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Abstract: Endothelial cell (EC) migration is essential for
healing vascular injuries. Previous studies suggest that
high-density lipoprotein (HDL) and apolipoprotein A-I
(apoA-I), the major protein constituent of HDL, have
endothelial healing functions. In cardiovascular disease,
HDL is modified by myeloperoxidase (MPO) and N-ho-
mocysteine, resulting in apoA-I/apoA-II heterodimer and
N-homocysteinylated (N-Hcy) apoA-I formation. This
study investigated whether these modifications attenuate
HDL-mediated endothelial healing. Wound healing as-
says were performed to analyze the effect of MPO-oxidized
HDL and N-Hcy HDL in vitro. HDL obtained from patients
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with varying troponin I levels were also examined.
MPO-oxidized HDL reduces EC migration compared to
normal HDL in vitro, and N-Hcy HDL showed a decreasing
trend toward EC migration. EC migration after treatment
with HDL from patients was decreased compared to HDL
isolated from healthy controls. Increased apoA-I/apoA-II
heterodimer and N-Hcy apoA-I levels were also detected
in HDL from patients. Wound healing cell migration
was significantly negatively correlated with the ratio of
apoA-I/apoA-II heterodimer to total apoA-II and N-Hcy
apoA-I to total apoA-I. MPO-oxidized HDL containing
apoA-I/apoA-II heterodimers had a weaker endothelial
healing function than did normal HDL. These results
indicate that MPO-oxidized HDL and N-Hcy HDL play a
key role in the pathogenesis of cardiovascular disease.

Keywords: acute myocardial infarction (AMI); high-density
lipoprotein (HDL); myeloperoxidase (MPO); N-homo-
cyteinylation; wound repair.

Introduction

High-density lipoprotein (HDL) and its major protein,
apolipoprotein A-I (apoA-I), are well established as nega-
tive risk factors for the development of atherosclerosis
(Boden 2000). HDL reduces the atherosclerosis risk by
multiple physiologic functions, including anti-oxidant
and anti-inflammatory properties, and reverse choles-
terol transport (Barter et al. 2004; Garner et al. 1998; Rubin
et al. 1991; Zhang et al. 2003). In addition, HDL can inhibit
LDL oxidation, resulting in suppressed inflammation and
endothelial cell (EC) protection from apoptosis (Barter
et al. 2004; de Souza et al. 2010; Navab et al. 2000a,b; Suc
et al. 1997). These properties could promote endothelial
healing after vascular injury. The failure of endothelial
integrity causes arteriosclerotic progress and plaque
destabilization (Silvestre-Roig et al. 2014). Although the
multiple functions of HDL protect against endothelial
failure, these protective functions might be affected when
HDL is modified during clinical conditions such as
inflammation and oxidative stress.
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ApoA-I, which plays a key anti-atherosclerotic role, is
modified by various reactions such as oxidation, glyca-
tion, and homocysteinylation (Brown et al. 2013; Hoang
et al. 2007; Miyazaki et al. 2014; Shao et al. 2010a,b).
In this study, we focused on myeloperoxidase (MPO)
oxidation and N-homocysteinylation, which produce
MPO-oxidized HDL and N-homocysteinylated (N-Hcy)
HDL during atherosclerotic conditions. MPO potentially
participates in atherosclerosis promotion and propaga-
tion. For example, MPO is released from macrophages in
atherosclerotic lesions, and HDL isolated from the
atherosclerotic lesions contains numerous MPO-modified
proteins such as chlorinated, nitrated, and sulfoxidated
apoA-I (Pankhurst et al. 2003; Shao et al. 2005). Similarly,
oxidation of LDL by MPO is also an important event in the
development of atherosclerosis (Malle et al. 2006; Podrez
et al. 2000). In addition, apoA-I/apoA-II heterodimers
are produced via a tyrosine-tyrosine bond formed by
MPO-oxidation. In a previous study, we demonstrated
that apoA-I/apoA-II heterodimer levels were higher in
plasma from subjects with acute myocardial infarction
(AMI), compared to normal subjects (Kameda et al. 2012).
We further showed that MPO-oxidized HDL has lower anti-
inflammatory ability than normal HDL (Kameda et al.
2015). Therefore, this study focused on the MPO-oxidized
HDL which might be further losing its other anti-
atherosclerotic functions. Homocysteine (Hcy) is another
protein modulator and is also a risk factor for athero-
sclerosis. Indeed, high Hcy levels are strongly associated
with AMI (Alam et al. 2012; Al-Obaidi et al. 2000). Hcy can
be converted to homocysteine thiolactone (HcyT), which
has high reactivity and binds several proteins such as
albumin, hemoglobin, fibrinogen, and apoA-I (Jaku-
bowski 2002). We previously reported that 1.0-7.4%
(of total apoA-I) N-Hcy apoA-I is present in normal human
serum (Ishimine et al. 2010). Further, elevated N-Hcy
apoA-ITindicates a lower cholesterol efflux capacity (Yano
et al. 2016). Thus, MPO-oxidized HDL and N-Hcy HDL
dysfunction have been partly unveiled, however, few
studies have examined the association of endothelial
healing and HDL modification.

This study investigated whether MPO-oxidation and
N-homocysteinylation can attenuate HDL-induced endo-
thelial healing, in an effort to elucidate the factors that
contribute to atherosclerotic disease. Using wound healing
assays, the effect of MPO-oxidized and N-Hcy HDL on
endothelial cell migration was assessed in vitro. Moreover,
with respect to altered HDL protein composition induced
by MPO and HcyT, HDL-induced endothelial healing in
patients with varying troponin I levels was compared to
HDL levels in healthy subjects.
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Results

MPO-oxidized HDL reduces the capacity to
promote cell migration during wound
healing

To confirm the modification of HDL by MPO, the
MPO-treated HDL protein components were separated by
SDS-PAGE under reducing conditions and immunoblotted
with anti-apoA-I and anti-apoA-II antibodies. Prominent
bands were detected at apparent molecular masses of 8.5
and 28 kDa, corresponding to the apoA-II and apoA-I
monomers, respectively (Figure 1(A)). In addition, a band
was observed with both antibodies at an apparent molec-
ular mass of 37 kDa, which represented apoA-I/apoA-II
heterodimers. With respect to CBB staining, the apoA-I/
apoA-II heterodimer (37 kDa) level increased in staining
intensity after MPO treatment (Figure 1(B)).

Next, would healing assays were performed using
MPO-oxidized HDL. The cells that migrated past the
wound edge were photographed (Figure 2(A)). Normal
HDL increased HUVEC migration into the wound area,
compared to control. MPO-oxidized HDL did not increase
migration above the control level. When the migrated cells
were quantified, HDL increased HUVEC migration to
123.4 + 15.4% of the control value (p = 0.007), while
MPO-oxidized HDL decreased migration to 97.8 + 17.5%
of the control value (p = 0.003) (Figure 2(B)). Thus, MPO
treatment significantly impaired the HDL-induced endo-
thelial healing compared to untreated HDL. In addition,
MPO alone did not affect EC migration, while MPO-
oxidized HDL decreased migration to 78.9 + 12.3% of
normal HDL (Figure 2(C)). Since the main apolipoprotein
of HDL, apoA-I, is modulated by MPO oxidation resulting
in the production of apoA-I/apoA-II heterodimer, we
checked a change of HDL in size after the MPO treatment.
Consequently, larger size of HDL was observed in the HDL
sample treated with MPO oxidation compared to the un-
treated HDL sample (Figure 1(D)). In particular, we iden-
tified an increase in MPO-oxidized HDL larger than 9.2 nm.
Moreover, apoA-II was observed in the enlarged HDL as
well as apoA-I (Figure 1(E)).

N-homocysteinylated HDL has a downward
trend in promoting cell migration during
wound healing

In these experiments, we first verified the extent of
apoA-I N-homocysteinylation by isoelectric focusing and
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Figure 1: ApoA-l/apo-All heterodimer formation is induced by MPO catalysis.

HDL treated with (+) or without () MPO was analyzed by SDS-PAGE and immunoblotting (0.3 ug protein/lane) for apoA-I and apoA-II (A) or by
staining with Coomassie Brilliant Blue (CBB) (15 pg protein/lane) (B). Arrows indicate the apoA-1/apoA-Il heterodimer. The molecular masses of
the standards are listed on the left. (C) The relative amount of apoA-1/apoA-Il heterodimer to total apoA-l and total apoA-Il were analyzed with
CS Analyzer4. Effects of MPO treatment on HDL particle size. HDL treated with MPO was subjected to nondenaturing PAGE followed by CBB
staining (8 pg protein/lane) (D) and immunoblotting (6 pg protein/lane) (E). The particle sizes (nm) of the standards are listed on the left. The
values indicate the mean + SDs (n = 3). *p < 0.05, **p < 0.01. The statistical tests were used unpaired t-test.
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immunoblotting using anti-apoA-I antibody (Figure 3(A)).
N-Hcy apoA-I had a higher isoelectric point (pI) depending
on the number Hcy residues on the molecule. N-Hcy-
apoA-Ireacts with 2-aminoethanethiol due to the presence
of the -SH group derived from Hcy. N-Hcy apoA-I levels
increased during HcyT treatment in a concentration-
dependent manner (0, 1, and 10 mM) (Figure 3(B)).

Using these N-Hcy HDLs, the effect on wound healing
capacity was evaluated. Treatment with N-Hcy HDL
significantly increased HUVEC migration relative to con-
trol (Figure 4(A)). Both 1 and 10 mM N-Hcy HDL induced
HUVEC migration by 144.8 + 38.8% and 129.1 + 25.5%,
while normal HDL induced 162.0 + 76.9% migration,
compared to control, and no significant difference was
observed in cell migration during wound healing.

HDL from the patients with varying troponin |
levels has reduced capacity to promote cell
migration during wound healing

Wound healing capacity was determined using HDL
isolated from seven blood samples with varying troponin I
concentrations (5.92-852.70 ng/ml) (Table 1). To assess the
HDL MPO-oxidation and N-homocysteinylation from the
patient plasmas, we performed immunoblotting analysis
(Figures 5(A), (B) and 6(A)). First, increased apoA-I/apoA-II
heterodimers were confirmed in several patient samples
(Figure 5(A) and (B)). The ratio of apoA-I/apoA-II heterodimer
to total apoA-I and total apoA-II were higher in the patient
group than in healthy subjects (5.5 + 5.3% vs. 0.5 + 0.4%,
p = 0.028 and 36.6 + 11.7% vs. 17.5 + 6.7%, p = 0.003,
respectively) (Figure 5(D)). Second, N-homocysteinylation
was also detected in all patient samples. HDL N-homo-
cysteinylation was significantly higher in the patient group
than in healthy subjects (19.1 + 3.8% vs. 6.9 + 4.2%, p < 0.001)
(Figure 6(B)). Moreover, a prominent 12 kDa band, which
corresponds to SAA, was observed in two patient samples by
SDS-PAGE followed by CBB staining (Figure 5(C)).

HDL from healthy subjects increased HUVEC migra-
tion into the wound area compared to control (Figure 7(A)).
However, HDL from patients did not increase migration.
HDL from healthy subjects increased HUVEC migration to
120.9 + 9.6% of the control value, while HDL from patients
increased migration to 103.1 + 12.1% of the control value
(p = 0.052 vs. healthy subjects). These results suggest that
HDL from healthy subjects promotes HUVEC migration,
whereas HDL of patients inhibited HDL-induced endo-
thelial healing (Figure 7(A)).

Wound healing cell migration was significantly corre-
lated with the ratio of apoA-I/apoA-II heterodimer to total
apoA-II (r=-0.603, p = 0.022) and the ratio of N-Hcy apoA-I
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to total apoA-I (r = -0.696, p = 0.006). However, there was
no significant correlation between wound healing cell
migration and the ratio of apoA-I/apoA-II heterodimer to
total apoA-I (r = —0.333, p = 0.246) (Figure 7(B)—(D)). There
was also no correlation between SAA levels and repair ca-
pacity (r = —0.414, p = 0.142) (Supplementary Figure 1).

Discussion

Dysfunctional ECs are pleiotropically and profoundly
implicated in atherosclerosis progression, including
increased expression of cellular adhesion molecules
(Albelda et al. 1994; Hwang et al. 1997), cytokine release
involved in atherogenesis (Torzewski et al. 1997), and
reduced nitric oxide (NO) production (Oemar et al. 1998).
In contrast, HDL exerts atheroprotective effects multilat-
erally on ECs. HDL inhibits endothelial adhesion mole-
cules (Cockerill et al. 1995), stimulates endothelial NO
synthase (Gong et al. 2003), and even promotes EC pro-
liferation (Tauber et al. 1980, 1981). However, the protec-
tive functions of this rescue lipoprotein can be attenuated
by some modifications. Therefore, thorough investigation
of the intimate crosstalk between modified HDL and ECs
will lead to the discovery of biomarkers and novel thera-
peutic targets. In this study, we investigated two factors,
MPO and Hcy, because previous studies demonstrated that
plasma MPO protein levels and Hcy levels are associated
with cardiovascular disease risk (Liu et al. 2019; Refsum
et al. 1998; Wilcken and Wilcken 1976; Zhang et al. 2001).
Moreover, those factors modulate HDL function. However,
the effect of these modulations on HDL function has not
been fully elucidated. Interestingly, we found that both
MPO oxidation and possible N-homocysteinylation atten-
uate the endothelial healing function of HDL in vitro.
Regarding MPO oxidation, the intensity of the apoA-I/
apoA-II heterodimer band observed by immunoblotting
was clearly increased after treating HDL with MPO. ApoA-I/
apoA-II heterodimers have an apparent molecular mass of
37 kDa (Kameda et al. 2012). In addition, we hypothesize
that the two 50 and 80 kDa bands we observed represented
apoA-I homodimers and homotrimers (Jayaraman et al.
2008). MPO induces tyrosine-tyrosine bond formation be-
tween apoA-I and apoA-II, and also between apoA-I
monomers. Hence, apoA-I homodimers and homotrimers
were also produced by MPO oxidation. According to the
results of Native-PAGE analysis, it seems these changes in
MPO oxidation also lead HDL particles to be larger.
Although MPO oxidation enhanced the apoA-I and apoA-II
bands in particles larger than 9.2 nm, it was unclear whether
apoA-I/apoA-II heterodimers were formed in these parti-
cles. Higher apoA-I/apoA-II heterodimer levels were also
observed in Troponin I-positive patient plasmas, consistent



DE GRUYTER T. Kameda et al.: Modified HDL affects endothelial repair =—— 269

A Wound Heali

e

ng Cell Migration

==

‘CON HDL (MPO-) HDL (MPO+)

B NS

160 - * % * %k

140
T

120 -
100 [

80 -
60 -

Wound Healing
Cell Migration
(100% of control)

20

CON HDL (MPO-) HDL (MPO+) (100 pg/mL)
NS

160 -

140 NS [

120 A _
100 -~

60 -
40 -

Wound Healing
Cell Migration
(100% of control)

CON MPO alone  HDL (MPO-) HDL (MPO+) (100 ug/mL)

Figure 2: HDL oxidization by MPO reduces HUVEC migration.

(A) Monolayer HUVECs were wounded by manual scraping and incubated with 100 pg/ml normal HDL (MPO-) or MPO-oxidized HDL (MPO+) for
12 h. Migrated cells were photographed in low-power fields and quantified in 12 random wound widths per well (7 = 3 wells). The percentage of
migrated cells treated with HDLs compared to cells with PBS treatment (control; CON, 100%). (B) Quantification values are expressed as the
mean + SDs (n = 3). (C) The wounded monolayer HUVECs were also incubated with 100 pg/mlnormal HDL (MPO-) or MPO-oxidized HDL (MPO+)
and MPO alone for 12 h to confirm that the MPO itself does not affect the wound healing cell migration. Cells migrated into the gaps were also
expressed as percentage in comparison to control. NS, not significant. *p < 0.05. **p < 0.01. The statistical tests were used ANOVA followed by
post hoc Tukey’s multiple comparison test.
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Figure 3: Isoelectric focusing (IEF) for HDL and HDL treated with
HeyT.

Representative |IEF patterns of apoA-l and N-Hcy apoA-| are shown.
HDL was incubated with or without 1 or 10 mM HcyT at 37 °C for 24 h.
(A) The samples were analyzed by IEF followed by immunoblotting
for apoA-1 (0.6 pg protein/lane). (B) The relative amounts of N-Hcy
apoA-l were analyzed with CS Analyzer4. The values indicate the
mean + SDs (n = 3). *p < 0.05, **p < 0.01. The statistical tests were
used ANOVA followed by post hoc Tukey’s multiple comparison test.

with our previous report showing that apoA-I/apoA-II het-
erodimer levels were significantly higher in plasma from
AMI patients compared to controls (Kameda et al. 2012).
Analyzing apoA-I oxidation products should provide more
specific information about cardiovascular disease than
analyzing MPO protein levels because MPO is activated by
cardiovascular disease, in addition to numerous infectious
and inflammatory diseases (Lu et al. 2015; Nussbaum et al.
2012; Shao et al. 2010c).

Regarding the effect of MPO on HDL function,
MPO-oxidized HDL containing apoA-I/apoA-1I hetero-
dimers induce weak endothelial migration function in vitro.
We confirmed that these effects are not directly mediated
by MPO, but are specific to MPO-oxidized HDL
(Figure 1(C)). A previous study shows that MPO catalyzes
HDL oxidation, resulting in apoA-I tyrosine nitration and
chlorination. Indeed, MPO-oxidized HDL containing Cl-
tyrosine was ineffective at preventing HUVEC apoptosis
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Figure 4: Evaluation of endothelial cells repair capacity of HDLs
treated with HcyT (1 and 10 mM).

(A) Monolayer HUVECs were wounded by manual scraping and
incubated with 100 pg/ml normal HDL or N-homocysteinylated HDL
for 12 h. Migrated cells were photographed in low-power fields and
quantified in 12 random wound widths per well (n = 3 wells). The
percentage of migrated cells treated with HDLs compared to cells
with PBS treatment (control; CON, 100%). (B) Quantification values
are expressed as the mean + SDs (n = 3), NS, not significant.

*p < 0.05. The statistical tests were used ANOVA followed by post
hoc Tukey’s multiple comparison test.

(Undurti et al. 2009). Moreover, MPO-catalyzed HDL
nitration and chlorination impaired EC repair (Pan et al.
2013). In addition to the apoA-I modifications shown in
previous studies, we observed a high negative correlation
between wound healing cell migration and the ratio of
apoA-I/apoA-II heterodimer to total apoA-II. Tyrosine
nitration and chlorination were identified in MPO-oxidized
apoA-I (Shao et al. 2005), but the dimerization binding site
was unclear. It is possible that the repair capacity is
reduced by masking the tyrosine residues of apoA-1 by
apoA-II. Although further experiments are needed, there
might be a direct effect between tyrosine modification in
HDL and EC repair dysfunction. In addition, considering
the high negative correlation between EC repair function
and the ratio of apoA-I/apoA-II heterodimer to total
apoA-Il, it is possible that apoA-II plays a role in HDL
function to promote EC proliferation. Aside from apoA-I/
apoA-II heterodimers, a prominent 12 kDa band, which
corresponds to SAA, was observed in two patient samples.
SAA can displace apoA-I from HDL particles (Cabana et al.
2004; Coetzee et al. 1986; Sato et al. 2016), suggesting a
relationship between SAA and EC repair capacity disorder.
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Table 1: Profiles of the subjects in this study.
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Number Wound Healing Cell Migration Heterodimer* Heterodimer* N-Hcy apoA-I* Troponin |

(% of control) (+SD) (% of total apoA-I) (% of total apoA-II) (%) (ng/ml)
P1 89 + 29 9.4 54.8 18.8 8.53
P2 102 +19 11.4 45.7 23.0 8.22
P3 94+8 0.2 28.7 15.0 5.92
P4 106 + 13 2.1 30.2 15.6 9.21
P5 118 + 12 0.4 22.4 16.3 11.54
P6 121+ 19 12.3 44.4 20.5 852.70
P7 94 +17 2.8 29.8 24.7 578.43
H1 135+5 0.2 15.7 0.0 -
H2 115+ 20 0.5 29.5 4.9 -
H3 118 + 16 1.3 16.8 11.0 -
H4 111+ 25 0.2 22.0 11.1 -
H5 133 £ 56 0.3 16.4 8.7 -
Hé6 121 +15 0.2 13.8 3.4 -
H7 113+ 21 0.6 8.0 9.4 -

Wound healing capacity was measured using HDL isolated from patients with varying troponin | concentrations (P1-P7) and healthy subjects
(H1-H7). Wound healing cell migration was performed in three different wells for each HDL sample. The data were expressed as mean + standard
deviation. *The relative amounts of apoA-l/apoA-Il heterodimer and N-Hcy apoA-I were analyzed with western blot analysis by using CS
Analyzer4. These relative amounts were obtained from single measurements. Troponin | values were obtained in the clinical laboratory for

clinical purpose. These data were linked in Figures 5-7.

However, contrary to expectations, the presence of SAA
was not always necessary to impair EC repair capacity, and
no correlation between SAA levels and repair capacity was
observed in this experiment. Since the number of patients
with high SAA was small in this study, further evaluation is
required.

Next, we investigated another candidate, Hcy, which
can disrupt HDL-mediated wound-healing capacity. HcyT,
a cyclic compound derived from Hcy, reacts with proteins
to form an amide bond with the e-amino group in lysine
residues (Jakubowski 1997, 1999). Indeed, we successfully
observed N-Hcy apoA-Iin HDL treated with HcyT. Previous
studies showed that hyperhomocysteinemia increases
cardiovascular disease risk (Liu et al. 2019; Refsum et al.
1998; Wilcken and Wilcken 1976). Thus, Hcy toxicity is
likely involved in various proatherogenic properties,
including EC dysfunction, smooth muscle cell prolifera-
tion activation, thrombogenesis, and reduction of plasma
HDL level (Cattaneo 2001; Handy et al. 2005; Lentz 2001;
Liao et al. 2006; Mikael et al. 2006; Tsai et al. 1994; Wang
etal. 2000). In this study, we detected higher N-Hcy apoA-I
levels in patients than in the control group. Moreover, we
showed a negative correlation between the N-Hcy apoA-I
to total apoA-I ratio and EC migration. Some researchers
showed that patients with hyperhomocysteinemia had
increased malondialdehyde (MDA) levels (Moselhy and
Demerdash 2003) and oxidative radicals generated by
Hcy (Feng et al. 2018; Hu et al. 2019). HDL undergoes
N-homocysteinylation in vivo, in addition to multiple

oxidative modifications, as described above. In light of this
result, it is necessary to confirm the effect on EC prolifer-
ation under oxidation associated with N-Hcy HDL pro-
duction in future studies.

Several limitations of this study should be acknowl-
edged. First, patient blood samples were selected by only
troponin I levels. It may include the effects of diseases
associated with troponin elevation other than cardiovas-
cular disease. The results showed troponin I levels might
not directly correlate with increased HDL modification.
There are many other effects that are widely recognized as
critical to the development of atherosclerosis, such as LDL
levels and LDL modification (Malle et al. 2006; Podrez et al.
2000). The interactive role of these factors also remained to
be considered and analyzed. This study indicates a key role
for MPO-oxidized HDL containing apoA-I/apoA-II hetero-
dimer in the endothelial healing function of HDL, but there
may be interactions between the risk factors (troponin I,
levels of MPO-oxidation, N-homocysteinylation and SAA)
in certain individuals. Thus, monitoring risk factors in in-
dividuals may provide a more useful estimate of the endo-
thelial healing function of HDL. Furthermore, it is likely
that there are many other modifications (e.g., chlorination,
nitration, oxidation of methionine and tryptophan) on
MPO-treated HDL (Lu et al. 2015; Pan et al. 2013; Shao
et al. 2005, 2010b; Undurti et al. 2009). It is possible that
dimerization and these modifications are simultaneously
acting to reduce HDL function. As another possible
protein, apoM containing sphingosine 1-phosphate
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Figure 5: Identification of apoA-I/apoA-Il heterodimers in HDL plasma samples from seven patients with varying troponin | levels (P1-P7) and
healthy human plasmas (H1-H7).

The samples were analyzed by SDS-PAGE. ApoA-I (A) and apoA-Il (B) -containing bands were visualized by immunoblotting (0.6 pg protein/lane) or
by staining with CBB (15 pg protein/lane). (C) The black arrows indicate the apoA-l/apoA-Il heterodimer. The white arrows indicate serum amyloid A
(SAA). The molecular masses of the standards are listed on the left. (D) The relative amounts of apoA-1/apoA-Il heterodimer to total apoA-l and total
apoA-Il were analyzed with CS Analyzer4. The values indicate the mean + SDs. *p < 0.05, **p < 0.01. The statistical tests were used unpaired t-test.
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involving in vascular endothelial repair can be function-
ally impaired at the same time (Borup et al. 2015; Chris-
toffersen et al. 2011). Therefore, it has not been elucidated
yet whether apoA-I/apoA-II heterodimer is the key driver
of the effects in this study. In either case, the dimerization is a
dramatic change resulting from HDL oxidation because it

Ratio of N-Hcy apoA-I to

total apoA-I (n = 14). The statistical tests
were used ANOVA followed by post hoc

Total apoA-I (%) Tukey’s multiple comparison test.

implies not only amino acid residues modification but also
binding between proteins. Therefore, the detection of apoA-I/
apoA-II heterodimer is useful for comprehensive evaluation
including other oxidative modifications. Future studies should
investigate the interaction between EC migration and HDL
modification.
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Conclusion

In conclusion, our findings provide novel evidence that
oxidized HDL with MPO oxidation products, apoA-I/apoA-II
heterodimers, weakens endothelial repair capacity. Our results
suggest that measuring apoA-I/apoA-II heterodimers, which
reflect MPO activity in atherosclerotic lesions, may be useful to
estimate HDL-mediated endothelial healing. The current study
shows that modified HDLs indicate the extent of endothelial
healing in vascular injuries, such as cardiovascular interven-
tion. Moreover, measuring heterodimer formation may be
more useful than measuring MPO protein levels, and may be a
biomarker for atherosclerotic disease.

Materials and methods
Antibodies

Goat anti-human apoA-I and apoA-II polyclonal antibodies were pur-
chased from Academy Biomedical (Texas, USA). Horseradish peroxidase
(HRP)-conjugated rabbit anti-goat IgG polyclonal antibody was purchased
from Medical and Biological Laboratories (Nagoya, Japan).

Blood samples

Plasma samples from seven patients with varying troponin I levels
were obtained from residual blood samples obtained for laboratory
analyses at the Clinical Laboratory of the Medical Hospital at the
Tokyo Medical and Dental University. Control blood samples were
obtained from seven healthy volunteers who gave written informed
consent at Tokyo Medical and Dental University. This study was
approved by the ethics committee of the Faculty of Medicine, Tokyo
Medical and Dental University (No. M2015-546 and M2016-049), and
performed from June to November 2017.

Lipoprotein isolation

HDL (1.063 < d < 1.21 g/ml) were isolated from plasma or serum by
ultracentrifugation as described previously (Havel et al. 1955). Isolated
HDL were dialyzed against phosphate buffered saline (PBS) by using
Cellulose Tubing (20/32) with a molecular weight cutoff of 12-14 kDa
(Viskase Companies Inc, Illinois, USA). The samples were stored
at —80 °C until use in experiments, and that all samples were stored at
4 °C during all analyses.

Treatment of HDL with MPO

HDL (100 pl at 10 mg protein/ml in PBS) isolated from pooled healthy
serum was incubated with 100 pl 50 mM PBS (pH 7.4) containing
0.2 mM hydrogen peroxide, 0.2 mM diethylene triamine pentaacetic
acid, 0.4 mM L-tyrosine, and 20 nM MPO at 37 °C for 24 h. After MPO
treatment, HDL was dialyzed with 3 x 2 1 PBS by using Cellulose
Tubing (8/32) with a molecular weight cutoff of 12-14 kDa (Viskase
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Companies Inc, Illinois, USA). Then, MPO-oxidized HDL was sterilized
with a 0.22-pm filter and stored at 4 °C in the dark. MPO-oxidized HDL
was analyzed by SDS-PAGE and 8% nondenaturing PAGE followed by
immunoblotting or with Coomassie Brilliant Blue (CBB) R250 staining
to assess the profile of HDL proteins.

Immunoblotting

Western blot analysis was performed as described previously (Kameda
et al. 2012). Briefly, proteins were separated by SDS-PAGE using 14%
polyacrylamide gels under reducing conditions and transferred to
PVDF membranes (Millipore, Massachusetts, USA). The membranes
were incubated with goat anti-apoA-I or anti-apoA-II polyclonal an-
tibodies, followed by incubation with HRP-conjugated rabbit anti-goat
IgG. The antibody incubations were performed at room temperature
for 1 h. Then, the bands containing apoA-I and apoA-IIl were visualized
with 3,3’-diaminobenzidine tetrahydrochloride and H,0,. The relative
amounts of apoA-I/apoA-II heterodimers were semi-quantified with
CS Analyzer4 software (ATTO CORPORATION, Tokyo, Japan).

Evaluation of HDL particle size

HDL isolated by ultracentrifugation from blood samples were dialyzed
against buffer A (20 mM Tris/HCl, 1 mM EDTA-2K, pH 7.4). After MPO
treatment, HDL was dialyzed with 3 x 21 buffer A by using Cellulose
Tubing (8/32) with a molecular weight cutoff of 12-14 kDa (Viskase
Companies Inc). MPO-oxidized HDL was subjected to native-gel
electrophoresis (native-PAGE) using 8% polyacrylamide gels. Sepa-
rated proteins were stained with CBB or transferred to polyvinylidene
fluoride membrane (Millipore) for immunoblotting. The membranes
were incubated with goat anti-apoA-I or anti-apoA-II polyclonal an-
tibodies, followed by incubation with HRP-conjugated rabbit anti-goat
IgG. The antibody incubations were performed at room temperature
for 1h. Then, the bands containing apoA-I and apoA-II were visualized
with 3,3’-diaminobenzidine tetrahydrochloride and H,0,.

N-homocysteinylation of HDL

N-homocysteinylation of HDL was performed according to a previ-
ously reported method (Ishimine et al. 2010). HDL isolated from
pooled healthy serum was incubated with 0, 1, or 10 mM HcyT (MP
Biomedicals, California, USA) at 37 °C for 24 h. Then, the treated
samples were dialyzed against with 3 x 2 1 PBS by using Cellulose
Tubing (20/32) (Viskase Companies Inc, Illinois, USA). HcyT-treated
HDL (50 pl at 2 mg protein/ml in PBS) were mixed with a
2-aminoethanethiol hydrochloride solution (dissolved in 20 mM Tris-
HCI [pH 10.4] to adjust the pH to near neutral) at a ratio of HDL protein:
2-aminoethanethiol 1:6.7 (w/w) and incubated at 37 °C for 12 h. To
confirm the production of N-Hcy apoA-I in HDL, 2-aminoethanethiol-
treated samples were isolated by isoelectric focusing (IEF) in a pH
range from 4.0 to 6.5 and transferred onto PVDF membranes, which
were then incubated with anti-apoA-I antibody. Then, the membranes
were incubated with HRP-conjugated rabbit anti-goat IgG. The anti-
body incubations were performed at room temperature for 1 h. The
bands containing apoA-I were visualized with 3,3’-diaminobenzidine
tetrahydrochloride and H,0,. The relative amount of N-Hcy apoA-I
were analyzed with CS Analyzer4 software (ATTO CORPORATION). To
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calculate the ratio of N-Hcy apoA-I to total apoA-I, we defined N-Hcy
apoA-I bands by a higher positive charge than intact apoA-I.

SAA quantification

HDL was isolated from plasma samples from patients with varying
troponin I levels and healthy human plasma. The isolated HDL was
analyzed by SDS-PAGE with CBB-R250 staining. Single band at the
14 kDa position was regarded as serum amyloid A (SAA) and the
relative amount of SAA to total HDL protein was quantified with CS
Analyzer4 software (Atto Corporation).

Cell culture

Human umbilical vein endothelial cells (HUVECs) were purchased
from Promo Cell (Heidelberg, Germany). Cells were cultured on
gelatin-coated culture flasks in EGM-2 medium (Promo Cell) supple-
mented with 2% fetal bovine serum (FBS).

Wound healing assay

Wound healing assays were conducted as described previously
(Lv et al. 2016). HUVECs were plated in endothelial cell medium with
2% FBS in 24-well plates (2 x 10* cells/well) and cultured until
monolayer formation. The cell monolayers were wounded by
manual scraping with a 200-pl micropipette tip. Then, the cells were
washed with PBS and incubated with endothelial cell medium
containing 0.5% FBS alone or 100 pg/ml HDL, MPO-oxidized HDL,
N-Hcy HDL, or patient HDL for 12 h. Cells were fixed with methanol
and stained with Mayer’s hematoxylin solution. Cells that migrated
past the wound edge were photographed in low-power fields (8x).
The gap width between cells (12 random scraped areas per well)
were measured with a BZ-X710 instrument (Keyence Corporation,
Osaka, Japan) using lens (plan Apo_A, 4x) and digital zoom (x2.0).
All assays were performed in triplicate. The results were confirmed
in at least three independent experiments. The length of cell
migration was determined by the sum of the differences of wound
width before and after HDL incubation. The results are expressed as
the percentage of migrated cells treated with HDLs compared to
cells with PBS treatment (control, 100%).

Statistical analysis

All data were expressed as mean + SD. Differences between treatment
groups were analyzed using unpaired ¢-test and ANOVA followed by
post hoc Tukey’s multiple comparison test. The correlation between
wound healing cell migration and quantified HDL modification
products was tested by Pearson correlation coefficient. These statis-
tical analyses were performed by using IBM SPSS 25.0 (Illinois, USA).
Significance was set at p < 0.05 (two-sided).
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