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Abstract: Increase evidence from epidemiological studies
have shown an inverse association between Parkinson’s
disease (PD) and lung cancer. PD and lung cancer are both
geriatric diseases, where these two diseases are sharing
some common genetic determinants. Several PD-associated
genes including alpha synuclein (SNCA), PTEN-induced
kinase 1 (PINK1), parkin, parkinsonism associated degly-
case (DJ-1), leucine-rich repeat kinase 2 (LRRK2), F-box
protein 7 (FBXO7) and ubiquitin C-terminal hydrolase L1
(UCHL1) were reported to have altered expressions in lung
cancer patients. This indicates that certain PD-associated
genes might be important in conferring anticancer effects.
This review aims to depict the physiological functions
of these genes, and discuss the putative roles of these
PD-associated genes in lung cancer. The understanding of
the roles of these genes in the lung cancer progression
might be important in the identification of new treatment
targets for lung cancer. Gene therapy that aims to alter the
expressions of these genes could be developed for future
anticancer therapy. As a result, studying the roles of these
genes in lung cancer may also help to understand their
involvements as well as their roles in the pathogenesis
of PD.

Keywords: lung cancer; non-small cell lung carcinoma;
Parkinson’s disease; PD-associated genes; small cell lung
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Introduction

In the past 30 years, accumulating evidence have reported a
negative association between Parkinson’s disease (PD) and
lung cancer (Becker et al. 2010; Freedman et al. 2016; Park
et al. 2019a). In the latest meta-analysis conducted by our
group, the diagnosis of PD was associated with a 44%
reduced risk of lung cancer (Leong et al. 2021). PD is the
second most common neurodegenerative disease that is
affecting 1% of the population above 60 years (Tysnes and
Storstein 2017). The pathological hallmark of this disease is
the loss of dopaminergic neurons in the substantia nigra
(Jankovic 2008). PD is characterized by deteriorated motor
features including tremors, muscular rigidity, postural
imbalance and bradykinesia and a range of non-motor
symptoms such as autonomic, cognitive and behavioral
dysfunctions (Kalia and Lang 2015; Postuma et al. 2015).
Etiology of PD is unknown but age is known to be the major
risk factor for PD. Evidence shows that multiple cellular
events such as misfolded proteins aggregations, oxidative
stress, neuroinflammation, genetic mutations and protein
clearance interruption are in place to trigger the neuro-
degeneration in PD (Maiti et al. 2017). Studies showed that
5–10% of both autosomal and inherited forms of PD are
linked to genetic factors (Klein andWestenberger 2012; Maiti
et al. 2017). The most common causative genes of PD include
SNCA, parkin, DJ-1, PINK1, UCHL1 and LRRK2 (Deng et al.
2018; Klein andWestenberger 2012; Maiti et al. 2017; Selvaraj
and Piramanayagam 2019).

Other than that, lung cancer is a highly invasive and
rapidly metastasizing cancer. It is known to be one of the
leading causes of death attributed to cancer worldwide.
Lung cancer accounted for 18.4%of the total cancer deaths in
2018, with an estimation of 1.8 million deaths worldwide
(Bray et al. 2018). It is the leading cause of mortality in
patients aged between 40 and 80 years old (Howlader et al.
2014). Although lung cancer treatments have been improved
in the past decades, lung cancer prognosis is still poor, and
the 5 year survival rate remains low (Allemani et al. 2018).
Lung cancer is classified into two broad categories, which
are non-small cell lung carcinoma (NSCLC) and small cell
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lung cancer (SCLC) (Testa et al. 2018). 15 percent of lung
cancers are represented by SCLC, an aggressively malignant
tumor exhibiting neuroendocrine characteristics. SCLC is
found to be strongly associatedwith smoking (Furrukh 2013).
On the other hand, 85% of lung cancer cases are represented
by NSCLC and it can be further categorized into adenocar-
cinoma (40%), squamous cell carcinoma (20–30%) and large
cell carcinoma (5–10%) (Zappa and Mousa 2016). Most of the
NSCLC patients are diagnosed at an advanced stage with
median overall survival ranges between 7 and 12 months,
depending on the histology types and therapeutic strategies
(Schad et al. 2018). Lung adenocarcinoma usually arises in
the glandular epithelium of lung parenchyma consisting of
type II pneumocytes whereas lung squamous cell carcinoma
originates from the basal cells in the central airways (Pikor
et al. 2013; Travis et al. 2011). In contrast, large cell carcinoma
is an undifferentiated tumor harboring neuroendocrine
features (Pikor et al. 2013).

Previously, lung cancer and PD are two diseases thought
to be unrelated to each other. However, recent emerging
evidence suggests that they not only share some common
risk factors such as aging, but also share some common
genetic features. For instance, some PD-associated genes
were also reported in the pathology of lung cancer (Lebovitz
et al. 2021; Liu et al. 2015). A study by Liu et al. identified
elevated expressions of these PD-associated genes in NSCLC
patients where the tumor samples were collected at the time
of surgical resection (Liu et al. 2015). Therefore, this review
aims to depict the physiological functions of PD-associated
genes, followed by in-depth discussions on the putative roles
of these genes in lung cancer with a focus on the molecular
connections between lung cancer and PD (Table 1).

Current therapeutic strategies for
lung cancer and their drawbacks

The current therapies for lung cancer include surgery,
radiation therapy, chemotherapy, targeted therapy, immu-
notherapy or combined modality approach. Surgery is the
standard of care for early-stage lung cancer patients
(Dómine et al. 2020; Raman et al. 2018). Radiotherapy is
another option for the early-stage patients, which damages
DNA within cancerous cells (Zappa and Mousa 2016). For
advanced-stage patients, a regimen of platinum-based
chemotherapy (cisplatin or carboplatin) in combination

Table : PD-associated genes and their putative roles identified in lung
cancer.

Gene Gene locus Expression in
lung cancer

Putative roles in
lung cancer

SNCA Chromosome
q.–q
(Kim et al. ;
Oczkowska et al.
)

Downregulation EGFR trafficking
Bcl- regulated
apoptosisa

Parkin Chromosome
q–q (Cesari
et al. ; Quinn
et al. )

Upregulation Cell cycle progression
(cyclin E ubiquitination)
(Park et al. b; Veer-
iah et al. )
EGFR trafficking and
PIK-Akt pathway
regulation (Eps 
ubiquitination) (Fallon
et al. ; Husnjak
and Dikic )
Mitophagy (PHB
regulation)

PINK Chromosome
p. (Quinn
et al. )

Upregulation Cell migration and
proliferation (mitoph-
agy) (Lu et al. )
Cell survival and prolif-
eration (NF-κB pathway
regulation) (Zhang et al.
)
Bcl- regulated
apoptosis (Liu et al.
)

DJ- Chromosome
p. (Zhang
et al. b)

Upregulation PIk-Akt pathway
regulation (antagonist
of PTEN) (Kim et al.
a; Yang et al. )
p-mediated apoptosis
(Shinbo et al. ;
Vasseur et al. )

FBXO Chromosome
q–q (Con-
edera et al. )

Upregulation Cell cycle progression
and cell proliferation
(cyclin D-CDK forma-
tion) (Laman ;
Laman et al. )
Cell cycle progression
(NF-κB pathway regula-
tion via cIAP) (Chang
et al. ; Kuiken et al.
)

UCHL Chromosome p
(Ragland et al. )

Upregulation Cell proliferation
(deubiquitination of
cyclins)a (MAPK and
PIK-Akt pathways
activation) (Hurst-Ken-
nedy et al. ; Kim
et al. )
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with gemcitabine, pemetrexed, irinotecan or docetaxel is
administered for a total of 4–6 cycles as first-line treatment
for both NSCLC and SCLC patients (Chan and Coward 2013;
Masters et al. 2015). However, the combinations of chemo-
therapy and radiotherapy only confer modest benefit in
prolonging the overall survival as well as reducing the
adverse events (Dómine et al. 2020; Zappa and Mousa 2016).

Targeted therapies involve the use of molecular
inhibitors to block specific signaling pathways specifically.
For instance, gefitinib, erlotinib and ceritinib which belong
to the drug class of epidermal growth factor receptor (EGFR)
tyrosine kinase inhibitors (TKIs), are the reversible
competitors of ATP that bind to EGFR tyrosine kinase
domain. These inhibitors are used to treat NSCLC patients
with EGFRmutationswith either L858R substitutions in exon
21 or amino acid deletions in exon 19 (Abidin et al. 2010;
Rothschild 2014; Testa et al. 2018). Another FDA-approved
agent known as crizotinib is an inhibitor of ALK, MET and
ROS tyrosine kinases (Kazandjian et al. 2014; Solomon et al.
2014). These treatment strategies are promising as they
confer progression-free survival longer than chemotherapy
(Li et al. 2008; Richer et al. 2015; Rothschild 2014). Unfortu-
nately, these therapies have some drawbacks, for instance,
targeted therapies often result in gain-of-functionmutations
that lead to additional drug resistance characteristics in
cancer cells. For example, the EGFR T790Mmutation in exon
20, which resulted from prolonged EGFR TKI therapy, was
known to disrupt the inhibitory activities of the TKIs
(Kobayashi et al. 2005; Sun et al. 2013). Resistance to first-and

second-generation EGFR TKIs which is caused by this
mutation can be overcome by several third-generation
irreversible EGFR TKIs such as osimertinib (Mok et al. 2017;
Soria et al. 2018). Nevertheless, acquired resistance to osi-
mertinib has been reported in several cases. Furthermore, a
broad spectrum of drug resistance including KRAS, ALK,
MET, cKIT amplification, HER1, HER2 andHER3 upregulation
and L1196M mutations has been discovered in NSCLC
patients (Chen et al. 2013; Doebele et al. 2012; Papadimi-
trakopoulou et al. 2018; Tanizaki et al. 2012). Similar
drawback was observed in the SCLC patients treated with
inhibitors such as gefitinib and imatinib, with no improve-
ment in survival rate observed in small phase II trials
(Abidin et al. 2010).

On top of that, immunotherapy boosts the body’s natural
defense systems to defeat cancer by targeting immune
checkpoint pathways (Onoi et al. 2020). Cytotoxic T
lymphocyte-associated antigen 4 (CTLA-4), programmed
death 1 (PD-1) and its ligand (PD-L1) are the immune check-
point inhibitors that block the immunosuppressive mecha-
nisms in the lung cancer cells (Kim and Choi 2020; Saltos et al.
2020). Clinical trials have revealed that immunotherapy
significantly improves lung cancer patients’ progression-
free survival and overall survival (Kim and Choi 2020; Saltos
et al. 2020). However, immune checkpoint inhibitors may
cause immune-related adverse events which are resulted
fromnon-specific activation of the immune system (Puzanov
et al. 2017). This results in the high toxicities which could
affect various organs including the lungs, liver, nervous
system and thyroid in the patients who receiving the therapy
(Kim and Choi 2020; Saltos et al. 2020).

Although there are many therapeutic agents used in
the lung cancer treatment, their long-term outcomes still
require further improvements. The 5 year survival rate of
lung cancer patients remains low (15–20%), although it has
been improved (Chen et al. 2020; Garon et al. 2019).
Numerous therapeutic agents undergoing clinical trials
seem to show promising results, however, the outcomes
are immature and the optimal dosage and sequences are
yet to be determined (Chen et al. 2020; Majeed et al. 2021).
Furthermore, it is known that undesirable drug resistance
and toxicity are inevitable (Chan and Hughes 2015).
Disease progression has been another challenge for lung
cancer therapies since lung cancer prognosis remains
disappointing, with a 5 year survival rate of only approx-
imately 15% (Edwards et al. 2014). Hence, a better under-
standing on the roles of these PD-associated genes and
identifying the escape pathways in lung cancer could be
significant in discovering new treatment strategies for
lung cancer.

Table : (continued)

Gene Gene locus Expression in
lung cancer

Putative roles in
lung cancer

LRRK Chromosome
p.–q.
(Zimprich et al.
)

Downregulation ERK and JNK dependent
autophagy (Herzig et al.
; Tian et al. )

Elevated expressions of parkin, PINK, DJ-, FBXO and UCHL and
downregulation of SNCA and LRRK were detected in lung cancer. These
genes regulate cell proliferation, cell survival, apoptosis, mitophagy/
autophagy and cell cycle progression via various signaling pathways in
order to promote lung carcinogenesis. Abbreviations: SNCA, alpha
synuclein; PINK, PTEN-induced putative kinase one; FBXO, F-box protein
; UCHL, ubiquitin carboxyl-terminal esterase L; LRRK, leucine-rich
repeat kinase two; EGFR, epidermal growth factor receptor; Bcl-, B-cell
lymphoma two; PIk-Akt, phosphatidylinositol -kinase-protein kinase B;
Eps , epidermal growth factor receptor pathway substrate ; PHB,
prohibitin two; NF-κB, nuclear factor kappa-light-chain-enhancer of
activated B cells; PTEN, phosphatase and tensin homolog; CDK, cyclin-
dependent kinase ; CIAP, cellular inhibitor of apoptosis one; ERK,
extracellular signal-regulated kinase; JNK, c-Jun N-terminal kinases.
aPutative roles remain speculative.
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SNCA

SNCA encodes α-synuclein which is a 140 amino acid protein
that consists of three distinct structural domains including
an N-terminal region (residues 1–60), a central hydrophobic
region (residues 61–95) and a C-terminal region (residues
96–140) (Kim et al. 2014; Snead and Eliezer 2014). α-Synuclein
is abundantly found within the Lewy bodies, the patholog-
ical hallmark of PD, as amyloid fibrils (Kim et al. 2014;
Spillantini 1999). Several variants with missense mutations
(A53T, E46K and A30P, H50Q and G51D) have been identified
in the cases of familial PD (Appel-Cresswell et al. 2013; Lesage
et al. 2013; Proukakis et al. 2013). These mutations are
believed to either accelerate the aggregation rate of fibrils
formation or change the conformation or oligomerization
upon aggregations (Meade et al. 2019; Snead and Eliezer
2014). Physiological functions of α-synuclein have been
related to the regulation of synaptic vesicles for the release
of neurotransmitters such as dopamine (Butler et al. 2017;
Janezic et al. 2013) and the regulation of endoplasmic
reticulum-Golgi transport (Cooper et al. 2006). Over-
expression of SNCA has been reported in PD (Stefanis 2012;
Tagliafierro and Chiba-Falek 2016). Aggregates of α-synu-
clein, especially the soluble oligomeric form, exert neuro-
toxicity that precedes synaptic dysfunction and ultimately
cause neuronal cell death (Ingelsson 2016).

In PD, overexpression of wild-type or mutated SNCA
triggered mitochondrial-mediated apoptosis that leads to
neuronal cell death. This mechanism is thought to be
mediated by the upregulation of Bax and downregulation of
Bcl-xL as a result of interaction between SNCA and Bad, a
pro-apoptotic member of the Bcl-family (Ahmad et al. 2007;
Seo et al. 2002). Bad initiates allosteric activation of Bax to
promote conformational change, resulting in cytochrome c
release and caspases activation (Ahmad et al. 2007; Seo et al.
2002). Other than that, SNCA activates phosphatidylinositol
3-kinase-protein kinase B (PI3K-Akt) at a low expression
level and subsequently increases expressions of anti-
apoptotic Bcl-family members in neuronal cells. PI3K-Akt
phosphorylates Akt, which activates Bad phosphorylation,
thereby reducing interaction between Bad and Bcl-xL and
inhibiting actions of caspase-9 (Matsuzaki et al. 1999;
Pugazhenthi et al. 2000; Tsujimoto and Shimizu 2000).
Through this pathway, cell death is inactivated.

Even though most research studied the actions of SNCA
in brain diseases, there are evidence showing the ubiquitous
presence of alpha-synuclein protein in the gastro-enteric
tract and human body fluids such as blood, saliva, and
cerebrospinal fluid (Campo et al. 2019; El-Agnaf et al. 2006;

Fenyi et al. 2019; Gao et al. 2015). This suggests that the
pro-apoptotic action of overexpressed/mutated SNCA can be
observed in the peripheral organs too, including thosewhich
are prone to cancer development (Gao et al. 2015; Hansson
et al. 2014;Wang et al. 2016). Additionally, animalworks have
shown that α-synuclein can cross the blood-brain barrier
due to compromised blood-brain barrier integrity in PD
(Brochard et al. 2009; Gray and Woulfe 2015; Peelaerts et al.
2015). In relation to lung cancer, a study by Yan et al. showed
that SNCA is downregulated in lung adenocarcinoma (Yan
et al. 2018). Bioinformatics analyses done by this group had
suggested the tumor suppressive roles of SNCA (Yan et al.
2018). Hence, high expression of SNCA in lung adenocarci-
noma patients would improve the overall survival time and
post-progression survival time in the lung adenocarcinoma
patients (Yan et al. 2018). It is possible that the reduced lung
cancer risk in PD may be associated with an increased
apoptosis in cancer cells (Figure 1). This could be attributed
to the overexpression of SNCA in PD patients, which
contributes to a better tumor suppressing ability. On the
contrary, downregulation of SNCA in lung cancer patients
may have promoted cancer proliferation and inhibition of
apoptosis in the cancer cells (Ge and Xu 2016; West et al.
2005).

A negative association between SNCA and EGFR
signaling pathway has also been reported (Yan et al. 2018)
(Figure 1). EGFR plays an important role in cells prolifera-
tion, differentiation, inflammatory processes and survival
(Lemmon and Schlessinger 2010; Schlessinger 2014). Upon
binding to a ligand, EGFR undergoes dimerization followed
by autophosphorylation that leads to activation of various
downstream signaling pathways (Bethune et al. 2010; Guo
et al. 2015). In NSCLC, abnormal EGFR trafficking increases
cell proliferation via inhibition of apoptosis and thereby
induces tumor development (Sigismund et al. 2018). The
previous study also suggested that EGFR might suppress the
SNCA expression through protein phosphorylation at four
possible EGFR phosphorylation sites, which were identified
from the full-length SNCA protein sequence (Yan et al. 2018).
However, the mechanisms of EGFR on the SNCA regulation
in lung adenocarcinoma remain elusive and require more
investigations.

Parkin

Parkin gene mutation is the second most common cause of
familial PD of which the majority accounts for autosomal
recessive PD (Dawson and Dawson 2014; Kitada et al. 1998).
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Parkin (also known as PARK2) functions as E3 ubiquitin
ligase and comprises a ubiquitin-like domain and four
zinc-coordinating RING-like domains, including RING0,
RING1 IBR and RING2 (Seirafi et al. 2015). It ubiquitinates
various cytosolic and outer mitochondrial membrane
proteins for the coordination of cellular pathways such as
mitochondrial homeostasis, anti-oxidative stress, mitoph-
agy, protein degradation and tumor suppression (Bernardini
et al. 2017; Cesari et al. 2003; Pickrell and Youle 2015; Zhang
et al. 2016). Under normal circumstances, parkin mediates
neuroprotection by activating the NF-κB pathway during
stress. Parkin initiates ubiquitination of IKKγ and TRAF2,
leading to the upregulation of pro-survival genes (Henn et al.
2007). Phosphorylation of ubiquitin and the recruitment of
parkin to the damaged mitochondria by PINK1 result in
mitochondrial degradation through mitophagy, which is
the autophagy-lysosome pathway, as a way to maintain
mitochondrial quality for cell survival (Bogetofte et al. 2019).
In PD pathogenesis, parkin mutations lead to the loss of
parkin function. Besides, parkin dysfunction due to

oxidative stress or dopaminergic stress has been indicated in
sporadic PD (LaVoie et al. 2005; Meng et al. 2011). Studies
demonstrated that the nonreceptor tyrosine kinase c-Abl
phosphorylates parkin, causing the inhibition of parkin’s
ubiquitination and the loss of its neuroprotective ability
(Imam et al. 2011; Ko et al. 2010). As a result, the loss of parkin
activity accumulates the number of depolarized mitochon-
dria that produce reactive oxygen species (ROS) extensively
(McWilliams and Muqit 2017; Pickrell and Youle 2015).

A growing number of studies have revealed the tumor
suppressive roles of parkin in lung cancer development
(Figure 1). According to a data analysis on cBio portal
(Cerami et al. 2012), the frequencies of parkin mutations in
lung squamous cell carcinoma and lung adenocarcinoma are
about 5.6 and 3%, respectively (Xu et al. 2014). A study by
Picchio et al. identified the presence of heterogenous
deletions of parkin at exon 2 in lung adenocarcinoma cell
lines (Cesari et al. 2003; Picchio et al. 2004). The deletions or
mutations of parkin inactivate ubiquitination to cyclin E and
results in the loss of its tumor suppressive effect in lung

Figure 1: Lung cancermetabolismmediated by PD-associated genes. Elevated expressions of Parkin, PINK1, DJ-1, FBXO7 and UCHL1 and downregulation
of SNCA and LRRK2 were detected in lung cancer. These genes regulate cell proliferation, cell survival, apoptosis, mitophagy/autophagy and cell cycle
progression via various signaling pathways in order to promote lung carcinogenesis. CDK1/2/6, cyclin-dependent kinase 1/2/6; CIAP1, cellular inhibitor of
apoptosis one; DJ-1, parkinsonism associated deglycase; EGFR, epidermal growth factor receptor; Eps 15, epidermal growth factor receptor pathway
substrate 15; ERK, extracellular signal-regulated kinase; FBXO7, F-box protein 7; HIF-1α, hypoxia-inducible factor 1α; JNK, c-Jun N-terminal kinases; LRRK2,
leucine-rich repeat kinase two; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; PHB2, prohibitin two; PINK1, PTEN-induced putative
kinase one; PI3k/Akt/mTOR, phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin; SNCA, alpha synuclein; SIRT1, sirtuin one;
TRAF6, tumor necrosis factor receptor-associated factor 6; UCHL1, ubiquitin carboxyl-terminal esterase L1.
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cancer cells (Spruck et al. 1999). Cyclin E is an oncogene that is
essential to cell cycle progressionby regulating the transitions
between cell cycle phases (Mazumder et al. 2004). Cyclin E is
usually overexpressed in patients with early-stage NSCLC
(Müller-Tidow et al. 2001). Notably, parkin loses its ability to
ubiquitinate and degrade cyclin E by preventing the binding
between cyclin E and CDK2 (Veeriah et al. 2010). This could
promote cell cycle progression (Veeriah et al. 2010). Other
than that, studies claim that parkin is overexpressed in both
NSCLC cell lines and humanNSCLC tissue samples (Duan et al.
2019; Park et al. 2019b). Overexpression of parkin in NSCLC
was found to inhibit cascades of signaling pathways including
cell proliferation, invasion, cell cycle progression as well as
apoptosis (Duan et al. 2019). The study by Park et al. also
highlighted that depletion of parkin inhibits tumorigenesis
via cell cycle arrest at sub G0/G1 phase in NSCLC cells (Park
et al. 2019b). In vitro ubiquitination assays showed that parkin
deficiency restricts cell cycle progression by inhibiting p21
degradation and cyclin E/CDK2 complex formation (Park et al.
2019b). Moreover, depletion of parkin activates EGFR but
suppresses Akt/mTOR pathways and subsequently enhances
apoptosis (Duan et al. 2019; Fallon et al. 2006; Husnjak and
Dikic 2006; Xiong et al. 2015). Previous study state that parkin
proteinmediates themonoubiquitination of Eps15, anadaptor
protein found in EGFR endocytosis and trafficking (Fallon
et al. 2006; Husnjak andDikic 2006). The authors also revealed
the binding of a ubiquitin-like domain in parkin to ubiquitin-
interacting motifs of Eps15, which activates EGFR endocytosis
and PI3K-Akt signaling pathway, a pathway that promotes
cells growthand survival. A studybyZhang et al. revealed that
the inner mitochondrial membrane protein called prohibitin
2 (PHB2) is highly expressed in NSCLC cells (Zhang et al.
2020a). PHB2 functions as a mitophagy receptor to the ligand
autophagosomalmembrane-associated protein LC3 (Wei et al.
2017). PHB2 accumulation upregulates the expressions of
mitophagy-associated proteins in the tumor cells which in
turn enhances the parkin-mediated mitophagy (Zhang et al.
2020a). In malignant tumors, dysregulated mitophagy is
associated with metastasis of cancers and provides a survival
advantage to tumor cells (Wang et al. 2020; Zhang et al. 2020a).
Cancerous cells eliminate dysfunctional or damaged mito-
chondria viamitophagy and reduceROS levels tomaintain the
cell survival (Humpton et al. 2019; Zhao et al. 2019).

PINK1

PTEN-induced kinase 1 (PINK1), also known as PARK6, is a
serine/threonine kinase that contributes to the regulation of
mitochondrial quality control pathways via mitophagy
(Ge et al. 2020; Gonçalves andMorais 2021; Quinn et al. 2020).

The loss-of-function of PINK1 is also associated with
autosomal recessive and early onset of PD (Ge et al. 2020).
PINK1 and parkin are mutually interdependent in mitoph-
agy activation by which PINK1 is initiated by mitochondrial
membrane potential depolarization to phosphorylate
ubiquitin and parkin (Gonçalves and Morais 2021). In
response to mitochondrial damage, PINK1 recruits parkin
from the cytosol to depolarized mitochondria and initiates
mitophagy by eliminating the damaged organelles through
autophagosome recruitment and ubiquitin proteasomal
degradation (McWilliams andMuqit 2017; Pickrell and Youle
2015). In PD, PINK1 mutation is associated with mitochon-
drial dysfunction, which triggers oxidative stress (Gautier
et al. 2008; Matsuda et al. 2013). Likewise, a mutation in
PINK1 can lead to failure in recruiting parkin and
subsequently result in the accumulation of damaged
mitochondria (Gonçalves and Morais 2021). Also, PINK1
deficiency reduces oxidative phosphorylation due to ROS
accumulation and transmembrane potential dissipation
(Gautier et al. 2008; Gonçalves and Morais 2021; Vara-Perez
et al. 2019). This eventually causes neurodegeneration such
as loss of dopaminergic neurons of the substantia nigra
pars compacta.

Besides, several studies suggested that the putative roles
of PINK1 in cancer development involve regulations of
mitophagy, cell survival and cell cycle (Dai et al. 2019; Lu
et al. 2020; O’Flanagan et al. 2015) (Figure 1). Emerging
evidence have reported an upregulation of PINK1 protein
expression in both NSCLC cell lines and human NSCLC
tissues (Liu et al. 2018; Lu et al. 2020; Zhang et al. 2017). These
studies demonstrated that PINK1 promotes cancer cell
survival and proliferation which can lead to the emergence
of chemoresistance in NSCLC cells via the NF-κB pathway
(Chang et al. 2018; Zhang et al. 2017). PINK1 protein binds to
tumor necrosis factor receptor-associated factor 6 (TRAF6)
and facilitates ubiquitination of TRAF6 whereby it activates
the NF-κB pathway (Chen et al. 2011; Zhang et al. 2017).
Furthermore, a study by Dai et al. revealed increased ROS
production, increased cell death, inhibited mitophagy and
reduced cell proliferation in PINK1 depleted NSCLC cell lines
(Dai et al. 2019). Researchers also indicated that knockdown
of PINK1 enhances apoptosis of lung cancer cells via caspase
9 or caspase 3 activation (Dai et al. 2019; Liu et al. 2018; Zhang
et al. 2017). In addition, downregulation of Bcl-2 levels and
upregulation of Bax levels have been revealed in lung cancer
cells (Liu et al. 2018). Bcl-2 family regulates the apoptotic
pathway where Bcl-2, the anti-apoptotic proteins, and Bax,
the pro-apoptotic proteins are the two key members (Liu
et al. 2018). Hence, high PINK1 expression could serve as an
indicator of poor prognosis in NSCLC patients (Chang et al.
2018).
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DJ-1

DJ-1 is comprised of 189 amino acids and usually appears as
dimers. It is expressed in almost all cells including neurons,
glial cells, macrophages and cancerous cells (Ariga et al.
2013). The PARK7 gene encodes DJ-1 and its mutations
including L166P, M26I, D149A, A104T, E64D and L10P are
linked to familial PD which usually result in loss of function
and conformational change of protein (Bonifati et al. 2003;
Moore et al. 2005). On top of that, DJ-1 is found to be
overexpressed in reactive astrocytes in sporadic PD and
other neurodegenerative diseases under oxidative stress
(Ariga et al. 2013). DJ-1 is known to be involved in the
regulation of transcription factors such as Nrf2, PI3K
and p53, mitochondrial regulation, signal transduction and
anti-oxidative stress reaction (Ariga et al. 2013; Kim et al.
2005b; McCoy and Cookson 2011; Zhang et al. 2020b). DJ-1 is
also a sensor of oxidative stress which protects cells against
free radical assault on the three cysteine residues at amino
acids 46 (C46), 53 (C53) and 106 (C106) (Taira et al. 2004; Zheng
et al. 2018). Of these, C106 of DJ-1 is highly susceptible to
oxidative stress and is sequentially oxidized into sulfenated
form (–SOH), sulfinated form (–SO2H), and sulfonic form
(–SO3H) (Ariga et al. 2013). Oxidation of C106 to SO3H results
in inactive form of DJ-1 and lead to the loss of its biological
function under extensive oxidative stress (Mita et al. 2018).
As a result, excessive oxidized DJ-1 is correlated with the
progression of PD due to its loss of function.

On top of that, DJ-1 is responsible for regulation of
various transcription factors including nuclear factor Nrf2,
PI3K/PKB, and p53 signal pathways upon oxidative stress
induction. DJ-1 can either binds to p53 directly to restore
the transcriptional activity or stimulate deacylation and
suppress p53 transcriptional activity (Dolgacheva et al. 2019).
p53 is a tumor suppressor gene that is known as ‘guardian of
the genome’ by regulating DNA repair, cell cycle and cell
death (Dolgacheva et al. 2019; Feroz and Sheikh 2020). DJ-1
protects neurons against caspase activation and cell death
via p53-mediated Bax expression (Bretaud et al. 2007).
However, p53 undergoes lysine acetylation to activate cell
cycle arrest or cell death pathways and repair damaged DNA
in response to damage incurred (Feroz and Sheikh 2020).
Increased p53 levels and activities are associated with
increased levels of cytokines, caspase 3 and Bax in the brain
of the PD patients (Gandhi and Wood 2005; Mogi et al. 2007).
DJ-1 can suppress p53 transcriptional activity by decreasing
Bax expressions as well as stimulating post-translational
modifications of p53 with acetylation and Topors-mediated
sumoylation (Dolgacheva et al. 2019; Fan et al. 2008; Shinbo
et al. 2005).

Aberrant protein expression of DJ-1 has been implicated
in NSCLC and served as a prognostic marker that predicts
poor outcomes in lung cancer patients (Kim et al. 2005a;
MacKeigan et al. 2003; Zeng et al. 2011). However, the
mechanism of DJ-1 in lung cancer remains ambiguous. DJ-1
overexpression is frequently found in various malignancies
serving as a potent activator of the PI3K/Akt/mTOR pathway
and the inhibitor of p53-mediated apoptosis (Shinbo et al.
2005; Vasseur et al. 2009) (Figure 1). DJ-1 functions as an
antagonist of PTEN tumor suppressor to promote cancer cell
survival by enhancing Akt phosphorylation (Kim et al.
2005a). Activation of the PI3K-Akt pathway upregulates
hypoxia-inducible factor 1α (HIF-1α) expressions under
hypoxic conditions leading to a series of cancer signaling
events involving angiogenesis, cell proliferation and
metastasis (Zhong et al. 1999).

The negative association between DJ-1 and p53 has
played a role in lung carcinogenesis. Takahashi-Niki et al.
revealed that DJ-1 inhibits p53 activity by activating a lysine
deacetylase called SIRT1, the member of Sirtuin family
protein, in A549 lung adenocarcinoma cell line (Takahashi-
Niki et al. 2016). p53 mutations were detected in 34% of
NSCLC patients with a higher frequency in squamous cell
carcinomas than adenocarcinomas (Molina-Vila et al. 2014;
Zhang et al. 2019). Genetic abnormality of p53 in lung cancers
is associated with poor prognosis (Scoccianti et al. 2012;
Szymanowska et al. 2005). Evidence also links p53 and
Akt to the chemosensitivity against combinational cisplatin
chemotherapy in NSCLC (Yilmaz et al. 2019). Cisplatin
treatment or cellular stress triggers the phosphorylation
of p53 at serine 15 that impairs the EGFR and Akt down-
stream signaling cascades in NSCLC patients (Loughery et al.
2014; Vasseur et al. 2012). Inactivation of Akt, together with
p53 stimulation, contributes to the ROS production. Akt
suppresses p53-mediated apoptosis during chemoresistance
that activates EGFR to reduce the ROS levels (Zhang et al.
2019). These preliminary findings propose the potential of
p53 re-constitution or EGFR inhibitors as the therapeutic
options in sensitizing chemoresistant NSCLC cells. In short,
DJ-1 is a negative regulator of p53, where the upregulation of
DJ-1 promotes lung cancer progression and proliferation by
activating the Akt pathway (Jin 2020).

FBXO7

F-box domain-containing protein, FBXO7/PARK15, belongs
to the F-box-containing protein (FBP) family that forms
ubiquitin ligase complexes with cullin-1 and SKP1. These
complexes are involved in regulating proteasomal
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degradation and cell cycle progression (Ho et al. 2008; Laman
2006; Zhou et al. 2015). At the N-terminus, FBXO7 protein is
composed of a ubiquitin-related (UbR) domain, which
recruits parkin to regulate mitochondrial quality (Burchell
et al. 2013). FBXO7 mutations are genetically associated
with autosomal recessive juvenile PD (Fonzo et al. 2009). A
previous study has suggested that the FBXO7 protein is a
stress response protein (Zhou et al. 2015). FBXO7 mutations
(L34R, T22M, R481C, R378G and R498X) in PD can impair the
neuroprotective function and facilitate mitochondrial
proteotoxicity by stimulating the formation of parkin
protein aggregations (Zhou et al. 2015). Ultimately, FBOX7
dysregulation leads to neurodegeneration via impairment of
the ubiquitin proteasome system and inhibition of mitoph-
agy (Zhou et al. 2016; Zhou et al. 2015). Wild-type FBXO7
protein plays a vital role in cryoprotection by facilitating
mitophagy under stress. However, increased FBXO7
expression leads to aggregation of deleterious FBXO7
proteins in mitochondria which disrupts mitochondria
integrity and eventually causes cell death (Zhou et al. 2016).

Emerging evidence have indicated that FBXO7 plays a
role in lung tumorigenesis (Laman et al. 2005; Randle and
Laman 2016;Wang et al. 2014). Elevation of FBXO7 levels was
detected in both lung adenocarcinoma and squamous cell
carcinoma. This triggers the cell cycle progression by
facilitating the activation of D cyclins and their catalytic
subunit, cyclin dependent kinase (CDK6) (Laman et al. 2005;
Laman 2006) (Figure 1). Upregulation of FBXO7 is not only
inducing the cyclin D-CDK6 complexes formation but also
downregulating CDK inhibitors (p21 and p27) expressions
(Laman 2006; Meziane et al. 2011). Increased expression of
cyclin D-CDK6 complexes enhances the transition of G1 to S
phase to accelerate cell proliferation. On top of that, FBXO7
proteins are involved in proteasome-mediated proteolysis of
hepatoma upregulated protein (HURP) (Hsu et al. 2004).
FBXO7 recruits HURP at its proline-rich domain in a CDK-
1-cyclin B phosphorylation-dependent manner. In NSCLC,
HURP is reported to be overexpressed in a bioinformatics
analysis. The study reported a negative correlation between
HURP expression level with overall survival and relapse-free
survival (Wang et al. 2018). Additionally, HURP is involved in
several cellular processes that induce lung tumor develop-
ment including cancer proliferation, invasion andmigration
(Wang et al. 2018). Besides, FBXO7 is found to activate
ubiquitination and degradation of cellular inhibitor of
apoptosis protein 1 (cIAP1) which leads to reduced NF-κB
signaling activity (Chang et al. 2006; Kuiken et al. 2012;
Randle and Laman 2016) (Figure 1). As such, FBXO7 is a
negative regulator of NF-κB (Randle and Laman 2016).
Studies showed that a high level of cIAP1 was reported in
human NSCLC tissues, which inhibits apoptosis of the lung

cancer cells (Chang et al. 2006; Yang et al. 2016). Thus, high
levels of both FBXO7 and cIAP1 disrupt the NF-κB pathway.
NF-κB influences lung tumorigenesis by suppressing
apoptosis and inducing metastasis and cell proliferation
(Rasmi et al. 2020).

UCHL1

Ubiquitin C-terminal hydrolase L1 (UCHL1, also known as
PARK5) is a ubiquitin C-terminal hydrolase that is expressed
abundantly in neurons (Day and Thompson 2010; Wilkinson
et al. 1989). UCHL1 constitutes 1–2% of soluble brain protein
and is present in Lewy bodies (Maraganore et al. 2004).
UCHL1 functions as a deubiquitinase (DUB) in ubiquitin-
dependent proteolysis, a pathway responsible for damaged
or misfolded proteins degradation, cell cycle progression
and cell death (Ciechanover and Brundin 2003; Spataro et al.
1998). DUBs facilitate tumor suppressive function in a
cascade of signaling pathway (Reyes-Turcu et al. 2009). In
addition, the dimeric formof UCHL1 acts as a ligase to extend
polyubiquitin chains on α-synuclein and tubulin (Bheda et al.
2010; Liu et al. 2002). Although PD pathogenesis mediated by
UCHL1 ligase activity remains unclear, Liu et al. hypothe-
sized that UCH1 promotes lysine-63 polyubiquitination
and creates an elevation of α-synuclein that interrupting
proteasomal degradation (Liu et al. 2002). The study also
proposed that lysine-63 polyubiquitination of α-synuclein
may promote pathogenic protofibrils formation and lead to
neurotoxicity (Liu et al. 2002).

Even though UCHL1 is widely expressed in neurons,
several studies have suggested a positive correlation
between UCHL1 and lung cancer progression (Liu et al. 2003;
Yao et al. 2022). In tumorigenesis, increased deubiquitination
of cyclins by UCHL1 is attributed to the uncontrolled growth
of somatic cells (Yao et al. 2022) (Figure 1). Increased
expression of UCHL1 is detected in the lung cancer cell lines,
hence it may be a potential marker for NSCLC and SCLC (Kim
et al. 2009; Sasaki et al. 2001; Shimada et al. 2020). A study by
Sasaki et al. showed that UCHL1 expressions were closely
correlated with T-stages (features of primary tumor) of
NSCLCs, but not with N-stages (regional lymph node
involvement) (Sasaki et al. 2001). Thus, the results showed
that UCHL1 plays a role in the early stage of lung carcino-
genesis (Sasaki et al. 2001). Moreover, overexpression of
UCH-L1 in lung cancer cells was reported to activate PI3K-Akt
and MAPK signalling pathways. This suggests that UCH-L1
overexpression promotes cell survival and tumour pro-
gression (Hurst-Kennedy et al. 2012; Kim et al. 2009).
Nevertheless, the actions of UCHL1 on lung cancer
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development and invasion require further investigation to
establish a better understanding of its mechanism.

LRRK2

Leucine-rich repeat kinase 2 (LRRK2) genemutations are one
of the leading causes of autosomal dominant PD (Rivero-Ríos
et al. 2020; Tolosa et al. 2020). LRRK2 is a large protein
(280 kDa) consisting of multiple domains including Ras of
Complex (Roc) GTPase, COR (C-terminal of ROC) and other
protein–protein interaction domains (Jeong and Lee
2020; Rui et al. 2018). Thus, this LRRK2 protein undergoes
multifunctional activities by interacting with diverse
proteins and exhibiting catalytic activities as GTPase and
kinase (Ravinther et al. 2022). LRRK2 is found to be involved
in various cellular processes including inflammation,
autophagy, cell survival, homeostasis, protein degradation
and mitochondrial functions (Funk et al. 2019). There are
seven missense LRRK2 mutations namely R1441G, R1441C,
R1441H, R1628P, G2019S, G2385R, I2020T and Y1699C found in
PD for which G2019S mutation is the most prevalent (Rivero-
Ríos et al. 2020; Rui et al. 2018). These mutations lead to
gain-of-function mechanisms, where increased LRRK2
kinase phosphorylates Rab proteins at different subcellular
localities, thereby affecting downstream pathways and
driving towards PD pathogenesis (Berwick et al. 2019).
Several studies have revealed that LRRK2 could potentially
mediate α-synuclein toxicity by reducing α-synuclein
clearance inmicroglia via endo-lysosomal pathway whereas
LRRK2 G2019S enhances α-synuclein aggregation in neurons
(Maekawa et al. 2016; Volpicelli-Daley et al. 2016). Besides,
LRRK2 is an upstream regulator ofmitogen activated protein
kinases (MAPK), shown in both in vivo and in vitro studies.
LRRK2 phosphorylates apoptosis signal-regulating kinase 1
(ASK1) and several MAPK kinases including p38 MAPK, c-Jun
N-terminal kinases (JNKs) and extracellular signal-regulated
kinase (ERK) and activates neuronal apoptosis (Ravinther
et al. 2022; Yoon et al. 2017). In addition, LRRK2 G2019S
mutation enhances the effect of LRRK2 kinase activity by
inducing abnormal activation of both MAPK and JNK
signaling pathways and ultimately causing neuronal cell
death (Rui et al. 2018;Wallings et al. 2015). Furthermore, LRRK2
modulates autophagy in different cell types (Albanese et al.
2019). Several findings showed that LRRK2 regulates auto-
phagy via MEK/ERK pathway in G2019S mutant fibroblasts
(Bravo-San Pedro et al. 2013), Beclin-1/PI3K pathway in astro-
cytic cells (Manzoni et al. 2016), mTOR-dependent pathway
in RAW264.7 macrophages or murine BV2 microglial cells
(Schapansky et al. 2014) and Ca2+/CaMKK/AMPK pathway
in dopaminergic neuroendocrine cells and PC12 cells

(Bedford et al. 2016; Gómez-Suaga and Hilfiker 2012). Of
these, LRRK2 could possibly initiate another pathway in
cancer cells.

A previous study has reported decreased LRRK2
expression in lung adenocarcinoma (Lebovitz et al. 2021).
The study has also shown that in vivo LRRK2 knockdown
would promote lung tumorigenesis (Lebovitz et al. 2021). As
LRRK2 has been implicated in autophagic processes, studies
revealed that knockout of LRRK2 could lead to excessive
accumulation of proteins that are involved in the impaired
induction of autophagy in kidney and lung cells (Herzig et al.
2011; Tong et al. 2010) (Figure 1). The findings revealed
abnormal accumulation of secretory lysosomes called
lamellar bodies in lung alveolar type II cells of nonhuman
primates when LRRK2 production is inhibited (Baptista et al.
2020; Fuji et al. 2015; Herzig et al. 2011). Besides, deficiency
of LRRK2 is reported to impair ERK and JNK signalling
pathways which contributes to the autophagic dysfunction
and cell senescence (Tian et al. 2021). However, the oncogenic
mechanism of LRRK2 dysregulation and its effect in lung
cancer require more investigation.

Future perspectives

An understanding of the potential roles of these
PD-associated genes and their gene products in lung can-
cer development can be beneficial in strategizing new
therapeutic options for lung cancer. For instance, gene
therapy can be exploited to regulate the expression profiles
of these genes. Gene therapy has been a promising approach
to cancer treatment since the emergence of various
high-throughput genomic technologies (Belete 2021;
Roma-Rodrigues et al. 2020). One of the most widely used
techniques is the recombinant DNA technology such as viral
vectors, bactofection and non-viral vectors (chemical and
physical) that can deliver gene products (Belete 2021).
Besides, advancement in CRISPR/Cas9 genome editing
technology is now being tested in clinical trials for lung
cancer treatment (Nair et al. 2020). In addition, gene-editing
technology is explored to combat the drug resistance in
various cancers such as breast, colon, and prostate cancers
(Domenici et al. 2019; Kawamura et al. 2015; Li et al. 2019). In
the future, this might open a new horizon at which the
adjuvant uses of gene therapy along with conventional
cancer therapy may be obligatory for advanced-stage lung
cancer and drug-resistant patients. Other than that,
comprehensive molecular profiling of lung cancer can
help establishing a precise classification of lung cancer, so it
would not rely solely on themorphology and the detection of
various molecular markers.

Y.Q. Leong et al.: Links between Parkinson’s disease and lung cancer 559



On top of that, the knowledge gained from studying
these genes in lung cancermay also help to understand their
physiological roles as well as their roles in the pathogenesis
of PD. Genes such as LRRK2, despite being identified as a
PD-associated gene, are still poorly understood in terms of
their biological functions andhow they differ in different cell
types (Rocha et al. 2022). Therefore, investigations through
lung cancer models or biopsied tumor samples might be
able to yield insight to close some knowledge gaps and
facilitates development of disease modifying strategies for
PD treatment.

Conclusions

Although the current epidemiological studies suggest a
potential negative association between PD and lung cancer,
the molecular mechanisms of the shared genetic
determinants between the two diseases in tumorigenesis
remain unclear. The cell autonomous and cell non-
autonomous gene functions in both diseases must be
considered to clarify and resolve the roles of the different
genes and their gene products. The evidence listed in this
review have shown that proteins encoded by PD-associated
genes contribute to mitochondrial dysfunction, cell cycle
abnormalities, oxidative stress, cell death and various
pathophysiology in both PD and lung cancer. Mutations or
loss-of-function of these genes in PD result in neuro-
degeneration whereas the aberrant expressions of these
PD-associated genes in lung cancer cells modulate tumor-
igenesis. Hence, further investigations of the PD-associated
genes in lung cancer are warranted to have a better
understanding on their mechanisms of action. This would
help in the development of new novel targeted therapeutic
strategies for lung cancer patients. Also, an in-depth
understanding of these genes and their gene products
might be beneficial to the development of biomarkers for
early detection of lung cancer.
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