Abstract
Cyanobacteria are ubiquitous oxygenic photosynthetic bacteria with a versatile metabolism that is highly dependent on effective protein targeting. Protein sorting in diderm bacteria is not trivial and, in cyanobacteria, even less so due to the presence of a complex membrane system: the outer membrane, the plasma membrane and the thylakoid membrane. In cyanobacteria, protein import into the thylakoids is essential for photosynthesis, export to the periplasm fulfills a multifunctional role in maintaining cell homeostasis, and secretion mediates motility, DNA uptake and environmental interactions. Intriguingly, only one set of genes for the general secretory and the twin-arginine translocation pathways seem to be present. However, these systems have to operate in both plasma and thylakoid membranes. This raises the question of how substrates are recognized and targeted to their correct, final destination. Additional complexities arise when a protein has to be secreted across the outer membrane, where very little is known regarding the mechanisms involved. Given their ecological importance and biotechnological interest, a better understanding of protein targeting in cyanobacteria is of great value. This review will provide insights into the known knowns of protein targeting, propose hypotheses based on available genomic sequences and discuss future directions.
Acknowledgments
We would like to thank Michael A. Russo for assistance with database generation, Dr. Sophie S. Abby for assistance with MacSyFinder and Prof. Conrad W. Mullineaux for interesting discussions on protein targeting.
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: None declared.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
Abby, S.S., Cury, J., Guglielmini, J., Néron, B., Touchon, M., and Rocha, E.P.C. (2016). Identification of protein secretion systems in bacterial genomes. Sci. Rep. 6: 23080, https://doi.org/10.1038/srep23080.Search in Google Scholar PubMed PubMed Central
Abby, S.S., Néron, B., Ménager, H., Touchon, M., and Rocha, E.P.C. (2014). MacSyFinder: a program to mine genomes for molecular systems with an application to CRISPR-Cas systems. PloS One 9: e110726, https://doi.org/10.1371/journal.pone.0110726.Search in Google Scholar PubMed PubMed Central
Agarwal, R., Zakharov, S., Hasan, S.S., Ryan, C.M., Whitelegge, J.P., and Cramer, W.A. (2014). Structure-function of cyanobacterial outer-membrane protein, Slr1270: homolog of Escherichia coli drug export/colicin import protein. TolC. FEBS Lett. 588: 3793–3801, https://doi.org/10.1016/j.febslet.2014.08.028.Search in Google Scholar PubMed PubMed Central
Akimaru, J., Matsuyama, S., Tokuda, H., and Mizushima, S. (1991). Reconstitution of a protein translocation system containing purified SecY, SecE, and SecA from Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 88: 6545–6549, https://doi.org/10.1073/pnas.88.15.6545.Search in Google Scholar PubMed PubMed Central
Akoh, C.C., Lee, G.-C., Liaw, Y.-C., Huang, T.-H., and Shaw, J.-F. (2004). GDSL family of serine esterases/lipases. Prog. Lipid Res. 43: 534–552, https://doi.org/10.1016/j.plipres.2004.09.002.Search in Google Scholar PubMed
Albiniak, A.M., Baglieri, J., and Robinson, C. (2012). Targeting of lumenal proteins across the thylakoid membrane. J. Exp. Bot. 63: 1689–1698, https://doi.org/10.1093/jxb/err444.Search in Google Scholar PubMed
Aldridge, C., Cain, P., and Robinson, C. (2009). Protein transport in organelles: protein transport into and across the thylakoid membrane: protein transport across thylakoid membranes. FEBS J. 276: 1177–1186, https://doi.org/10.1111/j.1742-4658.2009.06875.x.Search in Google Scholar PubMed
Aldridge, C., Spence, E., Kirkilionis Markus, A., Frigerio, L., and Robinson, C. (2008). Tat‐dependent targeting of Rieske iron‐sulphur proteins to both the plasma and thylakoid membranes in the cyanobacterium Synechocystis PCC6803. Mol. Microbiol. 70: 140–150, https://doi.org/10.1111/j.1365-2958.2008.06401.x.Search in Google Scholar PubMed
Allen, R., Rittmann, B.E., and Curtiss, R. (2019). Axenic biofilm formation and aggregation by Synechocystis sp. strain PCC 6803 are induced by changes in nutrient concentration and require cell surface structures. Appl. Environ. Microbiol. 85: e02192–18, https://doi.org/10.1128/aem.02192-18.Search in Google Scholar PubMed PubMed Central
Arnold, T., Zeth, K., and Linke, D. (2010). Omp85 from the thermophilic cyanobacterium Thermosynechococcus elongatus differs from proteobacterial Omp85 in structure and domain composition. J. Biol. Chem. 285: 18003–18015, https://doi.org/10.1074/jbc.m110.112516.Search in Google Scholar PubMed PubMed Central
Auclair, S.M., Bhanu, M.K., and Kendall, D.A. (2012). Signal peptidase I: cleaving the way to mature proteins. Protein Sci. Publ. Protein Soc. 21: 13–25, https://doi.org/10.1002/pro.757.Search in Google Scholar PubMed PubMed Central
Avrani, S. and Lindell, D. (2015). Convergent evolution toward an improved growth rate and a reduced resistance range in Prochlorococcus strains resistant to phage. Proc. Natl. Acad. Sci. U.S.A. 112: E2191–E2200, https://doi.org/10.1073/pnas.1420347112.Search in Google Scholar PubMed PubMed Central
Baers, L.L., Breckels, L.M., Mills, L.A., Gatto, L., Deery, M.J., Stevens, T.J., Howe, C.J., Lilley, K.S., and Lea-Smith, D.J. (2019). Proteome mapping of a cyanobacterium reveals distinct compartment organization and cell-dispersed metabolism. Plant Physiol. 181: 1721–1738, https://doi.org/10.1104/pp.19.00897.Search in Google Scholar PubMed PubMed Central
Baglieri, J., Beck, D., Vasisht, N., Smith, C.J., and Robinson, C. (2012). Structure of TatA paralog, TatE, suggests a structurally homogeneous form of Tat protein translocase that transports folded proteins of differing diameter. J. Biol. Chem. 287: 7335–7344, https://doi.org/10.1074/jbc.m111.326355.Search in Google Scholar
Barnett, J.P., Eijlander, R.T., Kuipers, O.P., and Robinson, C. (2008). A minimal Tat system from a gram-positive organism: a bifunctional TatA subunit participates in discrete TatAC and TatA complexes. J. Biol. Chem. 283: 2534–2542, https://doi.org/10.1074/jbc.m708134200.Search in Google Scholar
Barnett, J. P., Robinson, C., Scanlan, D.J., and Blindauer, C.A. (2011). The Tat protein export pathway and its role in cyanobacterial metalloprotein biosynthesis. FEMS Microbiol. Lett. 325: 1–9, https://doi.org/10.1111/j.1574-6968.2011.02391.x.Search in Google Scholar PubMed
Bhaya, D., Watanabe, N., Ogawa, T., and Grossman, A.R. (1999). The role of an alternative sigma factor in motility and pilus formation in the cyanobacterium Synechocystis sp. strain PCC6803. Proc. Natl. Acad. Sci. U.S.A. 96: 3188–3193, https://doi.org/10.1073/pnas.96.6.3188.Search in Google Scholar PubMed PubMed Central
Bolhuis, A., Broekhuizen, C.P., Sorokin, A., van Roosmalen, M.L., Venema, G., Bron, S., Quax, W.J., and van Dijl, J.M. (1998). SecDF of Bacillus subtilis, a molecular Siamese twin required for the efficient secretion of proteins. J. Biol. Chem. 273: 21217–21224, https://doi.org/10.1074/jbc.273.33.21217.Search in Google Scholar PubMed
Bryan, S.J., Burroughs, N.J., Shevela, D., Yu, J., Rupprecht, E., Liu, L.-N., Mastroianni, G., Xue, Q., Llorente-Garcia, I., Leake, M.C., et al. (2014). Localisation and interactions of the Vipp1 protein in cyanobacteria. Mol. Microbiol. 94: 1179–1195, https://doi.org/10.1111/mmi.12826.Search in Google Scholar PubMed PubMed Central
Burdette, L.A., Leach, S.A., Wong, H.T., and Tullman-Ercek, D. (2018). Developing Gram-negative bacteria for the secretion of heterologous proteins. Microb. Cell Factories 17: 176, https://doi.org/10.1186/s12934-018-1041-5.Search in Google Scholar PubMed PubMed Central
Cao, T.B. and Saier, M.H. (2003). The general protein secretory pathway: phylogenetic analyses leading to evolutionary conclusions. Biochim. Biophys. Acta 1609: 115–125, https://doi.org/10.1016/s0005-2736(02)00662-4.Search in Google Scholar
Carrie, C., Weißenberger, S., and Soll, J. (2016). Plant mitochondria contain the protein translocase subunits TatB and TatC. J. Cell Sci. 129: 3935–3947, https://doi.org/10.1242/jcs.190975.Search in Google Scholar
Cengic, I., Uhlén, M., and Hudson, E. P. (2018). Surface display of small affinity proteins on Synechocystis sp. strain PCC 6803 mediated by fusion to the major type IV pilin PilA1. J. Bacteriol. 200: e00270–18, https://doi.org/10.1128/jb.00270-18.Search in Google Scholar
Chen, P.-H., Liu, H.-L., Chen, Y.-J., Cheng, Y.-H., Lin, W.-L., Yeh, C.-H., and Chang, H. (2012). Enhancing CO2 bio-mitigation by genetic engineering of cyanobacteria. Energy Environ. Sci. 5: 8318–8327, https://doi.org/10.1039/c2ee21124f.Search in Google Scholar
Chen, Z., Li, X., Tan, X., Zhang, Y., and Wang, B. (2020). Recent advances in biological functions of thick pili in the cyanobacterium Synechocystis sp. PCC 6803. Front. Plant Sci. 11: 241, https://doi.org/10.3389/fpls.2020.00241.Search in Google Scholar
Christie, P.J. (2019). The rich tapestry of bacterial protein translocation systems. Protein J. 38: 389–408, https://doi.org/10.1007/s10930-019-09862-3.Search in Google Scholar
Cline, K., Ettinger, W.F., and Theg, S.M. (1992). Protein-specific energy requirements for protein transport across or into thylakoid membranes. Two lumenal proteins are transported in the absence of ATP. J. Biol. Chem. 267: 2688–2696.10.1016/S0021-9258(18)45935-2Search in Google Scholar
Conradi, F.D., Zhou, R.-Q., Oeser, S., Schuergers, N., Wilde, A., and Mullineaux, C.W. (2019). Factors controlling floc formation and structure in the cyanobacterium Synechocystis sp. PCC 6803. J. Bacteriol. 201: e00344–19, https://doi.org/10.1128/jb.00344-19.Search in Google Scholar PubMed PubMed Central
de Vries, J. and Archibald, J.M. (2017). Endosymbiosis: did plastids evolve from a freshwater cyanobacterium?. Curr. Biol. 27: R103–R105, https://doi.org/10.1016/j.cub.2016.12.006.Search in Google Scholar PubMed
Delepelaire, P. (2004). Type I secretion in Gram-negative bacteria. Biochim. Biophys. Acta 1694: 149–161, https://doi.org/10.1016/j.bbamcr.2004.05.001.Search in Google Scholar PubMed
DeLisa, M.P., Tullman, D., and Georgiou, G. (2003). Folding quality control in the export of proteins by the bacterial twin-arginine translocation pathway. Proc. Natl. Acad. Sci. U.S.A. 100: 6115–6120, https://doi.org/10.1073/pnas.0937838100.Search in Google Scholar PubMed PubMed Central
Denise, R., Abby, S.S., and Rocha, E.P.C. (2019). Diversification of the type IV filament superfamily into machines for adhesion, protein secretion, DNA uptake, and motility. PLoS Biol. 17: e3000390, https://doi.org/10.1371/journal.pbio.3000390.Search in Google Scholar PubMed PubMed Central
Desvaux, M., Hébraud, M., Talon, R., and Henderson, I.R. (2009). Secretion and subcellular localizations of bacterial proteins: a semantic awareness issue. Trends Microbiol. 17: 139–145, https://doi.org/10.1016/j.tim.2009.01.004.Search in Google Scholar PubMed
Dexter, J., Dziga, D., Lv, J., Zhu, J., Strzalka, W., Maksylewicz, A., Maroszek, M., Marek, S., and Fu, P. (2018). Heterologous expression of mlrA in a photoautotrophic host – engineering cyanobacteria to degrade microcystins. Environ. Pollut. 237: 926–935, https://doi.org/10.1016/j.envpol.2018.01.071.Search in Google Scholar PubMed
Dilks, K., Rose, R.W., Hartmann, E., and Pohlschröder, M. (2003). Prokaryotic utilization of the twin-arginine translocation pathway: a genomic survey. J. Bacteriol. 185: 1478–1483, https://doi.org/10.1128/jb.185.4.1478-1483.2003.Search in Google Scholar PubMed PubMed Central
Douzi, B., Filloux, A., and Voulhoux, R. (2012). On the path to uncover the bacterial type II secretion system. Philos. Trans. R. Soc. B Biol. Sci. 367: 1059–1072, https://doi.org/10.1098/rstb.2011.0204.Search in Google Scholar PubMed PubMed Central
Driessen, A.J.M., and Nouwen, N. (2008). Protein translocation across the bacterial cytoplasmic membrane. Annu. Rev. Biochem. 77: 643–667, https://doi.org/10.1146/annurev.biochem.77.061606.160747.Search in Google Scholar PubMed
Eimer, E., Fröbel, J., Blümmel, A.-S., and Müller, M. (2015). TatE as a regular constituent of bacterial twin-arginine protein translocases. J. Biol. Chem. 290: 29281–29289, https://doi.org/10.1074/jbc.m115.696005.Search in Google Scholar
Encinas, D., Garcillan-Barcia, M.P., Santos-Merino, M., Delaye, L., Moya, A., and de la Cruz, F. (2014). Plasmid conjugation from proteobacteria as evidence for the origin of xenologous genes in cyanobacteria. J. Bacteriol. 196: 1551–1559, https://doi.org/10.1128/jb.01464-13.Search in Google Scholar PubMed PubMed Central
Ferri, S., Nakamura, M., Ito, A., Nakajima, M., Abe, K., Kojima, K., et al. (2015). Efficient surface-display of autotransporter proteins in cyanobacteria. Algal Res 12: 337–340, https://doi.org/10.1016/j.algal.2015.09.013.Search in Google Scholar
Flower, A.M., Hines, L.L., and Pfennig, P.L. (2000). SecG is an auxiliary component of the protein export apparatus of Escherichia coli. Mol. Gen. Genet. 63: 131–136, https://doi.org/10.1007/s004380050039.Search in Google Scholar PubMed
Frain, K.M., Gangl, D., Jones, A., Zedler, J.A.Z., and Robinson, C. (2016). Protein translocation and thylakoid biogenesis in cyanobacteria. Biochim. Biophys. Acta 1857: 266–273, https://doi.org/10.1016/j.bbabio.2015.08.010.Search in Google Scholar PubMed
Frain, K. M., Robinson, C., and van Dijl, J. M. (2019). Transport of folded proteins by the Tat system. Protein J. 38: 377–388, https://doi.org/10.1007/s10930-019-09859-y.Search in Google Scholar PubMed PubMed Central
Freudl, R. (2018). Signal peptides for recombinant protein secretion in bacterial expression systems. Microb. Cell Factories 17: 52, https://doi.org/10.1186/s12934-018-0901-3.Search in Google Scholar PubMed PubMed Central
Fujisawa, T., Narikawa, R., Okamoto, S., Ehira, S., Yoshimura, H., Suzuki, I., Masuda, T., Mochimaru, M., Takaichi, S., Awai, K., et al. (2010). Genomic structure of an economically important cyanobacterium, Arthrospira (Spirulina) platensis NIES-39. DNA Res. 17: 85–103, https://doi.org/10.1093/dnares/dsq004.Search in Google Scholar PubMed PubMed Central
Fulda, S., Huang, F., Nilsson, F., Hagemann, M., and Norling, B. (2000). Proteomics of Synechocystis sp. strain PCC 6803. Eur. J. Biochem. 267: 5900–5907, https://doi.org/10.1046/j.1432-1327.2000.01642.x.Search in Google Scholar PubMed
Garcia‐Pichel, F., Zehr, J.P., Bhattacharya, D., and Pakrasi, H.B. (2020). What’s in a name? the case of cyanobacteria. J. Phycol. 56: 1–5, https://doi.org/10.1111/jpy.12934.Search in Google Scholar PubMed PubMed Central
Giner-Lamia, J., Pereira, S.B., Bovea-Marco, M., Futschik, M.E., Tamagnini, P., and Oliveira, P. (2016). Extracellular proteins: novel key components of metal resistance in cyanobacteria?. Front. Microbiol. 7: 878, https://doi.org/10.3389/fmicb.2016.00878.Search in Google Scholar PubMed PubMed Central
Gonçalves, C.F., Lima, S., Tamagnini, P., and Oliveira, P. (2019). Chapter 18 - cyanobacterial secretion systems: understanding fundamental mechanisms toward technological applications. In: Mishra, A.K., Tiwari, D.N., and Rai, A.N. (Eds.), Cyanobacteria: Academic Press, pp. 359–381.10.1016/B978-0-12-814667-5.00018-0Search in Google Scholar
Gonçalves, C.F., Pacheco, C.C., Tamagnini, P., and Oliveira, P. (2018). Identification of inner membrane translocase components of TolC-mediated secretion in the cyanobacterium Synechocystis sp. PCC 6803. Environ. Microbiol. 20: 2354–2369, https://doi.org/10.1111/1462-2920.14095.Search in Google Scholar PubMed
Guérin, J., Bigot, S., Schneider, R., Buchanan, S.K., and Jacob-Dubuisson, F. (2017). Two-partner secretion: combining efficiency and simplicity in the secretion of large proteins for bacteria-host and bacteria-bacteria interactions. Front. Cell. Infect. Microbiol. 7: 148, https://doi.org/10.3389/fcimb.2017.00148.Search in Google Scholar PubMed PubMed Central
Guglielmini, J., Néron, B., Abby, S.S., Garcillán-Barcia, M.P., la Cruz, F.de, and Rocha, E.P.C. (2014). Key components of the eight classes of type IV secretion systems involved in bacterial conjugation or protein secretion. Nucleic Acids Res. 42: 5715–5727, https://doi.org/10.1093/nar/gku194.Search in Google Scholar PubMed PubMed Central
Hager, A.J., Bolton, D.L., Pelletier, M.R., Brittnacher, M.J., Gallagher, L.A., Kaul, R., Skerrett, S.J., Miller, S.I., and Guina, T. (2006). Type IV pili-mediated secretion modulates Francisella virulence. Mol. Microbiol. 62: 227–237, https://doi.org/10.1111/j.1365-2958.2006.05365.x.Search in Google Scholar PubMed
Hahn, A., Stevanovic, M., Brouwer, E., Bublak, D., Tripp, J., Schorge, T., Karas, M., and Schleiff, E. (2015). Secretome analysis of Anabaena sp. PCC 7120 and the involvement of the TolC-homologue HgdD in protein secretion. Environ. Microbiol. 17: 767–780, https://doi.org/10.1111/1462-2920.12516.Search in Google Scholar PubMed
Hahn, A., Stevanovic, M., Mirus, O., and Schleiff, E. (2012). The TolC-like protein HgdD of the cyanobacterium Anabaena sp. PCC 7120 is involved in secondary metabolite export and antibiotic resistance. J. Biol. Chem. 287: 41126–41138, https://doi.org/10.1074/jbc.m112.396010.Search in Google Scholar
Han, X., Kennan, R.M., Parker, D., Davies, J.K., and Rood, J.I. (2007). Type IV fimbrial biogenesis is required for protease secretion and natural transformation in Dichelobacter nodosus. J. Bacteriol. 189: 5022–5033, https://doi.org/10.1128/jb.00138-07.Search in Google Scholar PubMed PubMed Central
Hennig, R., Heidrich, J., Saur, M., Schmüser, L., Roeters, S. J., Hellmann, N., Woutersen, S., Bonn, M., Weidner, T., Markl, J., et al. (2015). IM30 triggers membrane fusion in cyanobacteria and chloroplasts. Nat. Commun. 6: 7018, https://doi.org/10.1038/ncomms8018.Search in Google Scholar PubMed
Holland, I.B., Peherstorfer, S., Kanonenberg, K., Lenders, M., Reimann, S., and Schmitt, L. (2016). Type I protein secretion—deceptively simple yet with a wide range of mechanistic variability across the family. EcoSal Plus 7, https://doi.org/10.1128/ecosalplus.esp-0019-2015.Search in Google Scholar
Hönigschmid, P., Bykova, N., Schneider, R., Ivankov, D., and Frishman, D. (2018). Evolutionary interplay between symbiotic relationships and patterns of signal peptide gain and loss. Genome Biol. Evol. 10: 928–938, https://doi.org/10.1093/gbe/evy049.Search in Google Scholar PubMed PubMed Central
Howe, C.J., Barbrook, A.C., and Packer, J.C.L. (1996). Protein targeting and translocation in cyanobacterial membrane biogenesis. Biochem. Soc. Trans. 24: 750–753, https://doi.org/10.1042/bst0240750.Search in Google Scholar PubMed
Huang, F., Parmryd, I., Nilsson, F., Persson, A.L., Pakrasi, H.B., Andersson, B., and Norling, B. (2002). Proteomics of Synechocystis sp. strain PCC 6803: identification of plasma membrane proteins. Mol. Cell. Proteomics 1: 956–966, https://doi.org/10.1074/mcp.m200043-mcp200.Search in Google Scholar
Hurley, J.H. and Meyer, T. (2001). Subcellular targeting by membrane lipids. Curr. Opin. Cell Biol. 13: 146–152, https://doi.org/10.1016/s0955-0674(00)00191-5.Search in Google Scholar
Hynds, P.J., Robinson, D., and Robinson, C. (1998). The Sec-independent twin-arginine translocation system can transport both tightly folded and malfolded proteins across the thylakoid membrane. J. Biol. Chem. 273: 34868–34874, https://doi.org/10.1074/jbc.273.52.34868.Search in Google Scholar PubMed
Jacob-Dubuisson, F., Fernandez, R., and Coutte, L. (2004). Protein secretion through autotransporter and two-partner pathways. Biochim. Biophys. Acta 1694: 235–257, https://doi.org/10.1016/j.bbamcr.2004.03.008.Search in Google Scholar PubMed
Jacob-Dubuisson, F., Guérin, J., Baelen, S., and Clantin, B. (2013). Two-partner secretion: as simple as it sounds?. Res. Microbiol. 164: 583–595, https://doi.org/10.1016/j.resmic.2013.03.009.Search in Google Scholar PubMed
Jongbloed, J.D.H., Grieger, U., Antelmann, H., Hecker, M., Nijland, R., Bron, S., and van Dijl, J.M. (2004). Two minimal Tat translocases in Bacillus. Mol. Microbiol. 54: 1319–1325, https://doi.org/10.1111/j.1365-2958.2004.04341.x.Search in Google Scholar PubMed
Kanonenberg, K., Schwarz, C.K.W., and Schmitt, L. (2013). Type I secretion systems – a story of appendices. Res. Microbiol. 164: 596–604, https://doi.org/10.1016/j.resmic.2013.03.011.Search in Google Scholar PubMed
Kirn, T.J., Bose, N., and Taylor, R.K. (2003). Secretion of a soluble colonization factor by the TCP type 4 pilus biogenesis pathway in Vibrio cholerae. Mol. Microbiol. 49: 81–92, https://doi.org/10.1046/j.1365-2958.2003.03546.x.Search in Google Scholar PubMed
Korotkov, K.V. and Sandkvist, M. (2019). Architecture, function, and substrates of the type II secretion system. Protein Secret. Bact., EcoSal Plus 8: 227–244, https://doi.org/10.1128/ecosalplus.esp-0034-2018.Search in Google Scholar PubMed PubMed Central
Lamb, J.J., Hill, R.E., Eaton-Rye, J.J., and Hohmann-Marriott, M.F. (2014). Functional role of PilA in iron acquisition in the cyanobacterium Synechocystis sp. PCC 6803. PloS One 9: e105761, https://doi.org/10.1371/journal.pone.0105761.Search in Google Scholar PubMed PubMed Central
Lee, P.A., Tullman-Ercek, D., and Georgiou, G. (2006). The bacterial twin-arginine translocation pathway. Annu. Rev. Microbiol. 60: 373–395, https://doi.org/10.1146/annurev.micro.60.080805.142212.Search in Google Scholar PubMed PubMed Central
Leo, J.C., Grin, I., and Linke, D. (2012). Type V secretion: mechanism(s) of autotransport through the bacterial outer membrane. Philos. Trans. R. Soc. B Biol. Sci. 367: 1088–1101, https://doi.org/10.1098/rstb.2011.0208.Search in Google Scholar PubMed PubMed Central
Liberton, M., Saha, R., Jacobs, J.M., Nguyen, A.Y., Gritsenko, M.A., Smith, R.D., Koppenaal, D.W., and Pakrasi, H.B. (2016). Global proteomic analysis reveals an exclusive role of thylakoid membranes in bioenergetics of a model cyanobacterium. Mol. Cell. Proteomics 15: 2021–2032, https://doi.org/10.1074/mcp.m115.057240.Search in Google Scholar
Lima, S., Oliveira, P., and Tamagnini, P. (2017). The secretion signal peptide of the cyanobacterial extracellular protein HesF is located at its C-terminus. FEMS Microbiol. Lett. 364: fnx160, https://doi.org/10.1093/femsle/fnx160.Search in Google Scholar PubMed
Linke, D., Riess, T., Autenrieth, I.B., Lupas, A., and Kempf, V.A.J. (2006). Trimeric autotransporter adhesins: variable structure, common function. Trends Microbiol. 14: 264–270, https://doi.org/10.1016/j.tim.2006.04.005.Search in Google Scholar PubMed
Mahbub, M., Hemm, L., Yang, Y., Kaur, R., Carmen, H., Engl, C., Huokko, T., Riediger, M., Watanabe, S., Liu, L.-N., et al. (2020). mRNA localisation, reaction centre biogenesis and thylakoid membrane targeting in cyanobacteria. Native Plants, in press.10.1038/s41477-020-00764-2Search in Google Scholar PubMed
Matos, C.F.R.O., Robinson, C. and Di Cola, A. (2008). The Tat system proofreads FeS protein substrates and directly initiates the disposal of rejected molecules. EMBO J. 27: 2055–2063, https://doi.org/10.1038/emboj.2008.132.Search in Google Scholar PubMed PubMed Central
Melville, S. and Craig, L. (2013). Type IV pili in Gram-positive bacteria. Microbiol. Mol. Biol. Rev. 77: 323–341, https://doi.org/10.1128/mmbr.00063-12.Search in Google Scholar PubMed PubMed Central
Moslavac, S., Bredemeier, R., Mirus, O., Granvogl, B., Eichacker, L.A., and Schleiff, E. (2005). Proteomic analysis of the outer membrane of Anabaena sp. strain PCC 7120. J. Proteome Res. 4: 1330–1338, https://doi.org/10.1021/pr050044c.Search in Google Scholar PubMed
Moslavac, S., Nicolaisen, K., Mirus, O., Dehni, F. A., Pernil, R., Flores, E., Maldener, I., and Schleiff, E. (2007). A TolC-like protein is required for heterocyst development in Anabaena sp. strain PCC 7120. J. Bacteriol. 189: 7887–7895, https://doi.org/10.1128/jb.00750-07.Search in Google Scholar
Mould, R.M. and Robinson, C. (1991). A proton gradient is required for the transport of two lumenal oxygen-evolving proteins across the thylakoid membrane. J. Biol. Chem. 266: 12189–12193.10.1016/S0021-9258(18)98879-4Search in Google Scholar
Muro-Pastor, A.M., Kuritz, T., Flores, E., Herrero, A., and Wolk, C.P. (1994). Transfer of a genetic marker from a megaplasmid of Anabaena sp. strain PCC 7120 to a megaplasmid of a different Anabaena strain. J. Bacteriol. 176: 1093–1098, https://doi.org/10.1128/jb.176.4.1093-1098.1994.Search in Google Scholar PubMed PubMed Central
Nakai, M., Nohara, T., Sugita, D., and Endo, T. (1994). Identification and characterization of the SecA protein homologue in the cyanobacterium Synechococcus PCC7942. Biochem. Biophys. Res. Commun. 200: 844–851, https://doi.org/10.1006/bbrc.1994.1528.Search in Google Scholar PubMed
Nevo, R., Charuvi, D., Shimoni, E., Schwarz, R., Kaplan, A., Ohad, I., and Reich, Z. (2007). Thylakoid membrane perforations and connectivity enable intracellular traffic in cyanobacteria. EMBO J. 26: 1467–1473, https://doi.org/10.1038/sj.emboj.7601594.Search in Google Scholar PubMed PubMed Central
Nicolaisen, K., Hahn, A., Valdebenito, M., Moslavac, S., Samborski, A., Maldener, I., Wilken, C., Valladares, A., Flores, E., Hantke, K., and Schleiff, E. (2010). The interplay between siderophore secretion and coupled iron and copper transport in the heterocyst-forming cyanobacterium Anabaena sp. PCC 7120. Biochim. Biophys. Acta 1798: 2131–2140, https://doi.org/10.1016/j.bbamem.2010.07.008.Search in Google Scholar PubMed
Oliveira, P., Martins, N.M., Santos, M., Pinto, F., Büttel, Z., Couto, N.A.S., Wright, P.C., and Tamagnini, P. (2016). The versatile TolC-like Slr1270 in the cyanobacterium Synechocystis sp. PCC 6803. Environ. Microbiol. 18: 486–502, https://doi.org/10.1111/1462-2920.13172.Search in Google Scholar PubMed
Oliveira, P., Pinto, F., Pacheco, C. C., Mota, R., and Tamagnini, P. (2015). HesF, an exoprotein required for filament adhesion and aggregation in Anabaena sp. PCC 7120. Environ. Microbiol. 17: 1631–1648, https://doi.org/10.1111/1462-2920.12600.Search in Google Scholar PubMed
Osborne, A.R., Rapoport, T.A., and van den Berg, B. (2005). Protein translocation by the Sec61/Secy channel. Annu. Rev. Cell Dev. Biol. 21: 529–550, https://doi.org/10.1146/annurev.cellbio.21.012704.133214.Search in Google Scholar PubMed
Palmer, T. and Berks, B.C. (2012). The twin-arginine translocation (Tat) protein export pathway. Nat. Rev. Microbiol. 10: 483–496, https://doi.org/10.1038/nrmicro2814.Search in Google Scholar PubMed
Palmer, T., Sargent, F., and Berks, B.C. (2005). Export of complex cofactor-containing proteins by the bacterial Tat pathway. Trends Microbiol. 13: 175–180, https://doi.org/10.1016/j.tim.2005.02.002.Search in Google Scholar PubMed
Palmer, T. and Stansfeld, P.J. (2020). Targeting of proteins to the twin-arginine translocation pathway. Mol. Microbiol. 113: 861–871, https://doi.org/10.1111/mmi.14461.Search in Google Scholar PubMed PubMed Central
Parnasa, R., Nagar, E., Sendersky, E., Reich, Z., Simkovsky, R., Golden, S., and Schwarz, R. (2016). Small secreted proteins enable biofilm development in the cyanobacterium Synechococcus elongatus. Sci. Rep. 6: 32209, https://doi.org/10.1038/srep32209.Search in Google Scholar PubMed PubMed Central
Pisareva, T., Kwon, J., Oh, J., Kim, S., Ge, C., Wieslander, Å., Choi, J.-S., and Norling, B. (2011). Model for membrane organization and protein sorting in the cyanobacterium Synechocystis sp. PCC 6803 inferred from proteomics and multivariate sequence analyses. J. Proteome Res. 10: 3617–3631, https://doi.org/10.1021/pr200268r.Search in Google Scholar PubMed
Pohlner, J., Halter, R., Beyreuther, K., and Meyer, T.F. (1987). Gene structure and extracellular secretion of Neisseria gonorrhoeae IgA protease. Nature 325: 458–462, https://doi.org/10.1038/325458a0.Search in Google Scholar PubMed
Price, M.N. and Arkin, A.P. (2017). PaperBLAST: text mining papers for information about homologs. mSystems 2: e00039–17, https://doi.org/10.1128/msystems.00039-17.Search in Google Scholar
Rajalahti, T., Huang, F., Rosén Klement, M., Pisareva, T., Edman, M., Sjöström, M., Wieslander, Å., and Norling, B. (2007). Proteins in different Synechocystis compartments have distinguishing N-terminal features: a combined proteomics and multivariate sequence analysis. J. Proteome Res. 6: 2420–2434, https://doi.org/10.1021/pr0605973.Search in Google Scholar PubMed
Rast, A., Schaffer, M., Albert, S., Wan, W., Pfeffer, S., Beck, F., Plitzko, J. M., Nickelsen, J., and Engel, B.D. (2019). Biogenic regions of cyanobacterial thylakoids form contact sites with the plasma membrane. Native Plants 5: 436, https://doi.org/10.1038/s41477-019-0399-7.Search in Google Scholar PubMed
Rexroth, S., Mullineaux, C. W., Ellinger, D., Sendtko, E., Rögner, M., and Koenig, F. (2011). The plasma membrane of the cyanobacterium Gloeobacter violaceus contains segregated bioenergetic domains. Plant Cell 23: 2379–2390, https://doi.org/10.1105/tpc.111.085779.Search in Google Scholar PubMed PubMed Central
Rose, R.W., Brüser, T., Kissinger, J. C., and Pohlschröder, M. (2002). Adaptation of protein secretion to extremely high-salt conditions by extensive use of the twin-arginine translocation pathway. Mol. Microbiol. 45: 943–950, https://doi.org/10.1046/j.1365-2958.2002.03090.x.Search in Google Scholar PubMed
Russo, D.A., Zedler, J.A.Z., Wittmann, D.N., Möllers, B., Singh, R.K., Batth, T.S., van Oort, B., Olsen, J.V., Bjerrum, M.J., and Jensen, P.E. (2019). Expression and secretion of a lytic polysaccharide monooxygenase by a fast-growing cyanobacterium. Biotechnol. Biofuels 12: 74, https://doi.org/10.1186/s13068-019-1416-9.Search in Google Scholar PubMed PubMed Central
Schäfer, K., Künzler, P., Klingl, A., Eubel, H., and Carrie, C. (2020). The plant mitochondrial TAT pathway is essential for complex III biogenesis. Curr. Biol. 9: 840–853, E5, https://doi.org/10.1016/j.cub.2020.01.001.Search in Google Scholar
Schatz, D., Nagar, E., Sendersky, E., Parnasa, R., Zilberman, S., Carmeli, S., Mastai, Y., Shimoni, E., Klein, E., Yeger, O., et al. (2013). Self-suppression of biofilm formation in the cyanobacterium Synechococcus elongatus. Environ. Microbiol. 15: 1786–1794, https://doi.org/10.1111/1462-2920.12070.Search in Google Scholar
Schneider, D (2014). Protein targeting, transport and translocation in cyanobacteria. In: Flores, E., and Herrero, A. (Eds.), The cell biology of cyanobacteria. Seville: Caister Academic Press, pp. 121–147.Search in Google Scholar
Schneider, D., Berry, S., Volkmer, T., Seidler, A., and Rögner, M. (2004). PetC1 is the major Rieske iron-sulfur protein in the cytochrome b 6 f complex of Synechocystis sp. PCC 6803. J. Biol. Chem. 279: 39383–39388, https://doi.org/10.1074/jbc.m406288200.Search in Google Scholar
Schneider, D., Skrzypczak, S., Anemüller, S., Schmidt, C.L., Seidler, A., and Rögner, M. (2002). Heterogeneous Rieske proteins in the cytochrome b6f complex of Synechocystis PCC6803?. J. Biol. Chem. 277: 10949–10954, https://doi.org/10.1074/jbc.m104076200.Search in Google Scholar
Schuergers, N., Mullineaux, C.W., and Wilde, A. (2017). Cyanobacteria in motion. Curr. Opin. Plant Biol. 37: 109–115, https://doi.org/10.1016/j.pbi.2017.03.018.Search in Google Scholar
Schuergers, N. and Wilde, A. (2015). Appendages of the cyanobacterial cell. Life 5: 700–715, https://doi.org/10.3390/life5010700.Search in Google Scholar
Schultze, M., Forberich, B., Rexroth, S., Dyczmons, N.G., Roegner, M., and Appel, J. (2009). Localization of cytochrome b6f complexes implies an incomplete respiratory chain in cytoplasmic membranes of the cyanobacterium Synechocystis sp. PCC 6803. Biochim. Biophys. Acta 1787: 1479–1485, https://doi.org/10.1016/j.bbabio.2009.06.010.Search in Google Scholar
Sergeyenko, T.V. and Los, D.A. (2003). Cyanobacterial leader peptides for protein secretion. FEMS Microbiol. Lett. 218: 351–357, https://doi.org/10.1016/s0378-1097(02)01197-7.Search in Google Scholar
Shvarev, D. and Maldener, I. (2019). Roles of DevBCA-like ABC transporters in the physiology of anabaena sp. PCC 7120. Int. J. Med. Microbiol. 309: 325–330, https://doi.org/10.1016/j.ijmm.2019.04.005.Search in Google Scholar PubMed
Soo, R.M., Skennerton, C.T., Sekiguchi, Y., Imelfort, M., Paech, S.J., Dennis, P.G., Steen, J.A., Parks, D.H., Tyson, G.W., and Hugenholtz, P. (2014). An expanded genomic representation of the phylum cyanobacteria. Genome Biol. Evol. 6: 1031–1045, https://doi.org/10.1093/gbe/evu073.Search in Google Scholar PubMed PubMed Central
Spence, E., Sarcina, M., Ray, N., Moller, S.G., Mullineaux, C.W., and Robinson, C. (2003). Membrane-specific targeting of green fluorescent protein by the Tat pathway in the cyanobacterium Synechocystis PCC6803. Mol. Microbiol. 48: 1481–1489, https://doi.org/10.1046/j.1365-2958.2003.03519.x.Search in Google Scholar PubMed
Srivastava, R., Pisareva, T., and Norling, B. (2005). Proteomic studies of the thylakoid membrane of Synechocystis sp. PCC 6803. Proteomics 5: 4905–4916, https://doi.org/10.1002/pmic.200500111.Search in Google Scholar PubMed
Sure, S., Ackland, M.L., Gaur, A., Gupta, P., Adholeya, A., and Kochar, M. (2016). Probing Synechocystis-arsenic interactions through extracellular nanowires. Front. Microbiol. 7: 1134, https://doi.org/10.3389/fmicb.2016.01134.Search in Google Scholar PubMed PubMed Central
Trautmann, D., Voß, B., Wilde, A., Al-Babili, S., and Hess, W.R. (2012). Microevolution in cyanobacteria: re-sequencing a motile substrain of Synechocystis sp. PCC 6803. DNA Res. 19: 435–448, https://doi.org/10.1093/dnares/dss024.Search in Google Scholar PubMed PubMed Central
Tsirigotaki, A., Geyter, J.D., Šoštaric´, N., Economou, A., and Karamanou, S. (2017). Protein export through the bacterial Sec pathway. Nat. Rev. Microbiol. 15: 21–36, https://doi.org/10.1038/nrmicro.2016.161.Search in Google Scholar PubMed
Wexler, M., Sargent, F., Jack, R.L., Stanley, N.R., Bogsch, E.G., Robinson, C., Berks, B.C., and Palmer, T. (2000). TatD is a cytoplasmic protein with DNase activity. No requirement for TatD family proteins in Sec-independent protein export. J. Biol. Chem. 275: 16717–16722, https://doi.org/10.1074/jbc.m000800200.Search in Google Scholar
Wydau, S., van der Rest, G., Aubard, C., Plateau, P., and Blanquet, S. (2009). Widespread distribution of cell defense against d-aminoacyl-tRNAs. J. Biol. Chem. 284: 14096–14104, https://doi.org/10.1074/jbc.m808173200.Search in Google Scholar
Yoshihara, S., Geng, X., Okamoto, S., Yura, K., Murata, T., Go, M., Ohmori, M., and Ikeuchi, M. (2001). Mutational analysis of genes involved in pilus structure, motility and transformation competency in the unicellular motile cyanobacterium Synechocystis sp. PCC6803. Plant Cell Physiol. 42: 63–73, https://doi.org/10.1093/pcp/pce007.Search in Google Scholar PubMed
Yoshihara, S. and Ikeuchi, M. (2004). Phototactic motility in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Photochem. Photobiol. Sci. 3: 512, https://doi.org/10.1039/b402320j.Search in Google Scholar PubMed
Yuen, A.S.W., Kolappan, S., Ng, D., and Craig, L. (2013). Structure and secretion of CofJ, a putative colonization factor of enterotoxigenic Escherichia coli. Mol. Microbiol. 90: 898–918, https://doi.org/10.1111/mmi.12407.Search in Google Scholar PubMed
Zhbanko, M., Zinchenko, V., Gutensohn, M., Schierhorn, A., and Klösgen, R.B. (2005). Inactivation of a predicted leader peptidase prevents photoautotrophic growth of Synechocystis sp. strain PCC 6803. J. Bacteriol. 187: 3071–3078, https://doi.org/10.1128/jb.187.9.3071-3078.2005.Search in Google Scholar
Ziehe, D., Dünschede, B., and Schünemann, D. (2017). From bacteria to chloroplasts: evolution of the chloroplast SRP system. Biol. Chem. 398: 653–661, https://doi.org/10.1515/hsz-2016-0292.Search in Google Scholar PubMed
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/hsz-2020-0247).
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Publisher’s Note
- Editorial
- Douglas D. Thomas named next Editor-in-Chief of Biological Chemistry
- Guest Editorial
- Highlight: young research groups in Germany – 3rd edition
- Highlight: GBM Young Investigators (Part 3)
- LOTUS-domain proteins - developmental effectors from a molecular perspective
- The role of very long chain fatty acids in yeast physiology and human diseases
- Genomic insights into cyanobacterial protein translocation systems
- An RNA-centric view on gut Bacteroidetes
- Kill one or kill the many: interplay between mitophagy and apoptosis
- RNA secondary structure dependence in METTL3–METTL14 mRNA methylation is modulated by the N-terminal domain of METTL3
- Influence of monovalent metal ions on metal binding and catalytic activity of the 10–23 DNAzyme
- Integrated Ca2+ flux and AFM force analysis in human iPSC-derived cardiomyocytes
Articles in the same Issue
- Frontmatter
- Publisher’s Note
- Editorial
- Douglas D. Thomas named next Editor-in-Chief of Biological Chemistry
- Guest Editorial
- Highlight: young research groups in Germany – 3rd edition
- Highlight: GBM Young Investigators (Part 3)
- LOTUS-domain proteins - developmental effectors from a molecular perspective
- The role of very long chain fatty acids in yeast physiology and human diseases
- Genomic insights into cyanobacterial protein translocation systems
- An RNA-centric view on gut Bacteroidetes
- Kill one or kill the many: interplay between mitophagy and apoptosis
- RNA secondary structure dependence in METTL3–METTL14 mRNA methylation is modulated by the N-terminal domain of METTL3
- Influence of monovalent metal ions on metal binding and catalytic activity of the 10–23 DNAzyme
- Integrated Ca2+ flux and AFM force analysis in human iPSC-derived cardiomyocytes