Human islet amyloid polypeptide (hIAPP) - a curse in type II diabetes mellitus: insights from structure and toxicity studies
-
Ajit Kumar Bishoyi
, Pratiksha H. Roham , Kavitha Rachineni , Shreyada Save , M. Asrafuddoza Hazari , Shilpy Sharmaund Ashutosh Kumar
Abstract
The human islet amyloid polypeptide (hIAPP) or amylin, a neuroendocrine peptide hormone, is known to misfold and form amyloidogenic aggregates that have been observed in the pancreas of 90% subjects with Type 2 Diabetes Mellitus (T2DM). Under normal physiological conditions, hIAPP is co-stored and co-secreted with insulin; however, under chronic hyperglycemic conditions associated with T2DM, the overexpression of hIAPP occurs that has been associated with the formation of amyloid deposits; as well as the death and dysfunction of pancreatic β-islets in T2DM. Hitherto, various biophysical and structural studies have shown that during this process of aggregation, the peptide conformation changes from random structure to helix, then to β-sheet, subsequently to cross β-sheets, which finally form left-handed helical aggregates. The intermediates, formed during this process, have been shown to induce higher cytotoxicity in the β-cells by inducing cell membrane disruption, endoplasmic reticulum stress, mitochondrial dysfunction, oxidative stress, islet inflammation, and DNA damage. As a result, several research groups have attempted to target both hIAPP aggregation phenomenon and the destabilization of preformed fibrils as a therapeutic intervention for T2DM management. In this review, we have summarized structural aspects of various forms of hIAPP viz. monomer, oligomers, proto-filaments, and fibrils of hIAPP. Subsequently, cellular toxicity caused by toxic conformations of hIAPP has been elaborated upon. Finally, the need for performing structural and toxicity studies in vivo to fill in the gap between the structural and cellular aspects has been discussed.
Funding source: Department of Biotechnology, Ministry of Science and Technology
Award Identifier / Grant number: BT/RLF/Re-entry/11/2012
Funding source: Department of Science and Technology
Award Identifier / Grant number: EMR/2016/002798
Funding source: Council of Scientific and Industrial Research
Award Identifier / Grant number: (09/137/06.2) 2019 EMR-I
Funding source: University Grants Commission
Award Identifier / Grant number: F.4-5(18-FRP)(IV-Cycle)/2017(BSR)
Funding source: Wadhwani Research center for Bioengineering (Wadhwani Research Foundation)
Award Identifier / Grant number: RD/0118-DONWR04-001
Acknowledgments
A.K. and S.S. acknowledge funding from the Wadhwani research foundation (Wadhwani Research centre for Bioengineering). S.S. acknowledges funding from Ramalingaswami fellowship (BT/RLF/Re-entry/11/2012; Department of Biotechnology-DBT, Government of India); and University Grants Commission (UGC, Government of India F.4-5(18-FRP) (IV-Cycle)/2017(BSR)). S.S. laboratory has been generously supported by Research and Development grant to the Department of Biotechnology, SPPU; and UPE Phase II and RUSA 2.0 grants to SPPU. P.H.R. acknowledges CSIR-SRF, GOI ((09/137/06.2) 2019 EMR-I) for her SRF fellowship and S.N.S. acknowledges Wadhwani research foundation for her project assistant fellowship. K.R. is supported by the Institute postdoctoral fellowship of IIT Bombay. A.K.B. acknowledges the Department of Science and Technology (DST) for his financial assistant from DST-JRF.
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: This study was supported by funds obtained from Wadhwani research foundation (Wadhwani Research centre for Bioengineering); Department of Biotechnology (BT/RLF/Re-entry/11/2012); University Grants Commission (F.4-5(18-FRP) (IV-Cycle)/2017(BSR)); and Department of Science and Technology.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
Abedini, A. and Raleigh, D.P. (2005). The role of His-18 in amyloid formation by human islet amyloid polypeptide. Biochemistry 44: 16284–16291, https://doi.org/10.1021/bi051432v.Suche in Google Scholar PubMed
Abedini, A. and Schmidt, A.M. (2013). Mechanisms of islet amyloidosis toxicity in type 2 diabetes. Fed. Eur. Biochem. Soc. Lett. 587: 1119–1127, https://doi.org/10.1016/j.febslet.2013.01.017.Suche in Google Scholar PubMed PubMed Central
Abedini, A., Tracz, S.M., Cho, J.H., and Raleigh, D.P. (2006). Characterization of the heparin binding site in the N-terminus of human pro-islet amyloid polypeptide: implications for amyloid formation. Biochemistry 45: 9228–9237, https://doi.org/10.1021/bi0510936.Suche in Google Scholar PubMed
Adeghate, E. and Kalász, H. (2011). Suppl 2: amylin analogues in the treatment of diabetes mellitus: medicinal chemistry and structural basis of its function. Open Med. Chem. J. 5: 78, https://doi.org/10.2174/1874104501105010078.Suche in Google Scholar PubMed PubMed Central
Alexandrescu, A.T. (2005). Amyloid accomplices and enforcers. Protein Sci. 14: 1–12. https://doi.org/10.1110/ps.04887005.Suche in Google Scholar PubMed PubMed Central
Alexandrescu, A.T. (2013). Amide proton solvent protection in amylin fibrils probed by quenched hydrogen exchange NMR. PLoS One 8: e56467, https://doi.org/10.1371/journal.pone.0056467.Suche in Google Scholar PubMed PubMed Central
Aston-Mourney, K., Hull, R.L., Zraika, S., Udayasankar, J., Subramanian, S.L., and Kahn, S.E. (2011). Exendin-4 increases islet amyloid deposition but offsets the resultant beta cell toxicity in human islet amyloid polypeptide transgenic mouse islets. Diabetologia 54: 1756–1765, https://doi.org/10.1007/s00125-011-2143-3.Suche in Google Scholar PubMed PubMed Central
Bag, N., Ali, A., Chauhan, V.S., Wohland, T., and Mishra, A. (2013). Membrane destabilization by monomeric hIAPP observed by imaging fluorescence correlation spectroscopy. Chem. Commun. 49: 9155–9157, https://doi.org/10.1039/c3cc44880k.Suche in Google Scholar PubMed
Bedrood, S., Li, Y., Isas, J.M., Hegde, B.G., Baxa, U., Haworth, I.S., and Langen, R. (2012). Fibril structure of human islet amyloid polypeptide. J. Biol. Chem. 287: 5235–5241, https://doi.org/10.1074/jbc.m111.327817.Suche in Google Scholar PubMed PubMed Central
Bertolotti, A., Zhang, Y., Hendershot, L.M., Harding, H.P., and Ron, D. (2000). Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat. Cell Biol. 2: 326–332, https://doi.org/10.1038/35014014.Suche in Google Scholar PubMed
Birol, M., Kumar, S., Rhoades, E., and Miranker, A.D. (2018). Conformational switching within dynamic oligomers underpins toxic gain-of-function by diabetes-associated amyloid. Nat. Commun. 9: 1–12, https://doi.org/10.1038/s41467-018-03651-9.Suche in Google Scholar PubMed PubMed Central
Boyle, C.N., Lutz, T.A., and Le Foll, C. (2018). Amylin–Its role in the homeostatic and hedonic control of eating and recent developments of amylin analogs to treat obesity. Mol. Metab. 8: 203–210, https://doi.org/10.1016/j.molmet.2017.11.009.Suche in Google Scholar PubMed PubMed Central
Brender, J.R., Hartman, K., Reid, K.R., Kennedy, R.T., and Ramamoorthy, A. (2008). A single mutation in the nonamyloidogenic region of islet amyloid polypeptide greatly reduces toxicity. Biochemistry 47: 12680–12688, https://doi.org/10.1021/bi801427c.Suche in Google Scholar PubMed PubMed Central
Brender, J.R., Salamekh, S., and Ramamoorthy, A. (2012). Membrane disruption and early events in the aggregation of the diabetes related peptide IAPP from a molecular perspective. Acc. Chem. Res. 45: 454–462, https://doi.org/10.1021/ar200189b.Suche in Google Scholar PubMed PubMed Central
Buchanan, L.E., Dunkelberger, E.B., Tran, H.Q., Cheng, P.N., Chiu, C.C., Cao, P., Raleigh, D.P., De Pablo, J.J., Nowick, J.S., and Zanni, M.T. (2013). Mechanism of IAPP amyloid fibril formation involves an intermediate with a transient β-sheet. Proc. Natl. Acad. Sci. USA 110: 19285–19290, https://doi.org/10.1073/pnas.1314481110.Suche in Google Scholar PubMed PubMed Central
Butler, A.E., Janson, J., Bonner-Weir, S., Ritzel, R., Rizza, R.A., and Butler, P.C. (2003). β-cell deficit and increased β-cell apoptosis in humans with type 2 diabetes. Diabetes 52: 102–110, https://doi.org/10.2337/diabetes.52.1.102.Suche in Google Scholar PubMed
Cadavez, L., Montane, J., Alcarraz-Vizán, G., Visa, M., Vidal-Fàbrega, L., Servitja, J.M., and Novials, A. (2014). Chaperones ameliorate beta cell dysfunction associated with human islet amyloid polypeptide overexpression. PLoS One 9: e101797, https://doi.org/10.1371/journal.pone.0101797.Suche in Google Scholar PubMed PubMed Central
Cai, K., Qi, D., Hou, X., Wang, O., Chen, J., Deng, B., Qian, L., Liu, X., and Le, Y. (2011a). MCP-1 upregulates amylin expression in murine pancreatic β cells through ERK/JNK-AP1 and NF-κB related signaling pathways independent of CCR2. PLoS One 6: e19559, https://doi.org/10.1371/journal.pone.0019559.Suche in Google Scholar PubMed PubMed Central
Cai, K., Qi, D., Wang, O., Chen, J., Liu, X., Deng, B., Qian, L., and Le, Y. (2011b). TNF-α acutely upregulates amylin expression in murine pancreatic beta cells. Diabetologia 54: 617–626, https://doi.org/10.1007/s00125-010-1972-9.Suche in Google Scholar PubMed
Caillon, L., Hoffmann, A.R., Botz, A., and Khemtemourian, L. (2016). Molecular structure, membrane interactions, and toxicity of the islet amyloid polypeptide in type 2 diabetes mellitus. J. Diabetes Res., 2016: 13. https://doi.org/10.1155/2016/5639875.Suche in Google Scholar PubMed PubMed Central
Camargo, D.C.R., Korshavn, K.J., Jussupow, A., Raltchev, K., Goricanec, D., Fleisch, M., Sarkar, R., Xue, K., Aichler, M., Mettenleiter, G., et al. (2017b). Stabilization and structural analysis of a membrane-associated hIAPP aggregation intermediate. eLife 6: e31226. https://doi.org/10.7554/eLife.31226.Suche in Google Scholar PubMed PubMed Central
Camargo, D.C.R., Tripsianes, K., Buday, K., Franko, A., Göbl, C., Hartlmüller, C., Sarkar, R., Aichler, M., Mettenleiter, G., Schulz, M., et al. (2017a). The redox environment triggers conformational changes and aggregation of hIAPP in Type II Diabetes. Sci. Rep. 7: 44041. https://doi.org/10.1038/srep44041.Suche in Google Scholar PubMed PubMed Central
Cao, P., Abedini, A., and Raleigh, D.P. (2013a). Aggregation of islet amyloid polypeptide: from physical chemistry to cell biology. Curr. Opin. Struct. Biol. 23: 82–89, https://doi.org/10.1016/j.sbi.2012.11.003.Suche in Google Scholar PubMed PubMed Central
Cao, P., Abedini, A., Wang, H., Tu, L.H., Zhang, X., Schmidt, A.M., and Raleigh, D.P. (2013b). Islet amyloid polypeptide toxicity and membrane interactions. Proc. Natl. Acad. Sci. USA 110: 19279–19284, https://doi.org/10.1073/pnas.1305517110.Suche in Google Scholar PubMed PubMed Central
Casas, S., Novials, A., Reimann, F., Gomis, R., and Gribble, F.M. (2008). Calcium elevation in mouse pancreatic beta cells evoked by extracellular human islet amyloid polypeptide involves activation of the mechanosensitive ion channel TRPV4. Diabetologia 51: 2252–2262, https://doi.org/10.1007/s00125-008-1111-z.Suche in Google Scholar PubMed PubMed Central
Castillo, G.M., Cummings, J.A., Yang, W., Judge, M.E., Sheardown, M.J., Rimvall, K., Hansen, J.B., and Snow, A.D. (1998). Sulfate content and specific glycosaminoglycan backbone of perlecan are critical for perlecan’s enhancement of islet amyloid polypeptide (amylin) fibril formation. Diabetes 47: 612–620, https://doi.org/10.2337/diabetes.47.4.612.Suche in Google Scholar PubMed
Chatani, E. and Yamamoto, N. (2018). Recent progress on understanding the mechanisms of amyloid nucleation. Biophys. Rev. 10: 527–534, https://doi.org/10.1007/s12551-017-0353-8.Suche in Google Scholar PubMed PubMed Central
Cho, J.H., Kim, J.W., Shin, J.A., Shin, J., and Yoon, K.H. (2011). β‐cell mass in people with type 2 diabetes. J. Diabetes Invest. 2: 6–17, https://doi.org/10.1111/j.2040-1124.2010.00072.x.Suche in Google Scholar PubMed PubMed Central
Clark, A., Wells, C.A., Buley, I.D., Cruickshank, J.K., Vanhegan, R.I., Matthews, D.R., Cooper, G.J., Holman, R.R., and Turner, R.C. (1988). Islet amyloid, increased A-cells, reduced B-cells and exocrine fibrosis: quantitative changes in the pancreas in type 2 diabetes. Diabetes Res. 9: 151.Suche in Google Scholar
Conde‐Knape, K. (2001). Heparan sulfate proteoglycans in experimental models of diabetes: a role for perlecan in diabetes complications. Diabetes Metab. Res. Rev. 17: 412–421. https://doi.org/10.1002/dmrr.236.Suche in Google Scholar PubMed
Cooper, G.J., Leighton, B., Dimitriadis, G.D., Parry-Billings, M., Kowalchuk, J.M., Howland, K., Rothbard, J.B., Willis, A.C., and Reid, K.B. (1988). Amylin found in amyloid deposits in human type 2 diabetes mellitus may be a hormone that regulates glycogen metabolism in skeletal muscle. Proc. Natl. Acad. Sci. USA 85: 7763–7766, https://doi.org/10.1073/pnas.85.20.7763.Suche in Google Scholar PubMed PubMed Central
Cooper, G.J., Willis, A.C., Clark, A., Turner, R.C., Sim, R.B., and Reid, K.B. (1987). Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients. Proc. Natl. Acad. Sci. USA 84: 8628–8632, https://doi.org/10.1073/pnas.84.23.8628.Suche in Google Scholar PubMed PubMed Central
Costes, S., Gurlo, T., Rivera, J.F., and Butler, P.C. (2014). UCHL1 deficiency exacerbates human islet amyloid polypeptide toxicity in β-cells: evidence of interplay between the ubiquitin/proteasome system and autophagy. Autophagy 10: 1004–1014, https://doi.org/10.4161/auto.28478.Suche in Google Scholar PubMed PubMed Central
Costes, S., Huang, C.J., Gurlo, T., Daval, M., Matveyenko, A.V., Rizza, R.A., Butler, A.E., and Butler, P.C. (2011). β-cell dysfunctional ERAD/ubiquitin/proteasome system in type 2 diabetes mediated by islet amyloid polypeptide–induced UCH-L1 deficiency. Diabetes 60: 227–238, https://doi.org/10.2337/db10-0522.Suche in Google Scholar PubMed PubMed Central
Costes, S., Vandewalle, B., Tourrel-Cuzin, C., Broca, C., Linck, N., Bertrand, G., Kerr-Conte, J., Portha, B., Pattou, F., Bockaert, J., et al. (2009). Degradation of cAMP-responsive element–binding protein by the ubiquitin-proteasome pathway contributes to glucotoxicity in β-cells and human pancreatic islets. Diabetes 58: 1105–1115, https://doi.org/10.2337/db08-0926.Suche in Google Scholar PubMed PubMed Central
O’Brien, T.D., Westermark, P., and Johnson, K.H. (1991). Islet amyloid polypeptide and insulin secretion from isolated perfused pancreas of fed, fasted, glucose-treated, and dexamethasone-treated rats. Diabetes 40: 1701–1706, https://doi.org/10.2337/diab.40.12.1701.Suche in Google Scholar PubMed
Dacquin, R., Davey, R.A., Laplace, C., Levasseur, R., Morris, H.A., Goldring, S.R., Gebre-Medhin, S., Galson, D.L., Zajac, J.D., and Karsenty, G. (2004). Amylin inhibits bone resorption while the calcitonin receptor controls bone formation in vivo. J. Cell Biol. 164: 509–514, https://doi.org/10.1083/jcb.200312135.Suche in Google Scholar PubMed PubMed Central
De Koning, E.J., Morris, E.R., Hofhuis, F.M., Posthuma, G., Höppener, J.W., Morris, J.F., Capel, P.J., Clark, A., and Verbeek, J.S. (1994). Intra-and extracellular amyloid fibrils are formed in cultured pancreatic islets of transgenic mice expressing human islet amyloid polypeptide. Proc. Natl. Acad. Sci. USA 91: 8467–8471, https://doi.org/10.1073/pnas.91.18.8467.Suche in Google Scholar PubMed PubMed Central
De Koning, E.J., van den Brand, J.J., Mott, V.L., Chargé, S.B., Hansen, B.C., Bodkin, N.L., Morris, J.F., and Clark, A. (1998). Macrophages and pancreatic islet amyloidosis. Amyloid 5: 247–254, https://doi.org/10.3109/13506129809007297.Suche in Google Scholar PubMed
Ding, W.Q., Holicky, E., and Miller, L.J. (2001). Glucose and forskolin regulate IAPP gene expression through different signal transduction pathways. Am. J. Physiol. Endocrinol. Metab. 281: E938–E945, https://doi.org/10.1152/ajpendo.2001.281.5.e938.Suche in Google Scholar
Dubey, R., Minj, P., Malik, N., Sardesai, D.M., Kulkarni, S.H., Acharya, J.D., Bhavesh, N.S., Sharma, S., and Kumar, A. (2017). Recombinant human islet amyloid polypeptide forms shorter fibrils and mediates β-cell apoptosis via generation of oxidative stress. Biochem. J. 474: 3915–3934, https://doi.org/10.1042/bcj20170323.Suche in Google Scholar
Dupuis, N.F., Wu, C., Shea, J.E., and Bowers, M.T. (2011). The amyloid formation mechanism in human IAPP: dimers have β-strand monomer− monomer interfaces. J. Am. Chem. Soc. 133: 7240–7243, https://doi.org/10.1021/ja1081537.Suche in Google Scholar PubMed PubMed Central
Ebato, C., Uchida, T., Arakawa, M., Komatsu, M., Ueno, T., Komiya, K., Azuma, K., Hirose, T., Tanaka, K., Kominami, E., et al. (2008). Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metabol. 8: 325–332, https://doi.org/10.1016/j.cmet.2008.08.009.Suche in Google Scholar PubMed
El Assar, M., Angulo, J., Santos-Ruiz, M., Moreno, P., Novials, A., Villanueva-Peñacarrillo, M.L., and Rodríguez-Mañas, L. (2015). Differential effect of amylin on endothelial-dependent vasodilation in mesenteric arteries from control and insulin resistant rats. PLoS One 10: e0120479, https://doi.org/10.1371/journal.pone.0120479.Suche in Google Scholar PubMed PubMed Central
Engel, M.F. (2009). Membrane permeabilization by islet amyloid polypeptide. Chem. Phys. Lipids 160: 1–10, https://doi.org/10.1016/j.chemphyslip.2009.03.008.Suche in Google Scholar PubMed
Fonseca, S.G., Gromada, J., and Urano, F. (2011). Endoplasmic reticulum stress and pancreatic β-cell death. Trends Endocrinol. Metab. 22: 266–274. https://doi.org/10.1016/j.tem.2011.02.008.Suche in Google Scholar PubMed PubMed Central
German, M.S., Moss, L.G., Wang, J., and Rutter, W.J. (1992). The insulin and islet amyloid polypeptide genes contain similar cell-specific promoter elements that bind identical beta-cell nuclear complexes. Mol. Cell. Biol. 12: 1777–1788, https://doi.org/10.1128/mcb.12.4.1777.Suche in Google Scholar
Goldsbury, C., Goldie, K., Pellaud, J., Seelig, J., Frey, P., Müller, S.A., Kistler, J., Cooper, G.J.S., and Aebi, U. (2000). Amyloid fibril formation from full-length and fragments of amylin. J. Struct. Biol. 130: 352–362, https://doi.org/10.1006/jsbi.2000.4268.Suche in Google Scholar PubMed
Griffiths, J.M., Ashburn, T.T., Auger, M., Costa, P.R., Griffin, R.G., and Lansbury, P.T. (1995). Rotational resonance solid-state NMR elucidates a structural model of pancreatic amyloid. J. Am. Chem. Soc. 117: 3539–3546, https://doi.org/10.1021/ja00117a023.Suche in Google Scholar
Gurlo, T., Ryazantsev, S., Huang, C.J., Yeh, M.W., Reber, H.A., Hines, O.J., O’Brien, T.D., Glabe, C.G., and Butler, P.C. (2010). Evidence for proteotoxicity in β cells in type 2 diabetes: toxic islet amyloid polypeptide oligomers form intracellularly in the secretory pathway. Am. J. Pathol. 176: 861–869, https://doi.org/10.2353/ajpath.2010.090532.Suche in Google Scholar PubMed PubMed Central
Haataja, L., Gurlo, T., Huang, C.J., and Butler, P.C. (2008). Islet amyloid in type 2 diabetes, and the toxic oligomer hypothesis. Endocr. Rev. 29: 303–316, https://doi.org/10.1210/er.2007-0037.Suche in Google Scholar PubMed PubMed Central
Hartter, E., Svoboda, T., Ludvik, B., Schuller, M., Lell, B., Kuenburg, E., Brunnbauer, M., Woloszczuk, W., and Prager, R. (1991). Basal and stimulated plasma levels of pancreatic amylin indicate its co-secretion with insulin in humans. Diabetologia. 34: 52–54, https://doi.org/10.1210/er.2007-0037.Suche in Google Scholar
Hayden, M.R., Tyagi, S.C., Kerklo, M.M., and Nicolls, M.R. (2005). Type 2 diabetes mellitus as a conformational disease. Jop 6: 287–302.Suche in Google Scholar
Hernández, M.G., Aguilar, A.G., Burillo, J., Oca, R.G., Manca, M.A., Novials, A., Alcarraz-Vizan, G., Guillén, C., and Benito, M. (2018). Pancreatic β cells overexpressing hIAPP impaired mitophagy and unbalanced mitochondrial dynamics. Cell Death Dis. 9: 1–11, https://doi.org/10.1038/s41419-018-0533-x.Suche in Google Scholar
Higham, C.E., Hull, R.L., Lawrie, L., Shennan, K.I., Morris, J.F., Birch, N.P., Docherty, K., and Clark, A. (2000). Processing of synthetic pro‐islet amyloid polypeptide (proIAPP)‘amylin’ by recombinant prohormone convertase enzymes, PC2 and PC3, in vitro. Eur. J. Biochem. 267: 4998–5004, https://doi.org/10.1046/j.1432-1327.2000.01548.x.Suche in Google Scholar
Höppener, J.W., Nieuwenhuis, M.G., Vroom, T.M., Ahrén, B., and Lips, C.J. (2002). Role of islet amyloid in type 2 diabetes mellitus: consequence or cause? Mol. Cell. Endocrinol. 197: 205–212, https://doi.org/10.1016/s0303-7207(02)00266-6.Suche in Google Scholar
Höppener, J.W.M., Jacobs, H.M., Wierup, N., Sotthewes, G., Sprong, M., de Vos, P., Berger, R., Sundler, F., and Ahrén, B. (2008). Human islet amyloid polypeptide transgenic mice: in vivo and ex vivo models for the role of hIAPP in type 2 diabetes mellitus. Exp. Diabetes Res., 2008: 8.10.1155/2008/697035Suche in Google Scholar
Hsu, Y.H., Chen, Y.W., Wu, M.H., and Tu, L.H. (2019). Protein glycation by glyoxal promotes amyloid formation by Islet Amyloid polypeptide. Biophys. J. 116: 2304–2313, https://doi.org/10.1016/j.bpj.2019.05.013.Suche in Google Scholar
Hu, R., Ren, B., Zhang, M., Chen, H., Liu, Y., Liu, L., Gong, X., Jiang, B., Ma, J., and Zheng, J. (2017). Seed-induced heterogeneous cross-seeding self-assembly of human and rat islet polypeptides. ACS Omega 2: 784–792, https://doi.org/10.1021/acsomega.6b00559.Suche in Google Scholar
Huang, C.J., Lin, C.Y., Haataja, L., Gurlo, T., Butler, A.E., Rizza, R.A., and Butler, P.C. (2007). High expression rates of human islet amyloid polypeptide induce endoplasmic reticulum stress–mediated β-cell apoptosis, a characteristic of humans with type 2 but not type 1 diabetes. Diabetes 56: 2016–2027, https://doi.org/10.2337/db07-0197.Suche in Google Scholar
Jaikaran, E.T. and Clark, A. (2001). Islet amyloid and type 2 diabetes: from molecular misfolding to islet pathophysiology. Biochim. Biophys. Acta (BBA) - Mol. Basis Dis. 1537: 179–203, https://doi.org/10.1016/s0925-4439(01)00078-3.Suche in Google Scholar
Jaikaran, E.T., Higham, C.E., Serpell, L.C., Zurdo, J., Gross, M., Clark, A., and Fraser, P.E. (2001). Identification of a novel human islet amyloid polypeptide β-sheet domain and factors influencing fibrillogenesis. J. Mol. Biol. 308: 515–525, https://doi.org/10.1006/jmbi.2001.4593.Suche in Google Scholar PubMed
Janson, J., Ashley, R.H., Harrison, D., McIntyre, S., and Butler, P.C. (1999). The mechanism of islet amyloid polypeptide toxicity is membrane disruption by intermediate-sized toxic amyloid particles. Diabetes 48: 491–498, https://doi.org/10.2337/diabetes.48.3.491.Suche in Google Scholar PubMed
Jaroniec, C.P., MacPhee, C.E., Bajaj, V.S., McMahon, M.T., Dobson, C.M., and Griffin, R.G. (2004). High-resolution molecular structure of a peptide in an amyloid fibril determined by magic angle spinning NMR spectroscopy. Proc. Natl. Acad. Sci. USA 101: 711–716, https://doi.org/10.1073/pnas.0304849101.Suche in Google Scholar PubMed PubMed Central
Jayasinghe, S.A. and Langen, R. (2004). Identifying structural features of fibrillar islet amyloid polypeptide using site-directed spin labeling. J. Biol. Chem. 279: 48420–48425, https://doi.org/10.1074/jbc.m406853200.Suche in Google Scholar
Jayasinghe, S.A. and Langen, R. (2007). Membrane interaction of islet amyloid polypeptide. Biochim. Biophys. Acta Biomembr. 1768: 2002–2009, https://doi.org/10.1016/j.bbamem.2007.01.022.Suche in Google Scholar PubMed
Jha, S., Patil, S.M., Gibson, J., Nelson, C.E., Alder, N.N., and Alexandrescu, A.T. (2011). Mechanism of amylin fibrillization enhancement by heparin. J. Biol. Chem. 286: 22894–22904, https://doi.org/10.1074/jbc.m110.215814.Suche in Google Scholar
Jha, S., Sellin, D., Seidel, R., and Winter, R. (2009). Amyloidogenic propensities and conformational properties of ProIAPP and IAPP in the presence of lipid bilayer membranes. J. Mol. Biol. 389: 907–920, https://doi.org/10.1016/j.jmb.2009.04.077.Suche in Google Scholar PubMed
Jia, Y., Qian, Z., Zhang, Y., and Wei, G. (2013). Adsorption and orientation of human islet amyloid polypeptide (hIAPP) monomer at anionic lipid bilayers: implications for membrane-mediated aggregation. Int. J. Mol. Sci. 14: 6241–6258, https://doi.org/10.3390/ijms14036241.Suche in Google Scholar PubMed PubMed Central
Juhl, C.B., Pørksen, N., Sturis, J., Hansen, A.P., Veldhuis, J.D., Pincus, S., Fineman, M., and Schmitz, O. (2000). High-frequency oscillations in circulating amylin concentrations in healthy humans. Am. J. Physiol. Endocrinol. Metab. 278: E484–E490, https://doi.org/10.1152/ajpendo.2000.278.3.e484.Suche in Google Scholar
Jung, H.S., Chung, K.W., Kim, J.W., Kim, J., Komatsu, M., Tanaka, K., Nguyen, Y.H., Kang, T.M., Yoon, K.H., Kim, J.W., et al. (2008). Loss of autophagy diminishes pancreatic β cell mass and function with resultant hyperglycemia. Cell Metabol. 8: 318–324, https://doi.org/10.1016/j.cmet.2008.08.013.Suche in Google Scholar PubMed
Jurgens, C.A., Toukatly, M.N., Fligner, C.L., Udayasankar, J., Subramanian, S.L., Zraika, S., Aston-Mourney, K., Carr, D.B., Westermark, P., Westermark, G.T., et al. (2011). β-cell loss and β-cell apoptosis in human type 2 diabetes are related to islet amyloid deposition. Am. J. Pathol. 178: 2632–2640, https://doi.org/10.1016/j.ajpath.2011.02.036.Suche in Google Scholar PubMed PubMed Central
Kajava, A.V., Aebi, U., and Steven, A.C. (2005). The parallel superpleated beta-structure as a model for amyloid fibrils of human amylin. J. Mol. Biol. 348: 247–252, https://doi.org/10.1016/j.jmb.2005.02.029.Suche in Google Scholar PubMed
Kanatsuka, A., Kou, S., and Makino, H. (2018). IAPP/amylin and β-cell failure: implication of the risk factors of type 2 diabetes. Diabetol. Int. 9: 143–157, https://doi.org/10.1007/s13340-018-0347-1.Suche in Google Scholar PubMed PubMed Central
Kaniuk, N.A., Kiraly, M., Bates, H., Vranic, M., Volchuk, A., and Brumell, J.H. (2007). Ubiquitinated-protein aggregates form in pancreatic β-cells during diabetes-induced oxidative stress and are regulated by autophagy. Diabetes 56: 930–939, https://doi.org/10.2337/db06-1160.Suche in Google Scholar PubMed
Kapurniotu, A., Bernhagen, J., Greenfield, N., Al‐Abed, Y., Teichberg, S., Frank, R.W., Voelter, W., and Bucala, R. (1998). Contribution of advanced glycosylation to the amyloidogenicity of islet amyloid polypeptide. Eur. J. Biochem. 251: 208–216, https://doi.org/10.1046/j.1432-1327.1998.2510208.x.Suche in Google Scholar PubMed
Kayed, R., Bernhagen, J., Greenfield, N., Sweimeh, K., Brunner, H., Voelter, W., and Kapurniotu, A. (1999). Conformational transitions of islet amyloid polypeptide (IAPP) in amyloid formation in vitro. J. Mol. Biol. 287: 781–796, https://doi.org/10.1006/jmbi.1999.2646.Suche in Google Scholar PubMed
Kegulian, N.C., Sankhagowit, S., Apostolidou, M., Jayasinghe, S.A., Malmstadt, N., Butler, P.C., and Langen, R. (2015). Membrane curvature-sensing and curvature-inducing activity of islet amyloid polypeptide and its implications for membrane disruption. J. Biol. Chem. 290: 25782–25793, https://doi.org/10.1074/jbc.m115.659797.Suche in Google Scholar
Kim, J., Cheon, H., Jeong, Y.T., Quan, W., Kim, K.H., Cho, J.M., Lim, Y.M., Oh, S.H., Jin, S.M., Kim, J.H., et al. (2014). Amyloidogenic peptide oligomer accumulation in autophagy-deficient β cells induces diabetes. J. Clin. Invest. 124: 3311–3324, https://doi.org/10.1172/jci69625.Suche in Google Scholar
Knight, J.D. and Miranker, A.D. (2004). Phospholipid catalysis of diabetic amyloid assembly. J. Mol. Biol. 341: 1175–1187, https://doi.org/10.1016/j.jmb.2004.06.086.Suche in Google Scholar PubMed
Lashuel, H.A., Hartley, D., Petre, B.M., Walz, T., and Lansbury, P.T. (2002). Amyloid pores from pathogenic mutations. Nature 418: 291, https://doi.org/10.1038/418291a.Suche in Google Scholar PubMed
Laybutt, D.R., Preston, A.M., Åkerfeldt, M.C., Kench, J.G., Busch, A.K., Biankin, A.V., and Biden, T.J. (2007). Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes. Diabetologia 50: 752–763, https://doi.org/10.1007/s00125-006-0590-z.Suche in Google Scholar PubMed
Li, X.L., Chen, T., Wong, Y.S., Xu, G., Fan, R.R., Zhao, H.L., and Chan, J.C. (2011). Involvement of mitochondrial dysfunction in human islet amyloid polypeptide-induced apoptosis in INS-1E pancreatic beta cells: an effect attenuated by phycocyanin. Int. J. Biochem. Cell Biol. 43: 525–534, https://doi.org/10.1016/j.biocel.2010.12.008.Suche in Google Scholar PubMed
Lin, C.Y., Gurlo, T., Kayed, R., Butler, A.E., Haataja, L., Glabe, C.G., and Butler, P.C. (2007). Toxic human islet amyloid polypeptide (h-IAPP) oligomers are intracellular, and vaccination to induce anti-toxic oligomer antibodies does not prevent h-IAPP–induced β-cell apoptosis in h-IAPP transgenic mice. Diabetes 56: 1324–1332, https://doi.org/10.2337/db06-1579.Suche in Google Scholar PubMed
Lorenzo, A., Razzaboni, B., Weir, G.C., and Yankner, B.A. (1994). Pancreatic islet cell toxicity of amylin associated with type-2 diabetes mellitus. Nature 368: 756–760, https://doi.org/10.1038/368756a0.Suche in Google Scholar PubMed
Luca, S., Yau, W.M., Leapman, R., and Tycko, R. (2007). Peptide conformation and supramolecular organization in amylin fibrils: constraints from solid-state NMR. Biochemistry 46: 13505–13522, https://doi.org/10.1021/bi701427q.Suche in Google Scholar PubMed PubMed Central
Lutz, T.A. (2012). Control of energy homeostasis by amylin. Cell. Mol. Life Sci. 69: 1947–1965, https://doi.org/10.1007/s00018-011-0905-1.Suche in Google Scholar PubMed
Ma, L., Yang, C., Huang, L., Chen, Y., Li, Y., Cheng, C., Cheng, B., Zheng, L., and Huang, K. (2019). Glycated insulin exacerbates the cytotoxicity of human islet amyloid polypeptides: a vicious cycle in type 2 diabetes. ACS Chem. Biol. 14: 486–496, https://doi.org/10.1021/acschembio.8b01128.Suche in Google Scholar PubMed
MacArthur, D.L.A., De Koning, E.J.P., Verbeek, J.S., Morris, J.F., and Clark, A. (1999). Amyloid fibril formation is progressive and correlates with β-cell secretion in transgenic mouse isolated islets. Diabetologia 42: 1219–1227, https://doi.org/10.1007/s001250051295.Suche in Google Scholar PubMed
Macfarlane, W.M., Campbell, S.C., Elrick, L.J., Oates, V., Bermano, G., Lindley, K.J., Aynsley-Green, A., Dunne, M.J., James, R.F., and Docherty, K. (2000). Glucose regulates islet amyloid polypeptide gene transcription in a PDX1-and calcium-dependent manner. J. Biol. Chem. 275: 15330–15335, https://doi.org/10.1074/jbc.m908045199.Suche in Google Scholar
Macfarlane, W.M., Smith, S.B., James, R.F., Clifton, A.D., Doza, Y.N., Cohen, P., and Docherty, K. (1997). The p38/reactivating kinase mitogen-activated protein kinase cascade mediates the activation of the transcription factor insulin upstream factor 1 and insulin gene transcription by high glucose in pancreatic β-cells. J. Biol. Chem. 272: 20936–20944, https://doi.org/10.1074/jbc.272.33.20936.Suche in Google Scholar PubMed
Magzoub, M. and Miranker, A.D. (2012). Concentration‐dependent transitions govern the subcellular localization of islet amyloid polypeptide. Faseb. J. 26: 1228–1238, https://doi.org/10.1096/fj.11-194613.Suche in Google Scholar PubMed PubMed Central
Makin, O.S. and Serpell, L.C. (2004). The structure of amyloid. Fibre Diffr. Rev. 12: 29–35, https://doi.org/10.1382/s20041229.Suche in Google Scholar
Marchetti, P., Bugliani, M., Lupi, R., Marselli, L., Masini, M., Boggi, U., Filipponi, F., Weir, G.C., Eizirik, D.L., and Cnop, M. (2007). The endoplasmic reticulum in pancreatic beta cells of type 2 diabetes patients. Diabetologia 50: 2486–2494, https://doi.org/10.1007/s00125-007-0816-8.Suche in Google Scholar PubMed
Marzban, L. (2015). New insights into the mechanisms of islet inflammation in type 2 diabetes. Diabetes 64: 1094–1096, https://doi.org/10.2337/db14-1903.Suche in Google Scholar PubMed
Masini, M., Bugliani, M., Lupi, R., Del Guerra, S., Boggi, U., Filipponi, F., Marselli, L., Masiello, P., and Marchetti, P. (2009). Autophagy in human type 2 diabetes pancreatic beta cells. Diabetologia 52: 1083–1086, https://doi.org/10.1007/s00125-009-1347-2.Suche in Google Scholar PubMed
Masters, S.L., Dunne, A., Subramanian, S.L., Hull, R.L., Tannahill, G.M., Sharp, F.A., Becker, C., Franchi, L., Yoshihara, E., Chen, Z., et al. (2010). Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nat. Immunol. 11: 897–904, https://doi.org/10.1038/ni.1935.Suche in Google Scholar PubMed PubMed Central
Meier, D.T., Morcos, M., Samarasekera, T., Zraika, S., Hull, R.L., and Kahn, S.E. (2014). Islet amyloid formation is an important determinant for inducing islet inflammation in high-fat-fed human IAPP transgenic mice. Diabetologia 57: 1884–1888, https://doi.org/10.1007/s00125-014-3304-y.Suche in Google Scholar PubMed PubMed Central
Meier, J.J. and Bonadonna, R.C. (2013). Role of reduced β-cell mass versus impaired β-cell function in the pathogenesis of type 2 diabetes. Diabetes Care 36(Suppl. 2): S113–S119, https://doi.org/10.2337/dcs13-2008.Suche in Google Scholar
Meier, J.J., Kayed, R., Lin, C.Y., Gurlo, T., Haataja, L., Jayasinghe, S., Langen, R., Glabe, C.G., and Butler, P.C. (2006). Inhibition of human IAPP fibril formation does not prevent β-cell death: evidence for distinct actions of oligomers and fibrils of human IA. Am. J. Physiol. Endocrinol. Metab. 291: E1317–E1324, https://doi.org/10.1152/ajpendo.00082.2006.Suche in Google Scholar PubMed
Meusser, B., Hirsch, C., Jarosch, E., and Sommer, T. (2005). ERAD: the long road to destruction. Nat. Cell Biol. 7: 766–772, https://doi.org/10.1038/ncb0805-766.Suche in Google Scholar PubMed
Mirzabekov, T.A., Lin, M.C., and Kagan, B.L. (1996). Pore formation by the cytotoxic islet amyloid peptide amylin. J. Biol. Chem. 271: 1988–1992, https://doi.org/10.1074/jbc.271.4.1988.Suche in Google Scholar PubMed
Miti, T., Mulaj, M., Schmit, J.D., and Muschol, M. (2015). Stable, metastable, and kinetically trapped amyloid aggregate phases. Biomacromolecules 16: 326–335, https://doi.org/10.1021/bm501521r.Suche in Google Scholar
Mo, X.D., Gao, L.P., Wang, Q.J., Yin, J., and Jing, Y.H. (2018). Lipid accelerating the fibril of islet amyloid polypeptide aggravated the pancreatic islet injury in vitro and in vivo. Lipids Health Dis. 17: 1–11, https://doi.org/10.1186/s12944-018-0694-8.Suche in Google Scholar
Montane, J. and Novials, A. (2016). The Role of Human IAPP in Stress and Inflammatory Processes in Type 2 Diabetes. Exploring New Findings on Amyloidosis.10.5772/63010Suche in Google Scholar
Moore, S.J., Sonar, K., Bharadwaj, P., Deplazes, E., and Mancera, R.L. (2018). Characterisation of the structure and oligomerisation of islet amyloid polypeptides (IAPP): a review of molecular dynamics simulation studies. Molecules 23: 2142, https://doi.org/10.3390/molecules23092142.Suche in Google Scholar
Morita, S., Sakagashira, S., Shimajiri, Y., Eberhardt, N.L., Kondo, T., Kondo, T., and Sanke, T. (2011). Autophagy protects against human islet amyloid polypeptide‐associated apoptosis. J. Diabet. Invest. 2: 48–55, https://doi.org/10.1111/j.2040-1124.2010.00065.x.Suche in Google Scholar
Mosselman, S., Höppener, J.W.M., Zandberg, J., Van Mansfeld, A.D.M., Van Kessel, A.G., Lips, C.J.M., and Jansz, H.S. (1988). Islet amyloid polypeptide: identification and chromosomal localization of the human gene. Fed. Eur. Biochem. Soc. Lett. 239: 227–232, https://doi.org/10.1016/0014-5793(88)80922-0.Suche in Google Scholar
Mukherjee, A., Morales-Scheihing, D., Butler, P.C., and Soto, C. (2015). Type 2 diabetes as a protein misfolding disease. Trends Mol. Med. 21: 439–449, https://doi.org/10.1016/j.molmed.2015.04.005.Suche in Google Scholar
Mukherjee, A., Morales-Scheihing, D., Salvadores, N., Moreno-Gonzalez, I., Gonzalez, C., Taylor-Presse, K., Mendez, N., Shahnawaz, M., Gaber, A.O., Sabek, O.M., et al. (2017). Induction of IAPP amyloid deposition and associated diabetic abnormalities by a prion-like mechanism. J. Exp. Med. 214: 2591–2610, https://doi.org/10.1084/jem.20161134.Suche in Google Scholar
Mulder, H., Ahrén, B., and Sundler, F. (1995). Differential expression of islet amyloid polypeptide (amylin) and insulin in experimental diabetes in rodents. Mol. Cell. Endocrinol. 114: 101–109, https://doi.org/10.1016/0303-7207(95)03646-o.Suche in Google Scholar
Mulder, H., Ahren, B., and Sundler, F. (1996). Islet amyloid polypeptide and insulin gene expression are regulated in parallel by glucose in vivo in rats. Am. J. Physiol. Endocrinol. Metab. 271: E1008–E1014, https://doi.org/10.1152/ajpendo.1996.271.6.e1008.Suche in Google Scholar
Nanga, R.P.R., Brender, J.R., Vivekanandan, S., and Ramamoorthy, A. (2011). Structure and membrane orientation of IAPP in its natively amidated form at physiological pH in a membrane environment. Biochim. Biophys. Acta Biomembr. 1808: 2337–2342, https://doi.org/10.1016/j.bbamem.2011.06.012.Suche in Google Scholar PubMed PubMed Central
Nielsen, J.T., Bjerring, M., Jeppesen, M.D., Pedersen, R.O., Pedersen, J.M., Hein, K.L., Vosegaard, T., Skrydstrup, T., Otzen, D.E., and Nielsen, N.C. (2009). Unique identification of supramolecular structures in amyloid fibrils by solid‐state NMR spectroscopy. Angew. Chem. 121: 2152–2155, https://doi.org/10.1002/ange.200804198.Suche in Google Scholar
Nishi, M., Chan, S.J., Nagamatsu, S., Bell, G.I., and Steiner, D.F. (1989). Conservation of the sequence of islet amyloid polypeptide in five mammals is consistent with its putative role as an islet hormone. Proc. Natl. Acad. Sci. USA 86: 5738–5742, https://doi.org/10.1073/pnas.86.15.5738.Suche in Google Scholar PubMed PubMed Central
Nishi, M., Sanke, T., Seino, S., Eddy, R.L., Fan, Y.S., Byers, M.G., Shows, T.B., Bell, G.I., and Steiner, D.F. (1989). Human islet amyloid polypeptide gene: complete nucleotide sequence, chromosomal localization, and evolutionary history. Mol. Endocrinol. 3: 1775–1781, https://doi.org/10.1210/mend-3-11-1775.Suche in Google Scholar PubMed
Nishida, J., Tamimi, A., Fei, H., Pullen, S., Ott, S., Cohen, S.M., and Fayer, M.D. (2014). Structural dynamics inside a functionalized metal–organic framework probed by ultrafast 2D IR spectroscopy. Proc. Natl. Acad. Sci. U.S.A 111: 18442–18447, https://doi.org/10.1073/pnas.1422194112.Suche in Google Scholar PubMed PubMed Central
Ohagi, S., Nishi, M., Bell, G.I., Ensinck, J.W., and Steiner, D.F. (1991). Sequences of islet amyloid polypeptide precursors of an Old World monkey, the pig-tailed macaque (Macaca nemestrina), and the dog (Canis familiaris). Diabetologia 34: 555–558, https://doi.org/10.1007/bf00400272.Suche in Google Scholar PubMed
Opie, E.L. (1901). The relation Oe diabetes mellitus to lesions of the Pancreas. Hyaline degeneration of the Islands Oe Langerhans. J. Exp. Med. 5: 527, https://doi.org/10.1084/jem.5.5.527.Suche in Google Scholar PubMed PubMed Central
Oskarsson, M.E., Hermansson, E., Wang, Y., Welsh, N., Presto, J., Johansson, J., and Westermark, G.T. (2018). BRICHOS domain of Bri2 inhibits islet amyloid polypeptide (IAPP) fibril formation and toxicity in human beta cells. Proc. Natl. Acad. Sci. U.S.A 115: E2752–E2761, https://doi.org/10.1073/pnas.1715951115.Suche in Google Scholar PubMed PubMed Central
Oskarsson, M.E., Singh, K., Wang, J., Vlodavsky, I., Li, J.P., and Westermark, G.T. (2015). Heparan sulfate proteoglycans are important for islet amyloid formation and islet amyloid polypeptide-induced apoptosis. J. Biol. Chem. 290: 15121–15132, https://doi.org/10.1074/jbc.m114.631697.Suche in Google Scholar
Padrick, S.B. and Miranker, A.D. (2002). Islet amyloid: phase partitioning and secondary nucleation are central to the mechanism of fibrillogenesis. Biochemistry 41: 4694–4703, https://doi.org/10.1021/bi0160462.Suche in Google Scholar PubMed
Park, K., and Verchere, C.B. (2001). Identification of a heparin binding domain in the N-terminal cleavage site of pro-islet amyloid polypeptide: implications for islet amyloid formation. J. Biol. Chem. 276: 16611–16616, https://doi.org/10.1074/jbc.m008423200.Suche in Google Scholar
Park, Y.J., Woo, M., Kieffer, T.J., Hakem, R., Safikhan, N., Yang, F., Ao, Z., Warnock, G.L., and Marzban, L. (2014). The role of caspase-8 in amyloid-induced β cell death in human and mouse islets. Diabetologia 57: 765–775, https://doi.org/10.1007/s00125-013-3152-1.Suche in Google Scholar
Paulsson, J.F., Andersson, A., Westermark, P., and Westermark, G.T. (2006). Intracellular amyloid-like deposits contain unprocessed pro-islet amyloid polypeptide (proIAPP) in beta cells of transgenic mice overexpressing the gene for human IAPP and transplanted human islets. Diabetologia 49: 1237–1246, https://doi.org/10.1007/s00125-006-0206-7.Suche in Google Scholar
Paxinos, G., Chai, S.Y., Christopoulos, G., Huang, X.F., Toga, A.W., Wang, H.Q., and Sexton, P.M. (2004). In vitro autoradiographic localization of calcitonin and amylin binding sites in monkey brain. J. Chem. Neuroanat. 27: 217–236, https://doi.org/10.1016/j.jchemneu.2004.03.005.Suche in Google Scholar
Pilkington, E.H., Gurzov, E.N., Kakinen, A., Litwak, S.A., Stanley, W.J., Davis, T.P., and Ke, P.C. (2016). Pancreatic β-cell membrane fluidity and toxicity induced by human islet amyloid polypeptide species. Sci. Rep. 6: 21274, https://doi.org/10.1038/srep21274.Suche in Google Scholar
Pithadia, A., Brender, J.R., Fierke, C.A., and Ramamoorthy, A. (2016). Inhibition of IAPP aggregation and toxicity by natural products and derivatives. J. Diabet. Res., 2016: 12.10.1155/2016/2046327Suche in Google Scholar
Potter, K.J., Werner, I., Denroche, H.C., Montane, J., Plesner, A., Chen, Y., Lei, D., Soukhatcheva, G., Warnock, G.L., Oberholzer, J., et al. (2015). Amyloid formation in human islets is enhanced by heparin and inhibited by heparinase. Am. J. Transplant. 15: 1519–1530, https://doi.org/10.1111/ajt.13134.Suche in Google Scholar
Potter-Perigo, S., Hull, R.L., Tsoi, C., Braun, K.R., Andrikopoulos, S., Teague, J., Verchere, C.B., Kahn, S.E., and Wight, T.N. (2003). Proteoglycans synthesized and secreted by pancreatic islet β-cells bind amylin. Arch. Biochem. Biophys. 413: 182–190, https://doi.org/10.1016/s0003-9861(03)00116-4.Suche in Google Scholar
Qi, D., Cai, K., Wang, O., Li, Z., Chen, J., Deng, B., Qian, L., and Le, Y. (2010). Fatty acids induce amylin expression and secretion by pancreatic β-cells. Am. J. Physiol. Endocrinol. Metab. 298: E99–E107, https://doi.org/10.1152/ajpendo.00242.2009.Suche in Google Scholar PubMed
Quist, A., Doudevski, I., Lin, H., Azimova, R., Ng, D., Frangione, B., Kagan, B., Ghiso, J., and Lal, R. (2005). Amyloid ion channels: a common structural link for protein-misfolding disease. Proc. Natl. Acad. Sci. USA 102: 10427–10432, https://doi.org/10.1073/pnas.0502066102.Suche in Google Scholar PubMed PubMed Central
Radovan, D., Smirnovas, V., and Winter, R. (2008). Effect of pressure on islet amyloid polypeptide aggregation: revealing the polymorphic nature of the fibrillation process. Biochemistry 47: 6352–6360, https://doi.org/10.1021/bi800503j.Suche in Google Scholar PubMed
Rajmohan, R. and Reddy, P.H. (2017). Amyloid-beta and phosphorylated tau accumulations cause abnormalities at synapses of Alzheimer’s disease neurons. J. Alzheim. Dis. 57: 975–999, https://doi.org/10.3233/jad-160612.Suche in Google Scholar
Raleigh, D., Zhang, X., Hastoy, B., and Clark, A. (2017). The β-cell assassin: IAPP cytotoxicity. J. Mol. Endocrinol. 59: R121–R140, https://doi.org/10.1530/jme-17-0105.Suche in Google Scholar
Ritzel, R.A., Meier, J.J., Lin, C.Y., Veldhuis, J.D., and Butler, P.C. (2007). Human islet amyloid polypeptide oligomers disrupt cell coupling, induce apoptosis, and impair insulin secretion in isolated human islets. Diabetes 56: 65–71, https://doi.org/10.2337/db06-0734.Suche in Google Scholar PubMed
Rivera, J.F., Costes, S., Gurlo, T., Glabe, C.G., and Butler, P.C. (2014). Autophagy defends pancreatic β cells from human islet amyloid polypeptide-induced toxicity. J. Clin. Invest. 124: 3489–3500, https://doi.org/10.1172/jci71981.Suche in Google Scholar PubMed PubMed Central
Rivera, J.F., Gurlo, T., Daval, M., Huang, C.J., Matveyenko, A.V., Butler, P.C., and Costes, S. (2011). Human-IAPP disrupts the autophagy/lysosomal pathway in pancreatic β-cells: protective role of p62-positive cytoplasmic inclusions. Cell Death Differ. 18: 415–426, https://doi.org/10.1038/cdd.2010.111.Suche in Google Scholar PubMed PubMed Central
Röcken, C., Linke, R.P., and Saeger, W. (1992). Immunohistology of islet amyloid polypeptide in diabetes mellitus: semi-qantitative studies in a post-mortem series. Virchows Arch. 421: 339–344, https://doi.org/10.1007/bf01660981.Suche in Google Scholar PubMed
Roesti, E.S., Boyle, C.N., Zeman, D.T., Sande-Melon, M., Storni, F., Cabral-Miranda, G., Knuth, A., Lutz, T.A., Vogel, M., and Bachmann, M.F. (2020). Vaccination against amyloidogenic aggregates in pancreatic islets prevents development of type 2 diabetes mellitus. Vaccines 8: 116. https://doi.org/10.3390/vaccines8010116.Suche in Google Scholar PubMed PubMed Central
Rowińska-Żyrek, M. (2016). Coordination of Zn2+ and Cu2+ to the membrane disrupting fragment of amylin. Dalton Trans. 45: 8099–8106. https://doi.org/10.1039/C6DT00628K.Suche in Google Scholar PubMed
Scheuner, D. and Kaufman, R.J. (2008). The unfolded protein response: a pathway that links insulin demand with β-cell failure and diabetes. Endocr. Rev. 29: 317–333, https://doi.org/10.1210/er.2007-0039.Suche in Google Scholar PubMed PubMed Central
Sciacca, M.F., Lolicato, F., Di Mauro, G., Milardi, D., D’Urso, L., Satriano, C., Ramamoorthy, A., and La Rosa, C. (2016). The role of cholesterol in driving IAPP-membrane interactions. Biophys. J. 111: 140–151, https://doi.org/10.1016/j.bpj.2016.05.050.Suche in Google Scholar
Sciacca, M.F., Milardi, D., Messina, G.M., Marletta, G., Brender, J.R., Ramamoorthy, A., and La Rosa, C. (2013). Cations as switches of amyloid-mediated membrane disruption mechanisms: calcium and IA. Biophys. J. 104: 173–184, https://doi.org/10.1016/j.bpj.2012.11.3811.Suche in Google Scholar
Sciacca, M.F., Milardi, D., Messina, G.M., Marletta, G., Brender, J.R., Ramamoorthy, A., and La Rosa, C. (2013). Cations as switches of amyloid-mediated membrane disruption mechanisms: calcium and IA. Biophys. J. 104: 173–184, https://doi.org/10.1016/j.bpj.2012.11.3811.Suche in Google Scholar
Serrano, A.L., Lomont, J.P., Tu, L.H., Raleigh, D.P., and Zanni, M.T. (2017). A free energy barrier caused by the refolding of an oligomeric intermediate controls the lag time of amyloid formation by hIAPP. J. Am. Chem. Soc. 139: 16748–16758, https://doi.org/10.1021/jacs.7b08830.Suche in Google Scholar
Shen, J., Chen, X., Hendershot, L., and Prywes, R. (2002). ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev. Cell 3: 99–111, https://doi.org/10.1016/s1534-5807(02)00203-4.Suche in Google Scholar
Shigihara, N., Fukunaka, A., Hara, A., Komiya, K., Honda, A., Uchida, T., Abe, H., Toyofuku, Y., Tamaki, M., Ogihara, T., et al. (2014). Human IAPP–induced pancreatic β cell toxicity and its regulation by autophagy. J. Clin. Invest. 124: 3634–3644, https://doi.org/10.1172/jci69866.Suche in Google Scholar
Singh, S., Trikha, S., Bhowmick, D.C., Sarkar, A.A., and Jeremic, A.M. (2015). Role of cholesterol and phospholipids in amylin misfolding, aggregation and etiology of islet amyloidosis. In Lipids in Protein Misfolding. Cham: Springer, pp. 95–116.10.1007/978-3-319-17344-3_4Suche in Google Scholar PubMed PubMed Central
Singh, V.P., Bali, A., Singh, N., and Jaggi, A.S. (2014). Advanced glycation end products and diabetic complications. Korean J. Physiol. Pharmacol. 18: 1–14, https://doi.org/10.4196/kjpp.2014.18.1.1.Suche in Google Scholar PubMed PubMed Central
Snedeker, J.G. and Gautieri, A. (2014). The role of collagen crosslinks in ageing and diabetes-the good, the bad, and the ugly. Muscles, Ligaments and Tendons J. 4: 303.10.32098/mltj.03.2014.07Suche in Google Scholar
Spranger, J., Kroke, A., Möhlig, M., Hoffmann, K., Bergmann, M.M., Ristow, M., Boeing, H., and Pfeiffer, A.F. (2003). Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes 52: 812–817, https://doi.org/10.2337/diabetes.52.3.812.Suche in Google Scholar PubMed
Sundar Rajan, S., Srinivasan, V., Balasubramanyam, M., and Tatu, U. (2007). Endoplasmic reticulum (ER) stress & diabetes. Indian J. Med. Res. 125: 411–24.Suche in Google Scholar
Tomita, T. (2012). Islet amyloid polypeptide in pancreatic islets from type 2 diabetic subjects. Islets. 4: 223–232, https://doi.org/10.1016/j.sbi.2003.12.002.Suche in Google Scholar PubMed
Trikha, S. and Jeremic, A.M. (2011). Clustering and internalization of toxic amylin oligomers in pancreatic cells require plasma membrane cholesterol. J. Biol. Chem. 286: 36086–36097, https://doi.org/10.1074/jbc.m111.240762.Suche in Google Scholar PubMed PubMed Central
Twohig, D. and Nielsen, H.M. (2019). α-synuclein in the pathophysiology of Alzheimer’s disease. Mol. Neurodegener. 14: 23, https://doi.org/10.1186/s13024-019-0320-x.Suche in Google Scholar PubMed PubMed Central
Tycko, R. (2004). Progress towards a molecular-level structural understanding of amyloid fibrils. Curr. Opin. Struct. Biol. 14: 96–103, https://doi.org/10.1016/j.sbi.2003.12.002.Suche in Google Scholar
Visa, M., Alcarraz‐Vizán, G., Montane, J., Cadavez, L., Castaño, C., Villanueva‐Peñacarrillo, M.L., Servitja, J.M., and Novials, A. (2015). Islet amyloid polypeptide exerts a novel autocrine action in β‐cell signaling and proliferation. Faseb. J. 29: 2970–2979, https://doi.org/10.1096/fj.15-270553.Suche in Google Scholar PubMed
Wang, J., Xu, J., Finnerty, J., Furuta, M., Steiner, D.F., and Verchere, C.B. (2001). The prohormone convertase enzyme 2 (PC2) is essential for processing pro-islet amyloid polypeptide at the NH2-terminal cleavage site. Diabetes 50: 534–539, https://doi.org/10.2337/diabetes.50.3.534.Suche in Google Scholar PubMed
Wang, L., Middleton, C.T., Singh, S., Reddy, A.S., Woys, A.M., Strasfeld, D.B., Marek, P., Raleigh, D.P., De Pablo, J.J., Zanni, M.T., et al. (2011). 2DIR spectroscopy of human amylin fibrils reflects stable β-sheet structure. J. Am. Chem. Soc. 133: 16062–16071, https://doi.org/10.1021/ja204035k.Suche in Google Scholar PubMed PubMed Central
Wang, Q., Zhang, H., Zhao, B., and Fei, H. (2009). IL-1β caused pancreatic β-cells apoptosis is mediated in part by endoplasmic reticulum stress via the induction of endoplasmic reticulum Ca2+ release through the c-Jun N-terminal kinase pathway. Mol. Cell. Biochem. 324: 183, https://doi.org/10.1007/s11010-008-9997-9.Suche in Google Scholar PubMed
Weirich, F., Gremer, L., Mirecka, E.A., Schiefer, S., Hoyer, W., and Heise, H. (2016). Structural characterization of fibrils from recombinant human islet amyloid polypeptide by solid-state NMR: the central FGAILS segment is part of the β-sheet core. PLoS One 11: e0161243, https://doi.org/10.1371/journal.pone.0161243.Suche in Google Scholar PubMed PubMed Central
Westermark, P. (1972). Quantitative studies of amyloid in the islets of Langerhans. Ups. J. Med. Sci. 77: 91–94, https://doi.org/10.1517/03009734000000014.Suche in Google Scholar PubMed
Westermark, P., Andersson, A., and Westermark, G.T. (2011). Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol. Rev. 91: 795–826, https://doi.org/10.1152/physrev.00042.2009.Suche in Google Scholar
Westermark, P., Engström, U., Johnson, K.H., Westermark, G.T., and Betsholtz, C. (1990). Islet amyloid polypeptide: pinpointing amino acid residues linked to amyloid fibril formation. Proc. Natl. Acad. Sci. USA 87: 5036–5040, https://doi.org/10.1073/pnas.87.13.5036.Suche in Google Scholar
Westermark, P., Wernstedt, C., Wilander, E., and Sletten, K. (1986). A novel peptide in the calcitonin gene related peptide family as an amyloid fibril protein in the endocrine pancreas. Biochem. Biophy. Res. Commun 140: 827–831, https://doi.org/10.1016/0006-291x(86)90708-4.Suche in Google Scholar
Westwell-Roper, C., Dai, D.L., Soukhatcheva, G., Potter, K.J., van Rooijen, N., Ehses, J.A., and Verchere, C.B. (2011). IL-1 blockade attenuates islet amyloid polypeptide-induced proinflammatory cytokine release and pancreatic islet graft dysfunction. J. Immunol. 187: 2755–2765, https://doi.org/10.4049/jimmunol.1002854.Suche in Google Scholar PubMed
Westwell-Roper, C.Y., Chehroudi, C.A., Denroche, H.C., Courtade, J.A., Ehses, J.A., and Verchere, C.B. (2015). IL-1 mediates amyloid-associated islet dysfunction and inflammation in human islet amyloid polypeptide transgenic mice. Diabetologia 58: 575–585, https://doi.org/10.1007/s00125-014-3447-x.Suche in Google Scholar PubMed
Wielinga, P.Y., Löwenstein, C., Muff, S., Munz, M., Woods, S.C., and Lutz, T.A. (2010). Central amylin acts as an adiposity signal to control body weight and energy expenditure. Physiol. Behav. 101: 45–52, https://doi.org/10.1016/j.physbeh.2010.04.012.Suche in Google Scholar PubMed PubMed Central
Williamson, J.A., Loria, J.P., and Miranker, A.D. (2009). Helix stabilization precedes aqueous and bilayer-catalyzed fiber formation in islet amyloid polypeptide. J. Mol. Biol. 393: 383–396, https://doi.org/10.1016/j.jmb.2009.07.077.Suche in Google Scholar PubMed PubMed Central
Wiltzius, J.J., Sievers, S.A., Sawaya, M.R., and Eisenberg, D. (2009). Atomic structures of IAPP (amylin) fusions suggest a mechanism for fibrillation and the role of insulin in the process. Protein Sci. 18: 1521–1530, https://doi.org/10.1002/pro.145.Suche in Google Scholar PubMed PubMed Central
Wiltzius, J.J., Sievers, S.A., Sawaya, M.R., Cascio, D., Popov, D., Riekel, C., and Eisenberg, D. (2008). Atomic structure of the cross‐β spine of islet amyloid polypeptide (amylin). Protein Sci. 17: 1467–1474, https://doi.org/10.1110/ps.036509.108.Suche in Google Scholar PubMed PubMed Central
Wimalawansa, S.J. (1997). Amylin, calcitonin gene-related peptide, calcitonin, and adrenomedullin: a peptide superfamily. Crit. Rev. Neurobiol. 11, https://doi.org/10.1615/critrevneurobiol.v11.i2-3.40.Suche in Google Scholar PubMed
Wookey, P.J., Cao, Z., and Cooper, M.E. (1998). Interaction of the renal amylin and renin-angiotensin systems in animal models of diabetes and hypertension. Miner. Electrolyte Metab. 24: 389–399, https://doi.org/10.1159/000057400.Suche in Google Scholar PubMed
Yang, F. (2014). Amylin in vasodilation, energy expenditure and inflammation. Front. Biosci. 19: 936–944, https://doi.org/10.2741/4258.Suche in Google Scholar PubMed
Zhang, S., Liu, H., Yu, H., and Cooper, G.J. (2008). Fas-associated death receptor signaling evoked by human amylin in islet β-cells. Diabetes 57: 348–356, https://doi.org/10.2337/db07-0849.Suche in Google Scholar PubMed
Zhang, X., St.Clair, J.R., London, E., and Raleigh, D.P. (2017). Islet amyloid polypeptide membrane interactions: effects of membrane composition. Biochemistry 56: 376–390, https://doi.org/10.1021/acs.biochem.6b01016.Suche in Google Scholar PubMed PubMed Central
Zhang, X.X., Pan, Y.H., Huang, Y.M., and Zhao, H.L. (2016). Neuroendocrine hormone amylin in diabetes. World J. Diabetes 7: 189, https://doi.org/10.4239/wjd.v7.i9.189.Suche in Google Scholar PubMed PubMed Central
Zimin, A.V., Delcher, A.L., Florea, L., Kelley, D.R., Schatz, M.C., Puiu, D., Hanrahan, F., Pertea, G., Van Tassell, C.P., Sonstegard, T.S., et al. (2009). A whole-genome assembly of the domestic cow. Biol. 10: R42, https://doi.org/10.1186/gb-2009-10-4-r42.Suche in Google Scholar PubMed PubMed Central
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Reviews
- Expansion and inflammation of white adipose tissue - focusing on adipocyte progenitors
- Human islet amyloid polypeptide (hIAPP) - a curse in type II diabetes mellitus: insights from structure and toxicity studies
- Research Articles
- Protein Structure and Function
- Morphological dependent effect of cell-free formed supramolecular fibronectin on cellular activities
- Computational study for suppression of CD25/IL-2 interaction
- Cell Biology and Signaling
- Myricetin protects pancreatic β-cells from human islet amyloid polypeptide (hIAPP) induced cytotoxicity and restores islet function
- ADAM8 affects glioblastoma progression by regulating osteopontin-mediated angiogenesis
- PCAT1 induced by transcription factor YY1 promotes cholangiocarcinoma proliferation, migration and invasion by sponging miR-216a-3p to up-regulate oncogene BCL3
Artikel in diesem Heft
- Frontmatter
- Reviews
- Expansion and inflammation of white adipose tissue - focusing on adipocyte progenitors
- Human islet amyloid polypeptide (hIAPP) - a curse in type II diabetes mellitus: insights from structure and toxicity studies
- Research Articles
- Protein Structure and Function
- Morphological dependent effect of cell-free formed supramolecular fibronectin on cellular activities
- Computational study for suppression of CD25/IL-2 interaction
- Cell Biology and Signaling
- Myricetin protects pancreatic β-cells from human islet amyloid polypeptide (hIAPP) induced cytotoxicity and restores islet function
- ADAM8 affects glioblastoma progression by regulating osteopontin-mediated angiogenesis
- PCAT1 induced by transcription factor YY1 promotes cholangiocarcinoma proliferation, migration and invasion by sponging miR-216a-3p to up-regulate oncogene BCL3