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Abstract: Intermediate filaments (nanofilaments) have
many functions, especially in response to cellular stress.
Mice lacking vimentin (Vim~-) display phenotypes reflect-
ing reduced levels of cell activation and ability to counter-
act stress, for example, decreased reactivity of astrocytes
after neurotrauma, decreased migration of astrocytes and
fibroblasts, attenuated inflammation and fibrosis in lung
injury, delayed wound healing, impaired vascular adapta-
tion to nephrectomy, impaired transendothelial migration
of lymphocytes and attenuated atherosclerosis. To address
the role of vimentin in fat accumulation, we assessed the
body weight and fat by dual-energy X-ray absorptiometry
(DEXA) in Vim”- and matched wildtype (WT) mice. While
the weight of 1.5-month-old Vim~- and WT mice was com-
parable, Vim~- mice showed decreased body weight at 3.5,
5.5 and 8.5 months (males by 19-22%, females by 18-29%).
At 8.5 months, Vim~~ males and females had less body fat
compared to WT mice (a decrease by 24%, p<0.05, and
33%, p<0.0001, respectively). The body mass index in
8.5 months old Vim~- mice was lower in males (6.8 vs. 7.8,
p<0.005) and females (6.0 vs. 7.7, p<0.0001) despite the
slightly lower body length of Vim~~ mice. Increased mor-
tality was observed in adult Vim”- males. We conclude
that vimentin is required for the normal accumulation of
body fat.
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Introduction

The composition of cytoplasmic intermediate filaments
(known also as nanofilaments), which consist of interme-
diate filament proteins, shows remarkable developmental
and cell-type specificity, moreover, within a given cell type,
an activation stage specificity is often reflected in the com-
position of intermediate filaments and appears in various
pathophysiological situations, in particular those con-
nected with cellular stress (Pekny and Lane, 2007; Toivola
etal., 2010).

Vimentin is an intermediate filament protein
expressed in a number of cell types of mesodermal and
ectodermal origin. Mice lacking vimentin (Vim~-) survive
into adulthood (Colucci-Guyon et al., 1994) and display
a remarkable range of phenotypes, many of which
reflect reduced levels of cell activation and reduced
ability to counteract stress. Interestingly, depending
on the context, these cell activation-modulating phe-
notypes can have either negative or positive effects,
and they have been guiding our molecular and cellular
understanding of the function of cytoplasmic intermedi-
ate filaments.

Vimentin is one of the main intermediate filament
proteins in astrocytes, cells that control many functions
of the central nervous system (CNS) in health and disease
(Pekny and Pekna, 2014; Pekny et al., 2016, 2018), and
Vim~- mice show decreased reactivity of astrocytes after
neurotrauma (Wilhelmsson et al., 2004), Vim - astrocytes
exhibit decreased migratory speed (Lepekhin et al., 2001),
and when on a GFAP”/- background [and hence having
astrocytes completely devoid of cytoplasmic intermedi-
ate filaments (Eliasson et al., 1999; Pekny et al., 1999)],
the GFAP/-Vim~- mice show slower wound healing after
brain or spinal cord trauma (Pekny et al., 1999; Wil-
helmsson et al., 2004), lower resistance of the CNS to
mechanical stress (Lundkvist et al., 2004; Verardo et al.,
2008), ischemic damage (Ding et al., 1998; Li et al., 2008;
de Pablo et al., 2013; Wunderlich et al., 2015), or altered
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astrocyte response to neurodegeneration and facilitated
progression of Alzheimer’s or Batten disease (Macauley
et al., 2011; Kraft et al., 2013; Kamphuis et al., 2015). On
the other hand, the absence of cytoplasmic intermediate
filaments in astrocytes in GFAP/-Vim~- mice results in
increased basal (Larsson et al., 2004; Wilhelmsson et al.,
2012), post-ischemic (Jarlestedt et al., 2010) and post-
traumatic (Wilhelmsson et al., 2012) neurogenesis, leads
to improved axonal and synaptic regeneration after neu-
rotrauma (Menet et al., 2003; Wilhelmsson et al., 2004;
Cho et al., 2005), and reduces the graft-induced reactive
gliosis and improves the outcome of neural grafts and
neural stem cell transplantations (Kinouchi et al., 2003;
Widestrand et al., 2007).

Vimentin is expressed in many cells outside the CNS
and vimentin ablation in mice leads to several revealing
phenotypes. Vim~~ mice showed impaired transendothe-
lial migration of lymphocytes (Nieminen et al., 2006)
and delayed angiogenesis during embryonic devel-
opment (Antfolk et al., 2017). Vim~- fibroblasts show
decreased stiffness, cell resilience and migratory capac-
ity, which results in a slower migration into the wound
site and delayed wound healing in Vim~~ embryos (Eckes
et al., 1998, 2000). It was proposed that vimentin affects
the wound healing and re-epithelialization via TGF-B1-
Slug signaling that controls fibroblast proliferation and
keratinocyte differentiation (Cheng et al., 2016).

The interesting findings of attenuated inflammation,
fibrosis and improved survival in response to acute lung
injury in Vim~~ mice (dos Santos et al., 2015) suggest that
a reduced level of cell activation and reactivity as a con-
sequence of vimentin absence may in certain contexts be
advantageous and help to identify maladaptive cell acti-
vation responses in specific diseases. Another mechanism
seems to increase the resistance of Vim~- mice to bacterial
infection: increased production of reactive oxygen species
and nitric oxide by Vim~- phagocytes leads to more effi-
cient bacterial killing and better control of Escherichia coli
peritonitis and to decreased extravasation of intestinal
bacteria in dextran sodium sulfate-induced colitis (Mor-
Vaknin et al., 2013).

Vim7~ mice exhibit impaired vascular adaptation
to partial nephrectomy, which is normally followed by
immediate and sustained vasodilation of the renal vas-
cular system allowing survival of wildtype (WT) mice but
results in a renal failure and death in Vim~~ mice (Terzi
et al., 1997). This lethality was rescued by the admin-
istration of endothelin receptor antagonist implying
that vimentin modulates vascular tone, possibly via the
endothelin-nitric oxide axis (Terzi et al., 1997; Mor-Vaknin
et al., 2013).
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Vimentin in adipocytes forms a scaffold around
lipid droplets (Franke et al., 1987; Heid et al., 2014). We
recently demonstrated that vimentin deficiency confers
partial resistance to atherosclerosis (Haversen et al.,
2018) induced either by transplantation of Vim~/- bone
marrow to lethally irradiated mice deficient for low-
density lipoprotein receptor or by infecting Vim~~ mice
with the PCSK9 virus (Bjorklund et al., 2014), in both
cases also fed an atherogenic diet. Vim”- macrophages
showed increased expression of markers of oxidative
stress and higher secretion of proinflammatory cytokines
despite decreased subendothelial accumulation of lipids
in the aortic wall (Haversen et al., 2018). Prompted by
these findings and by the fact that vimentin was shown
to affect lipolysis (Shen et al., 2010) and that vimen-
tin absence resulted in smaller adipocytes (Shen et al.,
2010) and lipid droplets (Shen et al., 2012), here we com-
pared the body weight and the amount of body fat tissue
between Vim~- and WT mice kept on a standard diet. We
report that as they age, Vim~~ mice put on progressively
less body weight compared to their WT controls and that
this difference is largely due to a lower accumulation of
body fat.

Results

Adult Vim~- mice kept on a standard diet
exhibit lower body weight and Vim~- males
have increased mortality

We followed the body weight over time in Vim~”- and WT
mice, kept on a standard diet, both males and females
(mixed C57BL/6-129Sv-12901a genetic background), start-
ing at the age of 45 days (Figure 1A and B). While at 45 days
of age the body weight of Vim”- and WT mice did not
differ, at 3.5, 5.5 and 8.5 months of age, both Vim~- males
and females had lower body weight compared to WT con-
trols. In a separate experimental cohort, we investigated
mice on a pure C57BL/6 genetic background, and we also
detected reduced body weight of Vim~- compared to WT
mice (Figure 1C). Interestingly, we observed an increased
mortality in Vim~- males (Figure 1D). At 8.5 months of
age, 38% of the initial group of Vim~~ males (six out of
16) had died, compared to 7% of the WT males (one out
of 15). There were no deaths in the female groups (Figure
1D). Thus, the Vim~~ mice exhibit reduced age-related
increase in body weight and Vim~~ males show increased
mortality.
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Figure 1: The body weight of Vim~~ mice is lower than of wildtype (WT) mice.

The growth curves of male (A) and female (B) mice showed decreased body weight of Vim~- compared to WT mice from the age of 3.5 months
and onwards, when on mixed genetic background (C57BL/6-129Sv-1290la). The difference in body weight between Vim~-and WT mice was
present also in males and females on pure C57BL/6 genetic background (C, n=11-36 mice per group). The mortality of Vim~- males up to
the age of 8.5 months was increased compared to WT males (D; n=15 and 16 for WT and Vim~- males, respectively, n=15 and 14 for WT

and Vim~- females, respectively). **p <0.01; ***p < 0.001; ****p < 0.0001 by two-way ANOVA repeated measures followed by Sidak’s post
hoc test (A and B), by two-tailed Mann-Whitney test (C), and by binominal y? test (D). Means + SEM and exact p-values for data in A-D are

presented in Table S1in the online supplementary material.

Vim~/~ mice kept on a standard diet
accumulate less fat

To address a possible connection between the reduced
body weight of Vim~~ mice and fat accumulation, we
used dual-energy X-ray absorptiometry (DEXA) to deter-
mine the amount of body fat as well as the body length
in 8.5-month-old mice on a mixed C57BL/6-129Sv-1290la
genetic background. Both male and female Vim~/- mice
had a shorter body length compared to WT (Figure 2A).
The calculated body mass index (BMI), that relates body
weight to body length, also showed lower values for both
Vim~7- males and females (Figure 2B). DEXA imaging

revealed a clear reduction of fat tissue in both Vim~/-
males and females compared to WT controls (Figure 2C).
These data show that the Vim~- mice are leaner because
they accumulate less fat tissue than WT mice.

Discussion

Here, we report that Vim~- mice have lower body weight and
show decreased accumulation of body fat compared to WT
mice. Although Vim~~ mice have been extensively studied
for the last 25 years, this important phenotype has not yet
been reported. One reason might be that the difference in
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Figure 2: Vim~- mice show shorter body length, lower BMI and
reduced amount of body fat compared to wildtype (WT) mice.

Eight and half-month-old Vim~- mice on mixed genetic background
(C57BL/6-129Sv-1290la) showed shorter body length compared to
WT mice (A), as well as lower BMI (B). DEXA analysis of fat tissue
content showed reduced fat accumulation in Vim~- compared to

WT mice (C). n=10-15 mice per group (A-C); *p<0.05; **p<0.01;
***%p < 0.0001 by two-tailed Mann-Whitney test (A-C). Means + SEM
and exact p-values for data in A—C are presented in Table S1in the
online supplementary material.

body weight and accumulation of body fat is not present in
young adult mice and only appears at the age when the rate
of fat accumulation normally increases. Also, this pheno-
type might depend on the amount and composition of food.
Indeed, we recently demonstrated that 4-month-old Vim~-
and WT mice in which atherosclerosis was induced by a
combination of infection with PCSK9 virus and atherogenic
diet had comparable body weight (Haversen et al., 2018).
Vimentin is the only intermediate filament protein
expressed in preadipocytes and based on its association
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with lipid globules, vimentin was proposed to play a role
in adipogenesis (Franke et al., 1987). The findings that
Vim~- adipocytes (Shen et al., 2010) and lipid droplets in
the Vim~- adrenals are smaller (Shen et al., 2012), provide
further support to the contention that vimentin partici-
pates in adipogenesis through lipid droplet formation or
homeostasis. Our observation of lower body weight and
reduced body fat accumulation with age are fully in line
with such a conclusion.

Energy from the fat tissue is utilized via lipolysis, a
process controlled mainly by the sympathetic nervous
system and insulin, and hormone-sensitive lipase is the
main enzyme responsible for the mobilization of free
fatty acids from fat tissue and facilitates the transfer of
cholesterol to mitochondria (Shen et al., 2003). Vimentin
was shown to interact with hormone-sensitive lipase in
a hormonally-dependent manner and facilitate lipolysis
(Shen et al., 2010). Vim~- mice show decreased movement
of cholesterol to mitochondria in adrenals and ovaries,
resulting in the decreased production of corticosterone
and progesterone (Shen et al., 2012). Vimentin was also
shown to be an interacting partner of stimulated (3-
adrenergic receptors, important for ERK activation and
stimulation of lipolysis (Kumar et al., 2007). These data
point to the importance of vimentin in the mobilization of
cholesterol from lipid droplets in the cytoplasm to mito-
chondria for steroidogenesis and for maintaining lipid
droplet homeostasis in general (Shen et al., 2012). Thus,
the role of vimentin in lipid homeostasis is likely complex
and warrants further investigation.

Another finding in this study is the increased mortal-
ity detected among adult Vim”- males but not females.
Interestingly, Vim~~ mice were reported to have decreased
production of corticosterone, which in rodents is the main
glucocorticoid involved in the regulation of energy, immune
reactions and stress responses (Shen et al., 2012), so this
apparent sudden death affecting some adult or aging Vim~-
males might reflect an increased sensitivity of the male sex
to a particular stress that remains to be identified.

In conclusion, we show that compared to WT, Vim~~
adult mice put on less body weight and accumulate less
body fat, and Vim”/- males show increased mortality
throughout adult life.

Materials and methods
Mice

Vim~- and WT mice were on a C57BL/6-129Sv-1290la mixed genetic
background. A single colony of mice was used for all the experiments,
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vimentin heterozygotes were used for backcrosses, and the experi-
mental groups were generated from littermates or within the next gen-
eration. Additional groups of Vim~- and WT mice on a pure C57BL/6
genetic background were also used for assessments of body weight
as presented in Figure 1C. Genotypes were determined by polymerase
chain reaction (PCR) as described (Colucci-Guyon, 1994). Mice were
housed in the barrier facility of the University of Gothenburg and
held on a standard chow diet with free access to water. Experiments
were performed according to guidelines approved by Gothenburg
Ethics Committee.

Growth assessment and body composition analysis

The body weight of the mice was repeatedly determined at 1.5, 3.5, 5.5
and 8.5 months of age (with the precision of +0.05 g). At 8.5 months of
age, the mice were anesthetized using isoflurane (Baxter, Deerfield,
IL, USA) and the total body fat content as well as the body length
were assessed by scanning by DEXA using Lunar PIXImus (GE Lunar
Corp., Chicago, IL, USA). BMI was calculated as kilograms of body
weight per (meter body length)2.

Statistical analysis

Prism 7.0 (GraphPad Software, San Diego, CA, USA) was used for sta-
tistical analyses of the data. The data are presented as a mean + stand-
ard error of the mean (SEM). After testing for normality, the data were
analyzed by two-way analysis of variance (ANOVA) repeated meas-
ures followed by Sidak’s post-hoc test, two-tailed Mann-Whitney test
or binominal chi-square (y?) test as indicated in the figure legends.
Data are presented graphically in Figures 1 and 2, and in Table S1 in
the online Supplementary material. Differences were regarded statis-
tically significant at p <0.05.
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