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Abstract: Protein-arginine methylation is a common post-
translational modification, crucial to various cellular pro-
cesses, such as protein-protein interactions or binding to
nucleic acids. The central enzyme of symmetric protein argi-
nine methylation in mammals is the protein arginine meth-
yltransferase 5 (PRMT5). While the methylation reaction itself
is well understood, recruitment and differentiation among
substrates remain less clear. One mechanism to regulate the
diversity of PRMT5 substrate recognition is the mutual bind-
ing to the adaptor proteins pICln or RioK1. Here, we describe
the specific interaction of Nuclear Factor 90 (NF90) with the
PRMT5-WD45-RioK1 complex. We show for the first time that
NF90 is symmetrically dimethylated by PRMT5 within the
RG-rich region in its C-terminus. Since upregulation of PRMT5
is a hallmark of many cancer cells, the characterization of its
dimethylation and modulation by specific commercial in-
hibitors in vivo presented here may contribute to a better
understanding of PRMTS5 function and its role in cancer.

Keywords: NF90; PRMT5; protein-arginine methylation;
RioK1.

Introduction

Posttranslational modifications are an important mecha-
nism to regulate the functions of cellular proteins. The
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methylation of nitrogen in the side chain of arginine is one
of the most common modifications and plays an important
role in a variety of cellular processes such as histone
methylation, RNA splicing, transcription and translation
regulation, nuclear export of proteins, and protein-protein
interactions (Blanc and Richard 2017; Murn and Shi 2017).
To date, more than 5500 human proteins have been
detected to be methylated, highlighting the central func-
tion of this modification (Murn and Shi 2017). Three argi-
nine methylation patterns are differentiated (Blanc and
Richard 2017). Methylation of one nitrogen leads to an N°-
monomethyl arginine (MMA). If both nitrogen atoms are
methylated, symmetrical dimethylation (SDMA) and
asymmetrical dimethylation (ADMA) are differentiated. In
SDMA, both nitrogen atoms are individually methylated,
resulting in an N®, N’%-dimethylarginine. In ADMA, one of
the two nitrogen atoms is double methylated, resulting in
an N® NC®-dimethylarginine. Responsible for this kind of
dual modification is the family of protein arginine meth-
yltransferases (PRMTs), which transfer the methyl group of
S-adenosylmethionine (SAM) onto the guanidine group in
the side chain of arginine (Bedford and Clarke 2009). The
methyltransferase PRMT5 is the only methyltransferase
that catalyzes symmetric dimethylation of arginines in vivo.
Consequently, the loss of PRMT5 leads to a nearly complete
loss of SDMA (Hadjikyriacou et al. 2015). PRMT5 together
with the WD repeat-containing protein 45 (WD45) forms a
hetero-octameric complex of ~450 kDa (Antonysamy et al.
2012). This structure represents the basic core complex and
can be extended by the adapter proteins pICln or RioK1,
which regulate the substrate specificity of PRMT5 (Guder-
ian et al. 2011; Krzyzanowski et al. 2021; Mulvaney et al.
2021).

Here, we identified the nucleic acid-binding protein NF90
as a novel substrate of the PRMT5/WD45/RioK1 complex.
Strikingly, NF90 has RG-rich sequences in the C-terminus,
representing potential PRMT5-dependent methylation sites,
but no methylation has yet been shown. In this work, we
demonstrate that NF90 is recruited exclusively via the
adapter protein RioK1 to the PRMT5-WD45 complex, where it
is rapidly methylated in its C-terminal region at the RG-boxes.
In immunopurification studies, we further show that both
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endogenous NF90 and overexpressed NF90 are fully meth- we could not precipitate NF9O with GFP-pICIn (Figure 1A).
Data by Guderian et al. showed, that the substrate specificity
and recruitment of new substrates of PRMT5 are controlled
by its adaptor proteins RioK1 or pICln (Guderian et al. 2011).
NF90, predominantly purified by GFP-RioK1 but not by

ylated in cells.

Results

NF90 interacts with the PRMT5/WD45/RioK1

complex

In previous work, NF90O was identified as a new potential
interaction partner of the PRMT5/WD45/RioK1 complex by
mass spectrometry (Guderian et al. 2011). In this follow-up

pICln, supports this model of regulating the mutual substrate
specificity of PRMT5. Further pulldown experiments, utiliz-
ing heterologous expressed GST fusion proteins from
Escherichia coli, confirmed these results: endogenous NF90
from HEK293 lysates bound to GST-RioK1 and GST-PRMT5
but not to GST-pICIn (Figure 1B).

study, we show that NF90 is indeed a binding partner and a
new substrate of PRMTS5 in vitro and in vivo. To investigate the

complex composition and the recruitment of NF90, we

generated cell lines, stably overexpressing PRMT5, WD45,

pICln, and RioK1 as GFP fusion proteins. By immunopre-
cipitation studies, we observed co-immunoprecipitation of
NF90 with GFP-PRMT5, GFP-WD45, and GFP-RioK1, whereas

Interaction with the PRMT5/WD45/RioK1
complex occurs via the C-terminus of NF90
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NF90 is a multi-domain protein consisting of two double-
stranded RNA-binding motifs

(DRBM), a domain

Figure 1: NF90 interacts with the PRMT5/
WD45/RioK1 complex.

(A) Immunoprecipitation from GFP-PRMT5,
-WD45, -Riok1, -pICln, and GFP over-
expressing cells. Protein expression was
induced with 0.1 pg/mL doxycycline for

24 h and as input 25 pg of total protein was
loaded. After cell lysis, GFP-IP was per-
formed and analyzed by Tris/glycine-
SDS-PAGE and Western blotting, using an-
tibodies against GFP and NF90. NF90 was
co-immunoprecipitated with GFP-PRMTS5,
GFP-WD45 and GFP-RioK1. (B) Pulldown
assays with recombinant GST-PRMT5,
-WD45, -pICln, -RioK1, and GST purified
from E. coli were executed in HEK293 lysate
overnight at 4 °C. Co-precipitation of NF90
was analyzed using NF90 antibody and was
detectable for GST-RioK1 and GST-PRMT5.
(C) Pulldown assay as described above with
different truncated forms of GST-NF90 pu-
rified from E. coli. Detection of co-
precipitated proteins was performed with
RioK1, WD45, and PRMT5 antibodies. Only
the C-terminus of NF90 interacts with
RioK1, WD45, and PRMTS5. (D) Interaction
studies using microscale thermophoresis
measurements (MST). GST-PRMT5 was
labeled with AlexaFluor488 fluorescent dye
and measured against the interaction
partners RioK1, WD45, and NF90.
GST-PRMT5 showed a high affinity to its
substrate NF90 with 57 nM. WB: Western
blotting.
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associated with zinc fingers (DZF), a bipartite nuclear
localization signal (NLS), and an RG-motif (see also
Figure 2 C). Due to the multi-domain structure of NF90, we
generated truncated forms of NF90 (Figure 2C) to charac-
terize the interaction of NF90 with the proteins of the
PRMT5/WD45/RioK1 complex in more detail (Figure 1C). To
this end truncations of NF90 were generated by dividing
the two DRBMs (NF90 aal-479 and NF90 aa480-702) and
also dividing between the DZF domain and both DRBMs
(NF90 aa1-391 and NF90 aa392-702) (Figure 2C). Another
truncated form represents NFOO without the RG-motif in
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the C-terminal region (NF90 aal-639) (Figure 2C). Interac-
tion studies based on these forms of NF90 revealed an
interaction of the PRMT5/WD45/RioK1 complex with the
C-terminal region of NF90 spanning from amino acid 392 to
702 (Figure 1C). Interestingly, the truncated form aa1-639,
which represents almost the entire protein except for the
RG-motif, showed only weak interaction. This indicates
that the interaction predominantly occurs in the RG-rich
region at the C-terminus of NF90 (Figure 1C and 2C). To
determine the affinities among the components of the
PRMT5 complex and with the substrate protein NF9O,

(A) (B) NF90 wt + PRMT5
c cSEEEEEEEE
= E EEEEEEEE
GST-NF90 + PRMT5 wa c Ecwgrgsegs
© A © UV = =~ N N M T O ©
©
8 AR| 100— - |\ o0
S s
2 N
E ] AB| 100— NF90
+ +
R
AR| 130—[&% | GST-NF90 NF90 wt + PRMT5
cecccEEEEEEEE
AB| 130—|:| GST-NF90 EEEEE g E E E 5 E E E 5
kDa © &N & © ®© = ~ v ~ -~ N N N«
AR|1oo— T ————————— | NE9Q
AB| 100= NF0  Figure 2: The C-terminus of NF90 is methyl-
ated by PRMT5.
(C) (A) Radioactive in vitro methylation assay
' NF90* . using GST-NF90 purified from E. coli and
& 1-639 " 200 ng recombinant PRMT5 and 1 pCi [3H]-
) 1-479 . 480-702* ; SAM was performed with and without 1 mM
. 1-391 392-702* ) PRMTS inhibitor EPZ015666. Samples were

] T O R

0 5-378371-389 398-467 524-590
DZF NLS DRBM1 DRBM2
610 620 630
(D) NF90 + PRMT5 KKRAPVPVRG GPKFAAKPHN PGFGMGGPMH
- 660 670 680
S S RGRGRGFGGA NHGGYMNAGA GYGSYGYGGN
skehs
] o
wa F3ISTFs *
180 —
130—
100 —
70— =
AR | 55— -
-
g
25—
180 —
130 =
100 —
70 —
AB 55 =
40 —
35 -
25 -

separated by Tris/glycine-SDS-PAGE and
radioactive incorporation was analyzed by
Western blotting and autoradiography. The
addition of 1 mM PRMTS5 inhibitor
EPZ015666 inhibits the methylation of NFOO
by PRMTS. (B) Investigation of the time-
dependent methylation of NF90. 880 ng
NF90 purified from E. coli without GST-tag
was incubated with 200 ng recombinant
PRMT5 and 1 pCi [3H]-SAM. The reaction was
terminated by addition of SDS sample
buffer and the samples were analyzed as
described in (A). (C) Schematic overview of
the domains and truncated forms of NF90
used in this work. The asterisks indicate
methylatable forms and the distinctive
RG-boxes have been highlighted in yellow.
(D) Methylation assay of truncated NF90
forms purified from E. coli as described in
(A). NF90 is methylated in the C-terminus
between amino acids 640 and 702 by
PRMTS. AR: autoradiography, AB: amido
black staining.
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microscale thermophoresis experiments were performed.
For this purpose, GST-PRMT5 was labeled with Alexa flour
488 fluorescent dye and first measured against the known
interaction partners of the complex, RioK1 and WD45.
PRMT5 showed a strong affinity for RioK1 with a Kp of
100 nM and still a strong attachment to WD45 with a Kp of
622 nM (Figure 1D, Supplementary Figure 1). In contrast,
the affinity of the substrate protein NF90 towards the
methyltransferase PRMT5 was determined with a high af-
finity of 57 nM (Figure 1D, Supplementary Figure 1). Only
marginal changes of affinity could be observed if WD45
was added or WD45 and RioK1 in combination. The data so
far lead to the assumption that NF90 is a strong binding
partner of PRMT5 in vitro and that substrate binding
directly occurs to PRMT5 by the RG-rich stretch of NF90.

NF90 is a new substrate of PRMT5

Based on this strong in vitro interaction, we performed
radioactive in vitro methylation assays with recombinant
NF90 and active PRMTS5 to test whether NF90 is methylated
by PRMT5. Indeed, the radioactive methyl group from [3H]-
SAM was transferred to GST-NF90 (Figure 2A). Treatment
with the PRMT5-specific inhibitor EPZ015666 did not result
in radioactive incorporation (Chan-Penebre et al. 2015).
Both experiments prove that NF90 is symmetrically meth-
ylated by PRMTS5 in vitro (Figure 2A).

To assess the kinetics of NF90 methylation, we per-
formed a titration of the methylation reaction. As evident in
Figure 2B, a saturation of NF90 methylation did occur
already within 10 min. To gain a more detailed view on the
methylation dynamics of NF90, 2 min steps, up to 24 min
were performed. Again, no increase in methylation could
be observed after 12 min (Figure 2B). The NF90 protein
contains several putative methylation sites (arginine-
glycine-repeats, RG-Box) in the C-terminus between the
amino acids 609 to 656. To further determine the location of
the methylation sites within the NF90 protein we analyzed
truncated forms (Figure 2D) by methylation assays. We
identified eight arginine residues as potential targets in this
region (Figure 2C, highlighted in yellow), in particular, we
observed methylation of the C-terminal forms NF90 aa392-
702 and NF90 aa480-702 and the wild-type NF90 protein
(Figure 2D). In contrast, no methylation was observed for
the N-terminal forms NF90 aal-391, NF90 aal-479, and
NF90-aal-639 (Figure 2D). These results clearly show
methylation of NFOO by PRMT5 exclusively is located
within the C-terminal RG-rich sequence ranging from
amino acid 640 to 702.

DE GRUYTER

NF90 is methylated in vivo by PRMT5 in an
RG-rich region in the C-terminus

Based on these data, we focused on the RG-motif in the
C-terminal region of NF90 in more detail. This RG-rich re-
gion contains seven glycine-arginine residues that poten-
tially may serve as methylatable residues to PRMT5
(Figure 2C). All arginines in the RG-rich region of NF90 at
positions 640, 642, 644, 649, 651, 653, and 655 were
exchanged to the structurally similar but non-methylatable
lysines. The obtained methylation deficient mutant (NF90-
7x R-to-K) and the NF90 wildtype protein were expressed in
E. coli and the purified recombinant proteins were subse-
quently analyzed by methylation assays (Figure 3A). In
contrast to wild-type NF90, no methylation could be
detected in the methylation-deficient mutant, indicating
that the methylation sites are located in the region of amino
acids 640 to 655 in the C-terminus of NF90.

Next, we investigated the intracellular methylation
status of endogenous NF90 from HEK cells. For this pur-
pose, we immunoprecipitated endogenous NF90 from HEK
cells and used it as a substrate for an in vitro methylation
assay. However, endogenous NF90 showed no incorpora-
tion of radioactive 3H (Figure 3B), leading to the assump-
tion, that NF90 is already completely methylated in vivo. To
substantiate this hypothesis, HEK293 cells were treated
with 20 uM adenosine dialdehyde (Adox) to disable
endogenous methylation, before the respective cell extract
was subjected to immunoprecipitation of NF90. Adox is a
well-known broad inhibitor of methyltransferases (Chen
et al. 2004). In consequence, newly synthesized proteins
remain hypomethylated upon Adox treatment (Chen et al.
2004) and therefore are receptive for in vitro methylation if
purified from the respective extracts. By using immuno-
precipitated endogenous NF90 with and without treatment
by Adox, we clearly could show methylation by Adox
treated NF90, but not by DMSO/control-treated NF90 upon
incubation with recombinant PRMT5 (Figure 3B). To this
point, treatment of HEK293 cells with Adox does not alter
NF90 cellular expression nor efficiency of immunoprecip-
itation (Figure 3B) but does alter endogenous methylation
status of NF90. Upon the observed rate of methylation of
Adox pretreated NF90 substrate protein, endogenous NFOO
probably is fully methylated in the cell under normal
conditions. To prove this finding, we repeated the experi-
ments with HEK293 Flp-In T-REx cell lines inducibly
overexpressing NF90 wildtype as a GFP-fusion protein
(GFP-NF90 wt) or the methylation-deficient GFP-NF90 7x
mutant (Figure 3C). First, the intracellular protein
methylation was blocked by Adox treatment, and
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Figure 3: NF90 arginine mutants and in vivo inhibitor studies.

(A) Recombinant NF90 wt, and NF90 7x from E. coli was incubated with 200 ng recombinant PRMT5 and 1 pCi [3-H]-SAM. Samples were
separated by Tris/glycine-SDS-PAGE and radioactive incorporation was analyzed by Western blotting and autoradiography. In the NF90 7x
mutant, all seven potential arginine methylation sites are mutated to lysines (see Figure 2C). PRMT5 was not able to methylate the sevenfold
arginine to lysine mutant. (B) HEK293 cells were treated with 20 pM of the S-adenosylmethionine-dependent methyltransferase inhibitor
adenosine dialdehyde (Adox). 500 g lysate with 1 pg NF90 antibody or as control Preimmunserum (PIS) and Protein G Sepharose was
incubated for 1.5 h and immunopurified NF90 was subjected to a methylation assay as described in (A). Only NF90 from Adox-treated cells
could be methylated in vitro. (C) Flp-In T-REx 293 cells stably expressing GFP-NF90 wt and GFP-NF90 7x were stimulated with 0.1 pg/mL
doxycycline for 24 h and treated with Adox as described in (B). After GFP-IP, a methylation assay was performed. No methylation of purified
GFP-NF90 occurred in control cells (DMSO), whereas NF90 immunopurified from cells treated with Adox could be methylated in vitro. The
sevenfold lysine mutant GFP-NF90 7x showed no methylation in all conditions. AR: autoradiography, AB: amido black staining, WB: Western

blotting.

subsequently, NF90 protein expression was induced.
GFP-immunoprecipitations allowed for exclusive precipi-
tation and measurement of newly synthesized NF90,
excluding endogenous, untagged NF90. Again, no
methylation of purified GFP-NF90 occurred in control cells
(DMSO), whereas NF90 from Adox treated cells could be
methylated in vitro (Figure 3C). Taken together, these ex-
periments indicate that endogenous as well as overex-
pressed NF90 are completely methylated in the normal
cellular setting.

Discussion

Although the RG-motif of NF90 has been postulated as a
potential methylation site by PRMT5 (Richard et al. 2005),
no methylation has yet been detected. In this work, we
describe for the first time NF90 as a new interaction partner
of the PRMT5/WD45/RioK1 complex and as a new sym-
metrically methylated substrate of the methyltransferase
PRMTS5.
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Due to the ability of RioK1 to bind numerous proteins
containing RG-motifs, it increases the substrate diversity of
PRMTS5 and recruits new substrates to the methyltransfer-
ase (Guderian et al. 2011). Here, we observed NF90 co-
immunoprecipitation within the PRMT5/RioK1 complex
but not with pICln (Figure 1A and B). These data confirm
that NF90 recruitment occurs only via the RioK1-containing
complex and not via pICln. For this, NF90 is a novel
interaction partner of the PRMT5/WD45/RioK1 complex.
Moreover, the C-terminal region of NF90 (aa 640 — 702) was
identified as the interaction surface with this complex
(Figure 1C). The determined dissociation constant (Kp) of
100 + 29 nM within the protein complex for RioK1 and
PRMTS5 (Figure 1D) matches to 34 nM, reported in previous
studies (Krzyzanowski et al. 2021). A dissociation constant
of 57 + 18 nM was observed for PRMT5 and NF90, indicating
a high affinity of PRMT5 for NF90. The addition of RioK1 did
not significantly alter the dissociation constants, nor did it
affect NF9O methylation, as recombinant NF90 is methyl-
ated just as rapidly in the presence or absence of RioK1
under in vitro conditions (Figure 2B and Supplementary
Figure 2A). Also, in vitro methylation experiments with the
SmB protein show that under these conditions methylation
can occur independently of pICln (Supplementary
Figure 2B). This is in line with the results of previous
studies, which described a direct enzyme-substrate inter-
action for PRMTS5 to its substrates histones H2A, H3, and the
myelin basic protein (Pal et al. 2004; Pollack et al. 1999).

However, for recruiting NF90 to the PRMT5 complex in
the cell, the adapter protein RioK1 may play an essential
role like pICIn for the Sm proteins. The specific role of
PRMT5 adapter proteins (e.g. pICln and RioK1) to regulate
substrate specificity of methyltransferases is a very
important and exciting question. Recent approaches to
answer this question aim to develop novel inhibitors for the
adapter proteins and thus identify adapter protein-
dependent as well as independent substrates and thus
also control the activity of PRMT5 concerning targeted
substrates (Krzyzanowski et al. 2021; Mckinney et al. 2021;
Mulvaney et al. 2021). As both proteins, NF9O and PRMTS5,
attribute a crucial function in ribosome biosynthesis a
cooperative function of both proteins at the ribosome is
conceivable (Wandrey et al. 2015; Widmann et al. 2012). To
gain complete functionality in ribosome biosynthesis NF90
may require full methylation. To this end, RioK1 may re-
cruit PRMT5 towards the ribosome for this purpose. RioK1
in this scenario attributes a comparable role as pICln does
in recruiting Sm proteins during snRNP biogenesis (Chari
et al. 2008; Schmitz et al. 2021).

Investigation of the protein sequence of NF90 showed
that there is a glycine-arginine-rich (GAR) motif in the
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C-terminal region. GAR motifs are described as a consensus
sequence of protein methylation (Lapeyre et al. 1986) and
GR repeats that have glycine at position -1 are predomi-
nantly methylated by PRMT5 (Musiani et al. 2019). In the
C-terminal region of NF90, the sequence “R*“*GRGRGGSI
RGRGRGRGF®*"” contains a triple RG repetition followed by
a quadruple RG repetition sequence, flanked by glycines
(Figure 2C).

So far, the methylation status of NF90 in vivo was un-
clear. We observed that immunoprecipitated NF90 could
not be methylated in an in vitro methylation assay by re-
combinant PRMT5 (Figure 3B). As evident by Adox treat-
ment (Figure 3B), endogenous NF90 is predominantly
present as a hypermethylated protein since subsequent
efficient methylation of immunoprecipitated NF90 by
PRMTS5 was possible. The treatment of cells by Adox results
in a loss of methyl groups in newly formed proteins and free
methylation sites, capably to be methylated in a subsequent
in vitro methylation assay of respective precipitated sub-
strate proteins. Also beforehand in vitro investigations based
on the NF90 7x mutant (Figure 3A and C) confirmed the
exclusive methylation of the seven arginine residues in the
C-terminus of NF90 in vivo hence by Adox treatment, no
methylation of this mutant could be observed. This obser-
vation also clearly excludes other PRMT5-specific arginine
methylation sites of NF90, for example at positions 90, 247,
537, or 609. Strikingly, even when strongly overexpressed in
HEK293 cells, GFP-NF90 wt is completely methylated
(Figure 3C). This finding as well as rapid methylation of
NF90 (Figure 2B) implies the stringency of the cell’s
methylation system and supports a general necessity for
complete methylation of NF90 in vivo (Figure 3C). In this
work, we prove that NF90 is fully methylated in the cell
under normal conditions and does not harbor any free
methyl acceptor sites. These results are well supported by
earlier work, which also described almost complete
methylation of proteins, such as heterogeneous nuclear
ribonucleoprotein U (hnRNP U) (Herrmann et al. 2004),
nucleolin, or fibrillarin (Lischwe et al. 1982, 1985).

Currently, it is assumed that symmetric methylation of
NF90 is irreversible and persists throughout the lifetime of
the protein. Little is known about demethylases but the
Jumonji domain-containing 6 protein (JMJD6) was
described as arginine demethylase (Chang et al. 2007).
However, the results could not be reproduced in other
studies (Han et al. 2012; Webby et al. 2009) whereas argi-
nine demethylation activity was observed in recent studies
(Liu et al. 2013; Poulard et al. 2014; Tsai et al. 2017).
Therefore, arginine demethylation by JMJD6 remains
highly controversial (Bottger et al. 2015). This raises the
question of the biological function of irreversible
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methylation of NF90. Since many proteins have more than
one methylation site but demethylation reactions have
rarely been observed and are critically viewed, a regulatory
function through turnover as in phosphorylation is un-
likely (Herrmann et al. 2004; Simms et al. 1987). However,
the production of SAM certainly consumes ATP and the cell
does not make this effort unnecessarily in NF90.

It will be interesting in further studies to investigate the
impact of the methylation of NF90 discovered here in this
work in terms of functionality, as NF90 is a protein
involved in a variety of signaling cascades.

Materials and methods
Cloning and plasmids

NF90 (CCDS12247.1) cDNA was generated from HEK293 cells with
cDNA Transcription Kit (4,368,814, Applied Biosystems) and cloned
into pGEX-6P-1 (28,954,648, Cytiva) and pcDNA5-FRT-TO (V601020,
Invitrogen) using Gibson assembly (NEB, E2621S) or restriction
enzyme cloning. Phusion Polymerase (M0530, NEB) and the following
primers (Sigma-Aldrich) were used:

PGEX-6P-1-NF90 wt, 5-GTGAATTCATGCGTCCAATGCGAATT-3’

and 5’-GTGCGGCCGCCTAGGAAGACCCAAAATCATGAT-3’;

pGEX-6P-1-NF90AA1-639,

5’-CACAAGAGGAGCTGGAGGCAGTCCAGAACATGGTG-3"

and 5’- TCCAGCTCCTCTTGTGTTGGATAAACGGAAGAATG-3’

and 5-AACCTTTAGGCGGCCGCATCGTGACTGACTG-3’

and 5’-CGGCCGCCTAAAGGTTGGGGGGTGGGGGCAC-3’;

PGEX-6P-1-NF90 AA1-479, 5’-GTGAATTCATGCGTCCAATGCGAATT-3’

and 5’-GTGCGGCCGCCCCCTTGCTCGAGTCC-3;

PGEX-6P-1-NFOO AA480-702, 5-GTGAATTCGAGGACTCGGCTGA

GGAG-3’

and 5-GTGCGGCCGCCTAGGAAGACCCAAAATCATGAT-3’;

PGEX-6P-1-NF90 AA1-391, 5-GTGAATTCATGCGTCCAATGCGAATT-3’

and 5-GTGCGGCCGCCTACTGAATCTTCTTCTTCTTTTTGCTG-3’;

PGEX-6P-1-NF90 AA392-702, 5-GTGAATTCAAGAAAGAGGAGAA

GGCAGAG-3

and 5-GTGCGGCCGCCTAGGAAGACCCAAAATCATGAT-3’;

PGEX-6P-1-NF90 AA609 R->K, 5-AGCCCCAGTACCCGTCAAAGG

GGGACC-3’

and 5’-GGTCCCCCTTTGACGGGTACTGGGGCT-3’;

PGEX-6P-1-NF90 7x AA640, 642, 644, 649, 651, 653, 655 R->K

(GeneArt Gene Synthesis, Invitrogen);

PGEX-6P-1-NF90 AA640 R->K,

5’-CCCCAACCTTAAAGGGCGGGGAAGAGGCGGGAG-3’

and 5’-CCCCGCCCTTTAAGGTTGGGGGGTGGGGGCAC-3’;

PGEX-6P-1-NF90 AA642 R->K,

5-TCGAGGGAAGGGAAGAGGCGGGAGCATCCGGGGAC-3’

and 5’-CCGCCTCTTCCCTTCCCTCGAAGGTTGGGGGGTGG-3’;

PGEX-6P-1-NF90 AA644 R->K,

5-TCGAGGGCGGGGAAAAGGCGGGAGCATCCGGGGAC-3’

and 5’-CCGCCTTTTCCCCGCCCTCGAAGGTTGGGGGGTG-3’;

PGEX-6P-1-NF90 AA649 R->K,

5-AGGCGGGAGCATCAAGGGACGAGGGCGCGGGCGAG-3’

and 5’-CGTCCCTTGATGCTCCCGCCTCTTCCCCGCCCTC-3’;
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PGEX-6P-1-NFO0 AA651 R->K,
5’-ATCCGGGGAAAAGGGCGCGGGCGAGGATTTGG-3’

and 5-CCCGCGCCCTTTTCCCCGGATGCTCCCGCCTC-3%;
PGEX-6P-1-NF90 AA653 R->K,
5’-ACGAGGGAAGGGGCGAGGATTTGGTGGCGCCAAC-3’
and 5-AATCCTCGCCCCTTCCCTCGTCCCCGGATGCTCC-3’;
PGEX-6P-1-NF90 AA655 R->K,
5’-GGGCGCGGGAAAGGATTTGGTGGCGCCAACCATGG-3’
and 5-ACCAAATCCTTTCCCGCGCCCTCGTCCCCGGATG-3.

Plasmids:
pcDNA5-FRT-TO-NF90 wt, pcDNA5-FRT-TO-NF90 AA640, 642, 644,
649, 651, 653, 655 R->K (7x), 5-ATGCGTCCAATGCGAATTTTTGTGAA
TGATGAC-3’
and 5’-TCGCATTGGACGCATGGATCCGAGCTCGGTACCAAGC-3’
and 5-TTTGGGTCTTCCTAGGCGGCCGCTCGAGTCTAGAGG-3’
and 5-CTAGGAAGACCCAAAATCATGATAGCCGTAG-3’;
pcDNA5-FRT-TO-eGFP-NF90 wt and pcDNA5-FRT-TO-eGFP-NF90
AA640, 642, 644, 649, 651, 653, 655 R->K (7x),
5-ATCCATGCGTCCAATGCGAATTTTTGTGAATGATGAC-3’
and 5’-CATTGGACGCATGGATCCGAGTCCGGACTTGTACAG-3’
and 5-TTTGGGTCTTCCTAGGCGGCCGCTCGAGTCTAGAGG-3’
and 5-CTAGGAAGACCCAAAATCATGATAGCCGTAG-3’;
pcDNAS5-FRT-TO-eGFP-PRMTS5,
5’-GGATCCATGGCGGCGATGGCGGT-3’
and 5’-GCGGCCGCCTAGAGGCCAATGGTATAT-3’;
pcDNAS5-FRT-TO-eGFP-RioK1,
5’-GGATCCATGGACTACCGGCGGCTTC-3’
and 5’-GCGGCCGCCTATTTGCCTTTTTTCGTCT-3’;
pcDNAS5-FRT-TO-eGFP-pICln,
5’-GGATCCATGAGCTTCCTCAAAAGTTTCCC-3’
and 5-GTCTCGAGTCAGTGATCAACATCTGCATCC-3’;
pcDNAS5-FRT-TO-eGFP-WD45,
5’-GGATCCATGCGGAAGGAAACCCCAC-3
and 5-GCGGCCGCCTACTCAGTAACACTTGCAGGTCC-3'.

Generation of pGEX-6P-1-PRMT5, pGEX-6P-1-WD45, pGEX-6P-1-RioK1
(Guderian et al. 2011), and pGEX-6P-1-pICln (Schmitz et al. 2021), and
pcDNA5-FRT-TO-eGFP (Loffler et al. 2011) plasmids have been
described previously.

Protein expression and purification

E. coli BL21 was transformed and grown overnight at 37 °C on selection
plates (100 pg/mL ampicillin). 150 mL LB medium was inoculated and
grown overnight at 37 °C. 1 L SB media (35 g/L Tryptone, 20 g/L Yeast
extract, 5 g/L NaCl) culture was grown to an ODgqo of 0.8. Protein
expression was induced with 1 mM IPTG at 18 °C overnight. The bac-
teria were lysed in 300 mM Na

Cl, 50 mM Tris pH 7.5, 5mM EDTA, 5 mM EGTA, 0.01% (v/v) Igepal,
protease inhibitors (cOmplete Protease Inhibitor, 4693,132,001, Roche)
and 50 mg/mL lysozyme. After sonication, lysates were centrifuged for
30 min at 10,000 g, incubated for 1.5 h at 4 °C with Glutathione-
Sepharose 4B (Cytiva, 17,075,601), and washed three times with lysis
buffer. The GST-tag was cleaved with PreScission Protease (Cytiva,
27,084,301) overnight at 4 °C.

The active PRMT5/WD45 complex was purchased from Active
Motif (31,521). GFP-tagged proteins were expressed in HEK293 cells
and purified by GFP-Trap Agarose (gta-20, Chromotek).
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Antibodies

Primary antibodies: a-NF90 (A303-651A, Bethyl), a-PRMT5 (2252, CST),
o-WD45 (2823, CST), a-RioK1 (NBP1-30103, Novus Biologicals), a-pICln
(sc-393525, Santa Cruz), a-GFP (3H9, Chromotek). Secondary antibodies
using LI-COR Odyssey Imaging System: IRDye 680LT goat a-rabbit,
IRDye 680LT goat a-mouse, IRDye 800CW donkey o-rabbit, IRDye
800CW donkey a-mouse, IRDye 800CW goat a-rat (LI-COR Biosciences).

Cell culture and cell lines

HEK293 cells were cultured in high glucose DMEM (41,965,039, Gibco)
with 10% (v/v) tetracycline-free FCS (10,270,106, Gibco) and 100 units/
mL of Penicillin and 100 pg/mL Streptomycin (15,140,122, Gibco) in a
5% CO, atmosphere at 37 °C. Cells were washed with PBS (14,190,169,
Gibco) and treated with Trypsin-EDTA (25,300,054, Gibco).

Inducible Flp-In T-REx 293 cell lines (R78007, Invitrogen), stably
expressing NF90 wt, NF90 7x, GFP-NF90 wt, GFP-NF90 7x,
GFP-PRMT5, GFP-WD45, GFP-pICln, and GFP-RioK1 were generated by
co-transfecting 4.5 pg pOG44 and 0.5 pg pcDNA5 plasmids with
FuGENE HD (E2311, Promega). Cells were selected with 200 pg/mL
Hygromycin B Gold (ant-hg-1, Invivogen) and 5 pg/mL Blasticidin (ant-
bl-05, Invivogen) for three weeks. GFP-pICln cells were generated as
described in (Schmitz et al. 2021). Protein expression was induced with
0.1 pg/mL Doxycycline and cells were harvested after 24 h. For
methylation inhibition 20 uM of the S-adenosylhomocysteine hydro-
lase inhibitor Adenosine Dialdehyde (Adox) (Cay15644, Cayman
Chemical) was used.

Immunoprecipitation and immunoblotting

Cell lysates were generated using lysis buffer with 50 mM Tris pH 7.5,
150 mM NacCl, 1 mM EDTA, 1 mM EGTA, 1% Triton X-100 and 1x Pro-
tease inhibitor (P2714, Sigma-Aldrich). Protein concentration was
measured by Bradford assay (5,000,006, Bio-Rad). 500 pg cell lysate
was used for immunoprecipitation together with 1 pg of antibodies and
Protein G Sepharose (17,061,801, Cytiva) at 4 °C for 1.5 h with rotation.
As input 25 pg of total protein was loaded. GFP-tagged proteins were
purified by GFP-Trap Agarose (gta-20, Chromotek) at 4 °C for 1.5 h with
rotation. Samples were washed three times with washing buffer (lysis
buffer without Triton X-100 and protease inhibitors) and eluted in
sample buffer (375 mM Tris pH 7.5, 25.8% (w/v) glycerol, 12.3% (w/v)
SDS, 0.06% (w/v) bromophenol blue, 6% (v/v) B-mercaptoethanol, pH
6.8). Subsequently, samples were separated by Tris/Glycine-
SDS-PAGE and transferred to a PVDF membrane (Immobilon-FL,
Merck Millipore). The immunoblot detection was carried out using the
indicated primary and fluorescent-labeled secondary antibodies and
the LI-COR Odyssey Imaging System.

In vitro methylation

Target proteins were incubated with 150 ng of Flag-PRMT5/WD45 from
Sf9 cells (Active Motif, 31,521) and 1 pCi Adenosyl-L-Methionine,
S-[methyl-3H] (Hartmann-Analytic, ART0288) in 50 mM Tris pH 7.5,
1mM EGTA and 1 mM EDTA for 1.5 h at 37 °C. The reaction was stopped
by adding sample buffer. Samples were separated by Tris/Glycine-
SDS-PAGE and, after blotting and amido black staining (40%
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Methanol (v/v), 10% Acetic acid (v/v), 0.1% Amido black 10B (w/v)),
analyzed by autoradiography with Amersham Hyperfilm MP
(28,906,844, Cytiva) and BioMax TranScreen LE (1,622,034,
Carestream).

Microscale thermophoresis

A Monolith NT 115 (NanoTemper Technologies) was used for micro-
scale thermophoresis binding studies. Purified recombinant proteins
GST-PRMTS5, RioK1 or NF90 were labeled with AlexaFluor488-NHS
(A20000, Invitrogen) in 50 mM HEPES, 300 mM NaCl, pH 7.5. 50 nM of
labeled proteins and 4-14 pM of unlabeled proteins were used for
interaction studies and measured as triplicates with 50% MST power
and 50% LED power in premium or hydrophobic capillaries.
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