) bile salt
uptake systems of hepatocytes. Semin. Liver Dis. 16: 129–136.

Hagenbuch, B., Stieger, B., Foguet, M., Lubbert, H., and Meier, P.J. (1991).
Functional expression cloning and characterization of the hepatocyte
Na+/bile acid cotransport system. Proc. Natl. Acad. Sci. U. S. A. 88:
10629–10633.

Hall, P.R., Malone, L., Sillerud, L.O., Ye, C., Hjelle, B.L., and Larson, R.S.
(2007). Characterization and NMR solution structure of a novel cyclic
pentapeptide inhibitor of pathogenic hantaviruses. Chem. Biol. Drug
Des. 69: 180–190.

Hanyaloglu, A.C. (2018). Advances in membrane trafficking and endosomal
signaling of G protein-coupled receptors. Int. Rev. Cell. Mol. Biol. 339:
93–131.

Herrscher, C., Pastor, F., Burlaud-Gaillard, J., Dumans, A., Seigneuret, F.,
Moreau, A., Patient, R., Eymieux, S., De Rocquigny, H., Hourioux, C.,
et al. (2020a). Hepatitis B virus entry into HepG2-NTCP cells requires
clathrin-mediated endocytosis. Cell. Microbiol. 22: e13205.

686 D. Zakrzewicz and J. Geyer: NTCP interactions upon HBV/HDV infection



Herrscher, C., Roingeard, P., and Blanchard, E. (2020b). Hepatitis B virus
entry into cells. Cells 9: 1486.

Ho, R.H., Leake, B.F., Roberts, R.L., Lee, W., and Kim, R.B. (2004).
Ethnicity-dependent polymorphism in Na+-taurocholate
cotransporting polypeptide (SLC10A1) reveals a domain critical for bile
acid substrate recognition. J. Biol. Chem. 279: 7213–7222.

Ho, R.H., Tirona, R.G., Leake, B.F., Glaeser, H., Lee, W., Lemke, C.J., Wang, Y.,
and Kim, R.B. (2006). Drug and bile acid transporters in rosuvastatin
hepatic uptake: function, expression, and pharmacogenetics.
Gastroenterology 130: 1793–1806.

Hu, H.H., Liu, J., Lin, Y.L., Luo, W.S., Chu, Y.J., Chang, C.L., Jen, C.L., Lee, M.H.,
Lu, S.N., Wang, L.Y., et al. (2016). The rs2296651 (S267F) variant on
NTCP (SLC10A1) is inversely associated with chronic hepatitis B and
progression to cirrhosis and hepatocellular carcinoma in patients with
chronic hepatitis B. Gut 65: 1514–1521.

Hu, N.J., Iwata, S., Cameron, A.D., and Drew, D. (2011). Crystal structure of a
bacterial homologue of the bile acid sodium symporter ASBT. Nature
478: 408–411.

Hu, Q., Zhang, F., Duan, L., Wang, B., Ye, Y., Li, P., Li, D., Yang, S., Zhou, L.,
and Chen, W. (2020). E-Cadherin plays a role in hepatitis B virus
entry through affecting glycosylated sodium-taurocholate
cotransporting polypeptide distribution. Front. Cell Infect.
Microbiol. 10: 74.

Hughes, S.A., Wedemeyer, H., and Harrison, P.M. (2011). Hepatitis delta
virus. Lancet 378: 73–85.

Iannacone, M. and Guidotti, L.G. (2022). Immunobiology and pathogenesis
of hepatitis B virus infection. Nat. Rev. Immunol. 22: 19–32.

Irwin, J.J., Sterling, T., Mysinger, M.M., Bolstad, E.S., and Coleman, R.G.
(2012). ZINC: a free tool to discover chemistry for biology. J. Chem. Inf.
Model. 52: 1757–1768.

Iwamoto, M., Saso, W., Nishioka, K., Ohashi, H., Sugiyama, R., Ryo, A., Ohki,
M., Yun, J.H., Park, S.Y., Ohshima, T., et al. (2020). The machinery for
endocytosis of epidermal growth factor receptor coordinates the
transport of incoming hepatitis B virus to the endosomal network.
J. Biol. Chem. 295: 800–807.

Iwamoto, M., Saso, W., Sugiyama, R., Ishii, K., Ohki, M., Nagamori, S.,
Suzuki, R., Aizaki, H., Ryo, A., Yun, J.H., et al. (2019). Epidermal
growth factor receptor is a host-entry cofactor triggering hepatitis
B virus internalization. Proc. Natl. Acad. Sci. U. S. A. 116:
8487–8492.

Jardetzky, O. (1966). Simple allosteric model for membrane pumps. Nature
211: 969–970.

Jetter, A. and Kullak-Ublick, G.A. (2020). Drugs and hepatic transporters: a
review. Pharmacol. Res. 154: 104234.

Kaksonen, M. and Roux, A. (2018). Mechanisms of clathrin-mediated
endocytosis. Nat. Rev. Mol. Cell Biol. 19: 313–326.

Kaplan, M., Narasimhan, S., De Heus, C., Mance, D., Van Doorn, S., Houben,
K., Popov-Celeketic, D., Damman, R., Katrukha, E.A., Jain, P., et al.
(2016). EGFR dynamics change during activation in native membranes
as revealed by NMR. Cell 167: 1241–1251 e11.

Kersseboom, S., Van Gucht, A.L.M., Van Mullem, A., Brigante, G., Farina, S.,
Carlsson, B., Donkers, J.M., Van De Graaf, S.F.J., Peeters, R.P., and
Visser, T.J. (2017). Role of the bile acid transporter SLC10A1 in liver
targeting of the lipid-lowering thyroid hormone analog eprotirome.
Endocrinology 158: 3307–3318.

Killer, M., Wald, J., Pieprzyk, J., Marlovits, T.C., and Low, C. (2021). Structural
snapshots of human PepT1 and PepT2 reveal mechanistic insights into
substrate and drug transport across epithelial membranes. Sci. Adv. 7:
eabk3259.

Kim, S.W., Yoon, J.S., Lee, M., and Cho, Y. (2022). Toward a complete cure for
chronic hepatitis B: novel therapeutic targets for hepatitis B virus. Clin.
Mol. Hepatol. 28: 17–30.

Kirstgen, M., Lowjaga, K., Müller, S.F., Goldmann, N., Lehmann, F.,
Alakurtti, S., Yli-Kauhaluoma, J., Glebe, D., and Geyer, J. (2020).
Selective hepatitis B and D virus entry inhibitors from the group of
pentacyclic lupane-type betulin-derived triterpenoids. Sci. Rep. 10:
21772.

Kirstgen,M., Lowjaga, K., Müller, S.F., Goldmann, N., Lehmann, F., Glebe, D.,
Baringhaus, K.H., and Geyer, J. (2021a). Hepatitis D virus entry
inhibitors based on repurposing intestinal bile acid reabsorption
inhibitors. Viruses 13: 666.

Kirstgen, M., Müller, S.F., Lowjaga, K., Goldmann, N., Lehmann, F., Alakurtti,
S., Yli-Kauhaluoma, J., Baringhaus, K.H., Krieg, R., Glebe, D., et al.
(2021b). Identification of novel HBV/HDV entry inhibitors by
pharmacophore- and QSAR-guided virtual screening. Viruses 13: 1489.

Komatsu, Y., Yoshino, T., Yamazaki, K., Yuki, S., Machida, N., Sasaki, T., Hyodo, I.,
Yachi, Y., Onuma, H., andOhtsu, A. (2014). Phase 1 study of efatutazone, a
novel oral peroxisome proliferator-activated receptor gamma agonist, in
combination with FOLFIRI as second-line therapy in patients with
metastatic colorectal cancer. Invest. New Drugs 32: 473–480.

Kullak-Ublick, G.A., Beuers, U., and Paumgartner, G. (2000). Hepatobiliary
transport. J. Hepatol. 32: 3–18.

Kullak-Ublick, G.A., Glasa, J., Boker, C., Oswald,M., Grutzner, U., Hagenbuch,
B., Stieger, B., Meier, P.J., Beuers, U., Kramer, W., et al. (1997).
Chlorambucil-taurocholate is transported by bile acid carriers
expressed in human hepatocellular carcinomas. Gastroenterology
113: 1295–1305.

Kumari, N. and Yadav, S. (2019). Modulation of protein oligomerization: an
overview. Prog. Biophys. Mol. Biol. 149: 99–113.

Lalonde, M.S., Lobritz, M.A., Ratcliff, A., Chamanian, M., Athanassiou, Z.,
Tyagi, M., Wong, J., Robinson, J.A., Karn, J., Varani, G., et al. (2011).
Inhibition of both HIV-1 reverse transcription and gene expression by
a cyclic peptide that binds the Tat-transactivating response element
(TAR) RNA. PLoS Pathog. 7: e1002038.

Liu, C., Xu, G., Gao, Z., Zhou, Z., Guo, G., Li, D., Jing, Z., Sui, J., and Li, W. (2018).
The p.Ser267Phe variant of sodium taurocholate cotransporting
polypeptide (NTCP) supports HBV infection with a low efficiency.
Virology 522: 168–176.

Liu, H., Irobalieva, R.N., Bang-Sorensen, R., Nosol, K., Mukherjee, S.,
Agrawal, P., Stieger, B., Kossiakoff, A.A., and Locher, K.P. (2022).
Structure of humanNTCP reveals the basis of recognition and sodium-
driven transport of bile salts into the liver. Cell Res. 32: 773–776.

Liu, R., Chen, C., Xia, X., Liao, Q., Wang, Q., Newcombe, P.J., Xu, S., Chen, M.,
Ding, Y., Li, X., et al. (2017). Homozygous p.Ser267Phe in SLC10A1 is
associated with a new type of hypercholanemia and implications for
personalized medicine. Sci. Rep. 7: 9214.

Lu, P.H., Li, C.C., Chiang, Y.W., Liu, J.H., Chiang, W.T., Chao, Y.H., Li, G.S.,
Weng, S.E., Lin, S.Y., and Hu, N.J. (2021). Dissecting the conformational
dynamics of the bile acid transporter homologue ASBT(NM). J. Mol.
Biol. 433: 166764.

Lucifora, J., Esser, K., and Protzer, U. (2013). Ezetimibe blocks hepatitis B
virus infection after virus uptake into hepatocytes. Antiviral Res. 97:
195–197.

Magalhaes, A.C., Dunn, H., and Ferguson, S.S. (2012). Regulation of GPCR
activity, trafficking and localization by GPCR-interacting proteins.
Br. J. Pharmacol. 165: 1717–1736.

Mcconkey, M., Gillin, H., Webster, C.R., and Anwer, M.S. (2004). Cross-talk
between protein kinases Czeta and B in cyclic AMP-mediated sodium

D. Zakrzewicz and J. Geyer: NTCP interactions upon HBV/HDV infection 687



taurocholate co-transporting polypeptide translocation in
hepatocytes. J. Biol. Chem. 279: 20882–20888.

Meier, A., Mehrle, S., Weiss, T.S., Mier, W., and Urban, S. (2013).
Myristoylated PreS1-domain of the hepatitis B virus L-protein
mediates specific binding to differentiated hepatocytes. Hepatology
58: 31–42.

Mokaya, J., Mcnaughton, A.L., Hadley, M.J., Beloukas, A., Geretti, A.M.,
Goedhals, D., and Matthews, P.C. (2018). A systematic review of
hepatitis B virus (HBV) drug and vaccine escape mutations in Africa: a
call for urgent action. PLoS Negl. Trop. Dis. 12: e0006629.

Müller, S.F., Konig, A., Döring, B., Glebe, D., and Geyer, J. (2018).
Characterisation of the hepatitis B virus cross-species
transmission pattern via Na+/taurocholate co-transporting
polypeptides from 11 New World and Old World primate species.
PLoS One 13: e0199200.

Murakami, H., Ono, A., Takahashi, T., Onozawa, Y., Tsushima, T.,
Yamazaki, K., Jikoh, T., Boku, N., and Yamamoto, N. (2014). Phase I
study of Efatutazone, an oral PPARγ agonist, in patients with
metastatic solid tumors. Anticancer Res. 34: 5133–5141.

Naslavsky, N. and Caplan, S. (2018). The enigmatic endosome - sorting the
ins and outs of endocytic trafficking. J. Cell Sci. 131: 216499.

Nkongolo, S., Ni, Y., Lempp, F.A., Kaufman, C., Lindner, T., Esser-Nobis, K.,
Lohmann, V., Mier, W., Mehrle, S., and Urban, S. (2014). Cyclosporin A
inhibits hepatitis B and hepatitis D virus entry by cyclophilin-
independent interference with the NTCP receptor. J. Hepatol. 60:
723–731.

Noppes, S., Müller, S.F., Bennien, J., Holtemeyer, M., Palatini, M., Leidolf, R.,
Alber, J., and Geyer, J. (2019). Homo- and heterodimerization is a
common feature of the solute carrier family SLC10 members. Biol.
Chem. 400: 1371–1384.

Palatini, M., Müller, S.F., Kirstgen, M., Leiting, S., Lehmann, F., Soppa, L.,
Goldmann, N., Muller, C., Lowjaga, K., Alber, J., et al. (2022). IFITM3
interacts with the HBV/HDV receptor NTCP and modulates virus entry
and infection. Viruses 14: 727.

Palatini, M., Müller, S.F., Lowjaga, K., Noppes, S., Alber, J., Lehmann, F.,
Goldmann, N., Glebe, D., and Geyer, J. (2021). Mutational analysis of
the GXXXG/A motifs in the human Na+/Taurocholate Co-transporting
polypeptide NTCP on its bile acid transport function and hepatitis B/D
virus receptor function. Front. Mol. Biosci. 8: 699443.

Park, J.H., Iwamoto,M., Yun, J.H., Uchikubo-Kamo, T., Son, D., Jin, Z., Yoshida,
H., Ohki, M., Ishimoto, N., Mizutani, K., et al. (2022). Structural insights
into the HBV receptor and bile acid transporter NTCP. Nature 606:
1027–1031.

Park, S.W., Schonhoff, C.M., Webster, C.R., and Anwer, M.S. (2012). Protein
kinase Cdelta differentially regulates cAMP-dependent translocation
of NTCP and MRP2 to the plasma membrane. Am. J. Physiol.
Gastrointest. Liver Physiol. 303: G657–G665.

Passioura, T., Watashi, K., Fukano, K., Shimura, S., Saso, W., Morishita, R.,
Ogasawara, Y., Tanaka, Y., Mizokami, M., Sureau, C., et al. (2018). De
novo macrocyclic peptide inhibitors of hepatitis B virus cellular entry.
Cell Chem. Biol. 25: 906–915 e5.

Petersen, J., Dandri, M., Mier, W., Lutgehetmann, M., Volz, T.,
Von Weizsacker, F., Haberkorn, U., Fischer, L., Pollok, J.M., Erbes, B.,
et al. (2008). Prevention of hepatitis B virus infection in vivo by entry
inhibitors derived from the large envelope protein. Nat. Biotechnol.
26: 335–341.

Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M.,
Meng, E.C., and Ferrin, T.E. (2004). UCSF Chimera – a visualization
system for exploratory research and analysis. J. Comput. Chem. 25:
1605–1612.

Polaris Observatory, C. (2018). Global prevalence, treatment, and
prevention of hepatitis B virus infection in 2016: a modelling study.
Lancet Gastroenterol. Hepatol. 3: 383–403.

Qin, T., Wang, Y., Nie, J., Yu, L., and Zeng, S. (2022). Oligomerization of the
HBV/HDV functional receptor NTCP expressed in Sf9 insect cell.
Biochim. Biophys. Acta Gen. Subj. 1866: 130224.

Quistgaard, E.M., Low, C., Guettou, F., and Nordlund, P. (2016).
Understanding transport by the major facilitator superfamily (MFS):
structures pave the way. Nat. Rev. Mol. Cell Biol. 17: 123–132.

Ramirez Moreno, M. and Bulgakova, N.A. (2021). The cross-talk between
EGFR and E-cadherin. Front. Cell Dev. Biol. 9: 828673.

Rhodes, C.A. and Pei, D. (2017). Bicyclic peptides as next-generation
therapeutics. Chemistry 23: 12690–12703.

Robin, M.J.D., Appelman, M.D., Vos, H.R., Van Es, R.M., Paton, J.C., Paton,
A.W., Burgering, B., Fickert, P., Heijmans, J., and Van De Graaf, S.F.J.
(2018). Calnexin depletion by endoplasmic reticulum stress during
cholestasis inhibits the Na+-taurocholate cotransporting polypeptide.
Hepatol. Commun. 2: 1550–1566.

Rubsam, M., Mertz, A.F., Kubo, A., Marg, S., Jungst, C., Goranci-Buzhala, G.,
Schauss, A.C., Horsley, V., Dufresne, E.R., Moser, M., et al. (2017).
E-cadherin integrates mechanotransduction and EGFR signaling to
control junctional tissue polarization and tight junction positioning.
Nat. Commun. 8: 1250.

Ruggiero, M.J., Malhotra, S., Fenton, A.W., Swint-Kruse, L., Karanicolas, J.,
and Hagenbuch, B. (2021). A clinically relevant polymorphism in the
Na+/taurocholate cotransporting polypeptide (NTCP) occurs at a
rheostat position. J. Biol. Chem. 296: 100047.

Sabbah, D.A., Hajjo, R., and Sweidan, K. (2020). Review on epidermal growth
factor receptor (EGFR) structure, signaling pathways, interactions, and
recent updates of EGFR inhibitors. Curr. Top.Med. Chem. 20: 815–834.

Saeki, T., Takahashi, N., Kanamoto, R., and Iwami, K. (2002).
Characterization of cloned mouse Na+/taurocholate cotransporting
polypeptide by transient expression in COS-7 cells. Biosci. Biotechnol.
Biochem. 66: 1116–1118.

Salhab, A., Amer, J., Lu, Y., and Safadi, R. (2022). Sodium(+)/taurocholate
cotransporting polypeptide as target therapy for liver fibrosis. Gut 71:
1373–1385.

Sarkar, S., Bananis, E., Nath, S., Anwer, M.S., Wolkoff, A.W., andMurray, J.W.
(2006). PKCzeta is required for microtubule-based motility of vesicles
containing the NTCP transporter. Traffic 7: 1078–1091.

Schroeder, A., Eckhardt, U., Stieger, B., Tynes, R., Schteingart, C.D.,
Hofmann, A.F., Meier, P.J., and Hagenbuch, B. (1998). Substrate
specificity of the rat liver Na+-bile salt cotransporter in Xenopus laevis
oocytes and in CHO cells. Am. J. Physiol. 274: G370–G375.

Schulze, A., Gripon, P., and Urban, S. (2007). Hepatitis B virus infection
initiates with a large surface protein-dependent binding to heparan
sulfate proteoglycans. Hepatology 46: 1759–1768.

Schulze, A., Mills, K., Weiss, T.S., and Urban, S. (2012). Hepatocyte
polarization is essential for the productive entry of the hepatitis B
virus. Hepatology 55: 373–383.

Schulze, A., Schieck, A., Ni, Y., Mier,W., andUrban, S. (2010). Finemapping of
pre-S sequence requirements for hepatitis B virus large envelope
protein-mediated receptor interaction. J. Virol. 84: 1989–2000.

Sheng, L., Hao, S.L., Yang, W.X., and Sun, Y. (2018). Themultiple functions of
kinesin-4 familymotor protein KIF4 and its clinical potential. Gene 678:
90–99.

Sleno, R. andHebert, T.E. (2018). The dynamics of GPCR oligomerization and
their functional consequences. Int. Rev. Cell Mol. Biol. 338: 141–171.

Spence, J.S., He, R., Hoffmann, H.H., Das, T., Thinon, E., Rice, C.M., Peng, T.,
Chandran, K., and Hang, H.C. (2019). IFITM3 directly engages and

688 D. Zakrzewicz and J. Geyer: NTCP interactions upon HBV/HDV infection



shuttles incoming virus particles to lysosomes. Nat. Chem. Biol. 15:
259–268.

Srinivasan, S., Regmi, R., Lin, X., Dreyer, C.A., Chen, X., Quinn, S.D., He, W.,
Coleman, M.A., Carraway, K.L., 3rd., Zhang, B., et al. (2022). Ligand-
induced transmembrane conformational coupling in monomeric
EGFR. Nat. Commun. 13: 3709.

St-Pierre, M.V., Kullak-Ublick, G.A., Hagenbuch, B., and Meier, P.J. (2001).
Transport of bile acids in hepatic and non-hepatic tissues. J. Exp. Biol.
204: 1673–1686.

Stone, T.A. and Deber, C.M. (2017). Therapeutic design of peptide
modulators of protein-protein interactions in membranes. Biochim.
Biophys. Acta Biomembr. 1859: 577–585.

Sun, A.Q., Arrese, M.A., Zeng, L., Swaby, I., Zhou, M.M., and Suchy, F.J.
(2001a). The rat liver Na+/bile acid cotransporter. Importance of the
cytoplasmic tail to function and plasma membrane targeting. J. Biol.
Chem. 276: 6825–6833.

Sun, A.Q., Swaby, I., Xu, S., and Suchy, F.J. (2001b). Cell-specific basolateral
membrane sorting of the human liver Na+-dependent bile acid
cotransporter. Am. J. Physiol. Gastrointest. Liver Physiol. 280:
G1305–G1313.

Takenouchi, O., Yoshimura, H., and Ozawa, T. (2018). Unique roles of
β-arrestin in GPCR trafficking revealed by photoinducible dimerizers.
Sci. Rep. 8: 677.

Teese, M.G. and Langosch, D. (2015). Role of GxxxG motifs in
transmembrane domain interactions. Biochemistry 54: 5125–5135.

Tsounis, E.P., Tourkochristou, E., Mouzaki, A., and Triantos, C. (2021).
Toward a new era of hepatitis B virus therapeutics: the pursuit of a
functional cure. World J. Gastroenterol. 27: 2727–2757.

Tsukuda, S. and Watashi, K. (2020). Hepatitis B virus biology and life cycle.
Antiviral Res. 182: 104925.

Tsukuda, S., Watashi, K., Iwamoto, M., Suzuki, R., Aizaki, H., Okada, M.,
Sugiyama, M., Kojima, S., Tanaka, Y., Mizokami, M., et al. (2015).
Dysregulation of retinoic acid receptor diminishes hepatocyte
permissiveness to hepatitis B virus infection through modulation of
sodium taurocholate cotransporting polypeptide (NTCP) expression.
J. Biol. Chem. 290: 5673–5684.

Uchida, T., Park, S.B., Inuzuka, T., Zhang, M., Allen, J.N., Chayama, K., and
Liang, T.J. (2021). Genetically edited hepatic cells expressing the
NTCP-S267F variant are resistant to hepatitis B virus infection. Mol.
Ther. Methods Clin. Dev. 23: 597–605.

Varadi, M., Anyango, S., Deshpande, M., Nair, S., Natassia, C., Yordanova, G.,
Yuan, D., Stroe, O., Wood, G., Laydon, A., et al. (2022). AlphaFold
Protein Structure Database: massively expanding the structural
coverage of protein-sequence space with high-accuracy models.
Nucleic Acids Res. 50: D439–D444.

Vaz, F.M., Paulusma, C.C., Huidekoper, H., De Ru, M., Lim, C., Koster, J.,
Ho-Mok, K., Bootsma, A.H., Groen, A.K., Schaap, F.G., et al. (2015).
Sodium taurocholate cotransporting polypeptide (SLC10A1)
deficiency: conjugated hypercholanemia without a clear clinical
phenotype. Hepatology 61: 260–267.

Visser, W.E., Wong, W.S., Van Mullem, A.A., Friesema, E.C., Geyer, J., and
Visser, T.J. (2010). Study of the transport of thyroid hormone by
transporters of the SLC10 family. Mol. Cell. Endocrinol. 315:
138–145.

Wang, X., Lyu, Y., Ji, Y., Sun, Z., and Zhou, X. (2021a). An engineered
disulfide bridge traps and validates an outward-facing conformation
in a bile acid transporter. Acta Crystallogr., Sect. D: Struct. Biol. 77:
108–116.

Wang, X., Lyu, Y., Ji, Y., Sun, Z., and Zhou, X. (2021b). Substrate binding in the
bile acid transporter ASBTYf from Yersinia frederiksenii. Acta
Crystallogr., Sect. D: Struct. Biol. 77: 117–125.

Watashi, K., Sluder, A., Daito, T., Matsunaga, S., Ryo, A., Nagamori, S., Iwamoto,
M., Nakajima, S., Tsukuda, S., Borroto-Esoda, K., et al. (2014). Cyclosporin
A and its analogs inhibit hepatitis B virus entry into cultured hepatocytes
through targeting a membrane transporter, sodium taurocholate
cotransporting polypeptide (NTCP). Hepatology 59: 1726–1737.

Webster, C.R., Srinivasulu, U., Ananthanarayanan, M., Suchy, F.J., and
Anwer, M.S. (2002). Protein kinase B/Akt mediates cAMP- and cell
swelling-stimulated Na+/taurocholate cotransport and NTCP
translocation. J. Biol. Chem. 277: 28578–28583.

Weinman, S.A., Carruth, M.W., and Dawson, P.A. (1998). Bile acid uptake via
the human apical sodium-bile acid cotransporter is electrogenic.
J. Biol. Chem. 273: 34691–34695.

Yan, H., Peng, B., He, W., Zhong, G., Qi, Y., Ren, B., Gao, Z., Jing, Z., Song, M.,
Xu, G., et al. (2013). Molecular determinants of hepatitis B and D virus
entry restriction in mouse sodium taurocholate cotransporting
polypeptide. J. Virol. 87: 7977–7991.

Yan, H., Peng, B., Liu, Y., Xu, G., He, W., Ren, B., Jing, Z., Sui, J., and Li, W.
(2014). Viral entry of hepatitis B and D viruses and bile salts
transportation share common molecular determinants on sodium
taurocholate cotransporting polypeptide. J. Virol. 88: 3273–3284.

Yan, H., Zhong, G., Xu, G., He, W., Jing, Z., Gao, Z., Huang, Y., Qi, Y., Peng, B.,
Wang, H., et al. (2012). Sodium taurocholate cotransporting
polypeptide is a functional receptor for human hepatitis B and D virus.
eLife 1: e00049.

Yuen, M.F., Chen, D.S., Dusheiko, G.M., Janssen, H.L.A., Lau, D.T.Y.,
Locarnini, S.A., Peters, M.G., and Lai, C.L. (2018). Hepatitis B virus
infection. Nat. Rev. Dis. Primers 4: 18035.

Zahner, D., Eckhardt, U., and Petzinger, E. (2003). Transport of taurocholate
by mutants of negatively charged amino acids, cysteines, and
threonines of the rat liver sodium-dependent taurocholate
cotransporting polypeptide NTCP. Eur. J. Biochem. 270: 1117–1127.

Zakrzewicz, D., Didiasova, M., Kruger, M., Giaimo, B.D., Borggrefe, T., Mieth,
M., Hocke, A.C., Zakrzewicz, A., Schaefer, L., Preissner, K.T., et al.
(2018). Protein arginine methyltransferase 5 mediates enolase-1 cell
surface trafficking in human lung adenocarcinoma cells. Biochim.
Biophys. Acta Mol. Basis Dis. 1864: 1816–1827.

Zakrzewicz, D., Didiasova, M., Zakrzewicz, A., Hocke, A.C., Uhle, F., Markart,
P., Preissner, K.T., andWygrecka,M. (2014). The interaction of enolase-
1 with caveolae-associated proteins regulates its subcellular
localization. Biochem. J. 460: 295–307.

Zakrzewicz, D. and Geyer, J. (2022). Multitasking Na+/Taurocholate
cotransporting polypeptide (NTCP) as a drug target for HBV infection:
from protein engineering to drug discovery. Biomedicines 10: 196.

Zakrzewicz, D., Leidolf, R., Kunz, S., Müller, S.F., Neubauer, A., Leiting, S.,
Goldmann, N., Lehmann, F., Glebe, D., and Geyer, J. (2022). Tyrosine
146 of the human Na+/Taurocholate cotransporting polypeptide
(NTCP) is essential for its hepatitis B virus (HBV) receptor function and
HBV entry into hepatocytes. Viruses 14: 1259.

Zhong, L., Hu, J., Shu, W., Gao, B., and Xiong, S. (2015). Epigallocatechin-
3-gallate opposes HBV-induced incomplete autophagy by enhancing
lysosomal acidification, which is unfavorable for HBV replication. Cell
Death Dis. 6: e1770.

Zhou, X., Levin, E.J., Pan, Y., Mccoy, J.G., Sharma, R., Kloss, B., Bruni, R., Quick,
M., and Zhou, M. (2014). Structural basis of the alternating-access
mechanism in a bile acid transporter. Nature 505: 569–573.

D. Zakrzewicz and J. Geyer: NTCP interactions upon HBV/HDV infection 689



Bionotes
Dariusz Zakrzewicz
Institute of Pharmacology and Toxicology, Faculty
of Veterinary Medicine, Justus-Liebig-University
Giessen, Schubertstr. 81, D-35392 Giessen,
Germany
Dariusz.Zakrzewicz@vetmed.uni-giessen.de
https://orcid.org/0000-0003-3292-9706

Dariusz Zakrzewicz was awarded the doctoral degree in 2008 at the
Universities of Giessen and Marburg Lung Center (UGMLC) in Germany
following the investigation on initial characterization of posttranslational
protein arginine metabolism in lung pathophysiology. Having received the
PhD he continued his research during a post-doctoral fellowship at the
Justus-Liebig-University Giessen (JLU), Germany under supervision of Prof.
Klaus T. Preissner focusing on “moonlighting” cell surface receptors and
their functional contribution to the pathogenesis of pulmonary disorders.
For his research he was awarded grants by various institutions, such as the
UniversityMedical Center Giessen andMarburg and the “Excellence Cluster
Cardio-Pulmonary System” of the universities of Giessen and Frankfurt and
the Max-Planck-Institute for Heart and Lung Research in Bad Nauheim. He

currently works as a team leader in the in the group of Prof. Joachim Geyer,
Institute of Pharmacology and Toxicology, JLU Giessen, focusing on hepatic
NTCP receptor and identification of novel promising drug targets against
HBV infection.

Joachim Geyer
Institute of Pharmacology and Toxicology, Faculty
of Veterinary Medicine, Justus-Liebig-University
Giessen, Schubertstr. 81, D-35392 Giessen,
Germany
Joachim.M.Geyer@vetmed.uni-giessen.de
https://orcid.org/0000-0003-2663-1858

Joachim Geyer studied nutrition science in Giessen/Germany and obtained
his PhD for membrane transporter research. He made his habilitation in
veterinary pharmacology and pharmacogenetics and today is full professor
at the Institute of Pharmacology andToxicology of the Justus LiebigUniversity
ofGiessen. His research focus is on carriers of the Solute Carrier Family SLC10,
including the bile acid transporter and HBV/HDV entry receptor NTCP, the
steroid sulfate transporter SOAT and some others (SLC10A4, SLC10A5,
SLC10A7). In addition, he is a specialist in veterinary pharmacogenetics with a
focus on MDR1 (ABCB1) mutation in dogs and cats.

690 D. Zakrzewicz and J. Geyer: NTCP interactions upon HBV/HDV infection

mailto:Dariusz.Zakrzewicz@vetmed.uni-giessen.de
https://orcid.org/0000-0003-3292-9706
mailto:Joachim.M.Geyer@vetmed.uni-giessen.de
https://orcid.org/0000-0003-2663-1858

	Interactions of Na+/taurocholate cotransporting polypeptide with host cellular proteins upon hepatitis B and D virus infect ...
	1 Introduction
	2 NTCP structure and functions
	2.1 NTCP structure
	2.2 NTCP functions
	2.2.1 NTCP is a bile salt transporter
	2.2.2 NTCP is the high-affinity HBV/HDV entry receptor


	3 Protein–protein interactions in NTCP biology
	3.1 NTCP dimerization/oligomerization
	3.2 NTCP cofactors involved in HBV/HDV entry
	3.3 Cofactors relevant for NTCP trafficking to the cell surface

	4 Conclusions and future directions
	Acknowledgements
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Euroscale Coated v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 35
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1000
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.10000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /DEU <>
    /ENU ()
    /ENN ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName (ISO Coated v2 \(ECI\))
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName <FEFF005B0048006F006800650020004100750066006C00F600730075006E0067005D>
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 8.503940
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.276 841.890]
>> setpagedevice


