9

Ulrika Wilhelmsson, Pia Stillemark-Billton, Jan Borén and Milos Pekny*

Vimentin is required for normal accumulation of body fat

https://doi.org/10.1515/hsz-2019-0170 Received February 25, 2019; accepted April 11, 2019; previously published online April 17, 2019

Abstract: Intermediate filaments (nanofilaments) have many functions, especially in response to cellular stress. Mice lacking vimentin (Vim-/-) display phenotypes reflecting reduced levels of cell activation and ability to counteract stress, for example, decreased reactivity of astrocytes after neurotrauma, decreased migration of astrocytes and fibroblasts, attenuated inflammation and fibrosis in lung injury, delayed wound healing, impaired vascular adaptation to nephrectomy, impaired transendothelial migration of lymphocytes and attenuated atherosclerosis. To address the role of vimentin in fat accumulation, we assessed the body weight and fat by dual-energy X-ray absorptiometry (DEXA) in *Vim*^{-/-} and matched wildtype (WT) mice. While the weight of 1.5-month-old Vim-/- and WT mice was comparable, Vim^{-/-} mice showed decreased body weight at 3.5, 5.5 and 8.5 months (males by 19–22%, females by 18–29%). At 8.5 months, Vim^{-/-} males and females had less body fat compared to WT mice (a decrease by 24%, p < 0.05, and 33%, p < 0.0001, respectively). The body mass index in 8.5 months old $Vim^{-/-}$ mice was lower in males (6.8 vs. 7.8, p < 0.005) and females (6.0 vs. 7.7, p < 0.0001) despite the slightly lower body length of Vim-/- mice. Increased mortality was observed in adult Vim-/- males. We conclude that vimentin is required for the normal accumulation of body fat.

Keywords: body mass index; body weight; cellular stress; intermediate filaments; nanofilaments; stress proteins.

Introduction

The composition of cytoplasmic intermediate filaments (known also as nanofilaments), which consist of intermediate filament proteins, shows remarkable developmental and cell-type specificity, moreover, within a given cell type, an activation stage specificity is often reflected in the composition of intermediate filaments and appears in various pathophysiological situations, in particular those connected with cellular stress (Pekny and Lane, 2007; Toivola et al., 2010).

Vimentin is an intermediate filament protein expressed in a number of cell types of mesodermal and ectodermal origin. Mice lacking vimentin (*Vim*-/-) survive into adulthood (Colucci-Guyon et al., 1994) and display a remarkable range of phenotypes, many of which reflect reduced levels of cell activation and reduced ability to counteract stress. Interestingly, depending on the context, these cell activation-modulating phenotypes can have either negative or positive effects, and they have been guiding our molecular and cellular understanding of the function of cytoplasmic intermediate filaments.

Vimentin is one of the main intermediate filament proteins in astrocytes, cells that control many functions of the central nervous system (CNS) in health and disease (Pekny and Pekna, 2014; Pekny et al., 2016, 2018), and Vim-/- mice show decreased reactivity of astrocytes after neurotrauma (Wilhelmsson et al., 2004), *Vim*-/- astrocytes exhibit decreased migratory speed (Lepekhin et al., 2001), and when on a GFAP-/- background [and hence having astrocytes completely devoid of cytoplasmic intermediate filaments (Eliasson et al., 1999; Pekny et al., 1999)], the GFAP-/-Vim-/- mice show slower wound healing after brain or spinal cord trauma (Pekny et al., 1999; Wilhelmsson et al., 2004), lower resistance of the CNS to mechanical stress (Lundkvist et al., 2004; Verardo et al., 2008), ischemic damage (Ding et al., 1998; Li et al., 2008; de Pablo et al., 2013; Wunderlich et al., 2015), or altered

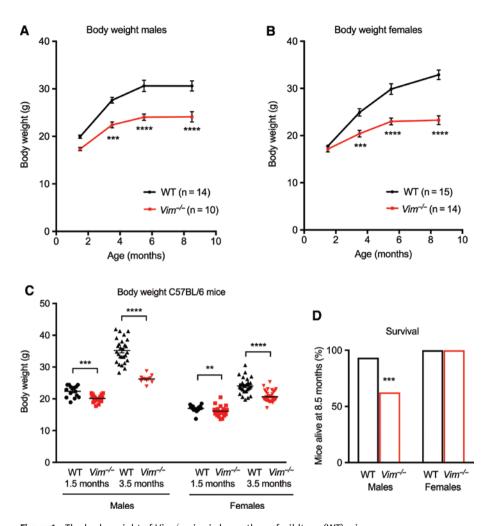
^{*}Corresponding author: Milos Pekny, Laboratory of Astrocyte
Biology and CNS Regeneration, Center for Brain Repair, Department
of Clinical Neuroscience, Institute of Neuroscience and Physiology,
Sahlgrenska Academy at the University of Gothenburg, Box 440,
S-40530 Gothenburg, Sweden; Florey Institute of Neuroscience and
Mental Health, Parkville, VIC, Australia; and University of Newcastle,
Newcastle, NSW, Australia, e-mail: Milos.Pekny@neuro.gu.se
Ulrika Wilhelmsson: Laboratory of Astrocyte Biology and CNS
Regeneration, Center for Brain Repair, Department of Clinical
Neuroscience, Institute of Neuroscience and Physiology,
Sahlgrenska Academy at the University of Gothenburg, Box 440,
S-40530 Gothenburg, Sweden

Pia Stillemark-Billton and Jan Borén: Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy at the University of Gothenburg, S-40530 Gothenburg, Sweden

astrocyte response to neurodegeneration and facilitated progression of Alzheimer's or Batten disease (Macauley et al., 2011; Kraft et al., 2013; Kamphuis et al., 2015). On the other hand, the absence of cytoplasmic intermediate filaments in astrocytes in GFAP-/-Vim-/- mice results in increased basal (Larsson et al., 2004; Wilhelmsson et al., 2012), post-ischemic (Jarlestedt et al., 2010) and posttraumatic (Wilhelmsson et al., 2012) neurogenesis, leads to improved axonal and synaptic regeneration after neurotrauma (Menet et al., 2003; Wilhelmsson et al., 2004; Cho et al., 2005), and reduces the graft-induced reactive gliosis and improves the outcome of neural grafts and neural stem cell transplantations (Kinouchi et al., 2003; Widestrand et al., 2007).

Vimentin is expressed in many cells outside the CNS and vimentin ablation in mice leads to several revealing phenotypes. Vim-/- mice showed impaired transendothelial migration of lymphocytes (Nieminen et al., 2006) and delayed angiogenesis during embryonic development (Antfolk et al., 2017). Vim-/- fibroblasts show decreased stiffness, cell resilience and migratory capacity, which results in a slower migration into the wound site and delayed wound healing in Vim-/- embryos (Eckes et al., 1998, 2000). It was proposed that vimentin affects the wound healing and re-epithelialization via TGF-\(\beta\)1-Slug signaling that controls fibroblast proliferation and keratinocyte differentiation (Cheng et al., 2016).

The interesting findings of attenuated inflammation, fibrosis and improved survival in response to acute lung injury in Vim^{-/-} mice (dos Santos et al., 2015) suggest that a reduced level of cell activation and reactivity as a consequence of vimentin absence may in certain contexts be advantageous and help to identify maladaptive cell activation responses in specific diseases. Another mechanism seems to increase the resistance of *Vim*^{-/-} mice to bacterial infection: increased production of reactive oxygen species and nitric oxide by Vim^{-/-} phagocytes leads to more efficient bacterial killing and better control of Escherichia coli peritonitis and to decreased extravasation of intestinal bacteria in dextran sodium sulfate-induced colitis (Mor-Vaknin et al., 2013).

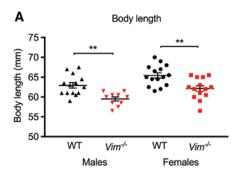

Vim-/- mice exhibit impaired vascular adaptation to partial nephrectomy, which is normally followed by immediate and sustained vasodilation of the renal vascular system allowing survival of wildtype (WT) mice but results in a renal failure and death in Vim-/- mice (Terzi et al., 1997). This lethality was rescued by the administration of endothelin receptor antagonist implying that vimentin modulates vascular tone, possibly via the endothelin-nitric oxide axis (Terzi et al., 1997; Mor-Vaknin et al., 2013).

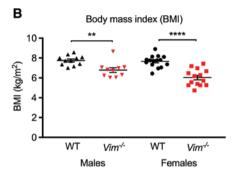
Vimentin in adipocytes forms a scaffold around lipid droplets (Franke et al., 1987; Heid et al., 2014). We recently demonstrated that vimentin deficiency confers partial resistance to atherosclerosis (Haversen et al., 2018) induced either by transplantation of Vim^{-/-} bone marrow to lethally irradiated mice deficient for lowdensity lipoprotein receptor or by infecting Vim-/- mice with the PCSK9 virus (Bjorklund et al., 2014), in both cases also fed an atherogenic diet. Vim-/- macrophages showed increased expression of markers of oxidative stress and higher secretion of proinflammatory cytokines despite decreased subendothelial accumulation of lipids in the aortic wall (Haversen et al., 2018). Prompted by these findings and by the fact that vimentin was shown to affect lipolysis (Shen et al., 2010) and that vimentin absence resulted in smaller adipocytes (Shen et al., 2010) and lipid droplets (Shen et al., 2012), here we compared the body weight and the amount of body fat tissue between Vim^{-/-} and WT mice kept on a standard diet. We report that as they age, Vim-/- mice put on progressively less body weight compared to their WT controls and that this difference is largely due to a lower accumulation of body fat.

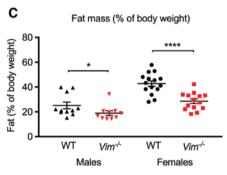
Results

Adult Vim-/- mice kept on a standard diet exhibit lower body weight and Vim-/- males have increased mortality

We followed the body weight over time in *Vim*^{-/-} and WT mice, kept on a standard diet, both males and females (mixed C57BL/6-129Sv-129Ola genetic background), starting at the age of 45 days (Figure 1A and B). While at 45 days of age the body weight of Vim^{-/-} and WT mice did not differ, at 3.5, 5.5 and 8.5 months of age, both Vim-/- males and females had lower body weight compared to WT controls. In a separate experimental cohort, we investigated mice on a pure C57BL/6 genetic background, and we also detected reduced body weight of Vim-/- compared to WT mice (Figure 1C). Interestingly, we observed an increased mortality in Vim^{-/-} males (Figure 1D). At 8.5 months of age, 38% of the initial group of Vim-/- males (six out of 16) had died, compared to 7% of the WT males (one out of 15). There were no deaths in the female groups (Figure 1D). Thus, the Vim-/- mice exhibit reduced age-related increase in body weight and *Vim*^{-/-} males show increased mortality.


Figure 1: The body weight of *Vim*^{-/-} mice is lower than of wildtype (WT) mice. The growth curves of male (A) and female (B) mice showed decreased body weight of $Vim^{-/-}$ compared to WT mice from the age of 3.5 months and onwards, when on mixed genetic background (C57BL/6-129Sv-129Ola). The difference in body weight between Vim-/- and WT mice was present also in males and females on pure C57BL/6 genetic background (C, n = 11-36 mice per group). The mortality of Vim-/- males up to the age of 8.5 months was increased compared to WT males (D; n = 15 and 16 for WT and $Vim^{-/-}$ males, respectively, n = 15 and 14 for WT and $Vim^{-/-}$ females, respectively). **p < 0.01; ***p < 0.001; ****p < 0.0001 by two-way ANOVA repeated measures followed by Sidak's post hoc test (A and B), by two-tailed Mann-Whitney test (C), and by binominal χ^2 test (D). Means \pm SEM and exact p-values for data in A–D are presented in Table S1 in the online supplementary material.


Vim-/- mice kept on a standard diet accumulate less fat


To address a possible connection between the reduced body weight of Vim-/- mice and fat accumulation, we used dual-energy X-ray absorptiometry (DEXA) to determine the amount of body fat as well as the body length in 8.5-month-old mice on a mixed C57BL/6-129Sv-129Ola genetic background. Both male and female Vim^{-/-} mice had a shorter body length compared to WT (Figure 2A). The calculated body mass index (BMI), that relates body weight to body length, also showed lower values for both Vim-/- males and females (Figure 2B). DEXA imaging revealed a clear reduction of fat tissue in both Vim-/males and females compared to WT controls (Figure 2C). These data show that the Vim-/- mice are leaner because they accumulate less fat tissue than WT mice.

Discussion

Here, we report that Vim^{-/-} mice have lower body weight and show decreased accumulation of body fat compared to WT mice. Although Vim-/- mice have been extensively studied for the last 25 years, this important phenotype has not yet been reported. One reason might be that the difference in

Figure 2: $Vim^{-/-}$ mice show shorter body length, lower BMI and reduced amount of body fat compared to wildtype (WT) mice. Eight and half-month-old $Vim^{-/-}$ mice on mixed genetic background (C57BL/6-129Sv-129Ola) showed shorter body length compared to WT mice (A), as well as lower BMI (B). DEXA analysis of fat tissue content showed reduced fat accumulation in $Vim^{-/-}$ compared to WT mice (C). n = 10 - 15 mice per group (A-C); *p < 0.05; **p < 0.01; ****p < 0.0001 by two-tailed Mann-Whitney test (A-C). Means \pm SEM and exact p-values for data in A-C are presented in Table S1 in the online supplementary material.

body weight and accumulation of body fat is not present in young adult mice and only appears at the age when the rate of fat accumulation normally increases. Also, this phenotype might depend on the amount and composition of food. Indeed, we recently demonstrated that 4-month-old *Vim*-/- and WT mice in which atherosclerosis was induced by a combination of infection with PCSK9 virus and atherogenic diet had comparable body weight (Haversen et al., 2018).

Vimentin is the only intermediate filament protein expressed in preadipocytes and based on its association

with lipid globules, vimentin was proposed to play a role in adipogenesis (Franke et al., 1987). The findings that $Vim^{-/-}$ adipocytes (Shen et al., 2010) and lipid droplets in the $Vim^{-/-}$ adrenals are smaller (Shen et al., 2012), provide further support to the contention that vimentin participates in adipogenesis through lipid droplet formation or homeostasis. Our observation of lower body weight and reduced body fat accumulation with age are fully in line with such a conclusion.

Energy from the fat tissue is utilized via lipolysis, a process controlled mainly by the sympathetic nervous system and insulin, and hormone-sensitive lipase is the main enzyme responsible for the mobilization of free fatty acids from fat tissue and facilitates the transfer of cholesterol to mitochondria (Shen et al., 2003). Vimentin was shown to interact with hormone-sensitive lipase in a hormonally-dependent manner and facilitate lipolysis (Shen et al., 2010). Vim^{-/-} mice show decreased movement of cholesterol to mitochondria in adrenals and ovaries, resulting in the decreased production of corticosterone and progesterone (Shen et al., 2012). Vimentin was also shown to be an interacting partner of stimulated β3adrenergic receptors, important for ERK activation and stimulation of lipolysis (Kumar et al., 2007). These data point to the importance of vimentin in the mobilization of cholesterol from lipid droplets in the cytoplasm to mitochondria for steroidogenesis and for maintaining lipid droplet homeostasis in general (Shen et al., 2012). Thus, the role of vimentin in lipid homeostasis is likely complex and warrants further investigation.

Another finding in this study is the increased mortality detected among adult *Vim*-/- males but not females. Interestingly, *Vim*-/- mice were reported to have decreased production of corticosterone, which in rodents is the main glucocorticoid involved in the regulation of energy, immune reactions and stress responses (Shen et al., 2012), so this apparent sudden death affecting some adult or aging *Vim*-/- males might reflect an increased sensitivity of the male sex to a particular stress that remains to be identified.

In conclusion, we show that compared to WT, $Vim^{-/-}$ adult mice put on less body weight and accumulate less body fat, and $Vim^{-/-}$ males show increased mortality throughout adult life.

Materials and methods

Mice

Vim-/- and WT mice were on a C57BL/6-129Sv-129Ola mixed genetic background. A single colony of mice was used for all the experiments,

vimentin heterozygotes were used for backcrosses, and the experimental groups were generated from littermates or within the next generation. Additional groups of Vim^{-/-} and WT mice on a pure C57BL/6 genetic background were also used for assessments of body weight as presented in Figure 1C. Genotypes were determined by polymerase chain reaction (PCR) as described (Colucci-Guyon, 1994). Mice were housed in the barrier facility of the University of Gothenburg and held on a standard chow diet with free access to water. Experiments were performed according to guidelines approved by Gothenburg Ethics Committee

Growth assessment and body composition analysis

The body weight of the mice was repeatedly determined at 1.5, 3.5, 5.5 and 8.5 months of age (with the precision of ± 0.05 g). At 8.5 months of age, the mice were anesthetized using isoflurane (Baxter, Deerfield, IL, USA) and the total body fat content as well as the body length were assessed by scanning by DEXA using Lunar PIXImus (GE Lunar Corp., Chicago, IL, USA). BMI was calculated as kilograms of body weight per (meter body length)2.

Statistical analysis

Prism 7.0 (GraphPad Software, San Diego, CA, USA) was used for statistical analyses of the data. The data are presented as a mean ± standard error of the mean (SEM). After testing for normality, the data were analyzed by two-way analysis of variance (ANOVA) repeated measures followed by Sidak's post-hoc test, two-tailed Mann-Whitney test or binominal chi-square (χ^2) test as indicated in the figure legends. Data are presented graphically in Figures 1 and 2, and in Table S1 in the online Supplementary material. Differences were regarded statistically significant at p < 0.05.

Acknowledgments: The authors wish to thank Dr. Marcela Pekna for her comments on the manuscript. This work was supported by Swedish Medical Research Council (2017-02255), ALF Gothenburg (146051), AFA Research Foundation, Söderbergs Foundations, Sten A. Olsson Foundation for Research and Culture, Hjärnfonden, Hagströmer's Foundation Millennium, Amlöv's Foundation, E. Jacobson's Donation Fund, VINNOVA, the Swedish Stroke Foundation, NanoNet COST Action (BM1002), EuroCellNet COST Action, EU FP 7 Program EduGlia (237956), and EU FP 7 Program TargetBraIn (279017).

References

Antfolk, D., Sjoqvist, M., Cheng, F., Isoniemi, K., Duran, C.L., Rivero-Muller, A., Antila, C., Niemi, R., Landor, S., Bouten, C.V.C., et al. (2017). Selective regulation of Notch ligands during angiogenesis is mediated by vimentin. Proc. Natl. Acad. Sci. USA 114, E4574-E4581.

- Bjorklund, M.M., Hollensen, A.K., Hagensen, M.K., Dagnaes-Hansen, F., Christoffersen, C., Mikkelsen, J.G., and Bentzon, J.F. (2014). Induction of atherosclerosis in mice and hamsters without germline genetic engineering. Circ. Res. 114, 1684-1689.
- Cheng, F., Shen, Y., Mohanasundaram, P., Lindstrom, M., Ivaska, J., Ny, T., and Eriksson, J.E. (2016). Vimentin coordinates fibroblast proliferation and keratinocyte differentiation in wound healing via TGF-beta-Slug signaling. Proc. Natl. Acad. Sci. USA 113, E4320-4327.
- Cho, K.S., Yang, L., Lu, B., Feng Ma, H., Huang, X., Pekny, M., and Chen, D.F. (2005). Re-establishing the regenerative potential of central nervous system axons in postnatal mice. J. Cell Sci. 118, 863-872.
- Colucci-Guyon, E., Portier, M.M., Dunia, I., Paulin, D., Pournin, S., and Babinet, C. (1994). Mice lacking vimentin develop and reproduce without an obvious phenotype. Cell 79, 679-694.
- de Pablo, Y., Nilsson, M., Pekna, M., and Pekny, M. (2013). Intermediate filaments are important for astrocyte response to oxidative stress induced by oxygen-glucose deprivation and reperfusion. Histochem. Cell Biol. 140, 81-91.
- Ding, M., Eliasson, C., Betsholtz, C., Hamberger, A., and Pekny, M. (1998). Altered taurine release following hypotonic stress in astrocytes from mice deficient for GFAP and vimentin. Brain Res. Mol. Brain Res. 62, 77-81.
- dos Santos, G., Rogel, M.R., Baker, M.A., Troken, J.R., Urich, D., Morales-Nebreda, L., Sennello, J.A., Kutuzov, M.A., Sitikov, A., Davis, J.M., et al. (2015). Vimentin regulates activation of the NLRP3 inflammasome. Nat. Commun. 6, 6574.
- Eckes, B., Dogic, D., Colucci-Guyon, E., Wang, N., Maniotis, A., Ingber, D., Merckling, A., Langa, F., Aumailley, M., Delouvee, A., et al. (1998). Impaired mechanical stability, migration and contractile capacity in vimentin-deficient fibroblasts. J. Cell Sci. 111, 1897-1907.
- Eckes, B., Colucci-Guyon, E., Smola, H., Nodder, S., Babinet, C., Krieg, T., and Martin, P. (2000). Impaired wound healing in embryonic and adult mice lacking vimentin. J. Cell Sci. 113, 2455-2462.
- Eliasson, C., Sahlgren, C., Berthold, C.H., Stakeberg, J., Celis, J.E., Betsholtz, C., Eriksson, J.E., and Pekny, M. (1999). Intermediate filament protein partnership in astrocytes. J. Biol. Chem. 274, 23996-24006.
- Franke, W.W., Hergt, M., and Grund, C. (1987). Rearrangement of the vimentin cytoskeleton during adipose conversion: formation of an intermediate filament cage around lipid globules. Cell 49, 131-141.
- Haversen, L., Sundelin, J.P., Mardinoglu, A., Rutberg, M., Stahlman, M., Wilhelmsson, U., Hulten, L.M., Pekny, M., Fogelstrand, P., Bentzon, J.F., et al. (2018). Vimentin deficiency in macrophages induces increased oxidative stress and vascular inflammation but attenuates atherosclerosis in mice. Sci. Rep. 8, 16973.
- Heid, H., Rickelt, S., Zimbelmann, R., Winter, S., Schumacher, H., Dorflinger, Y., Kuhn, C., and Franke, W.W. (2014). On the formation of lipid droplets in human adipocytes: the organization of the perilipin-vimentin cortex. PLoS One 9, e90386.
- Jarlestedt, K., Rousset, C.I., Faiz, M., Wilhelmsson, U., Stahlberg, A., Sourkova, H., Pekna, M., Mallard, C., Hagberg, H., and Pekny, M. (2010). Attenuation of reactive gliosis does not affect infarct volume in neonatal hypoxic-ischemic brain injury in mice. PLoS One 5, e10397.

- Kamphuis, W., Kooijman, L., Orre, M., Stassen, O., Pekny, M., and Hol, E.M. (2015). GFAP and vimentin deficiency alters gene expression in astrocytes and microglia in wild-type mice and changes the transcriptional response of reactive glia in mouse model for Alzheimer's disease. Glia 63, 1036-1056.
- Kinouchi, R., Takeda, M., Yang, L., Wilhelmsson, U., Lundkvist, A., Pekny, M., and Chen, D.F. (2003). Robust neural integration from retinal transplants in mice deficient in GFAP and vimentin. Nat. Neurosci. 6, 863-868.
- Kraft, A.W., Hu, X., Yoon, H., Yan, P., Xiao, Q., Wang, Y., Gil, S.C., Brown, J., Wilhelmsson, U., Restivo, J.L., et al. (2013). Attenuating astrocyte activation accelerates plaque pathogenesis in APP/PS1 mice. FASEB J. 27, 187-198.
- Kumar, N., Robidoux, J., Daniel, K.W., Guzman, G., Floering, L.M., and Collins, S. (2007). Requirement of vimentin filament assembly for \(\beta \)-adrenergic receptor activation of ERK MAP kinase and lipolysis. J. Biol. Chem. 282, 9244-9250.
- Larsson, A., Wilhelmsson, U., Pekna, M., and Pekny, M. (2004). Increased cell proliferation and neurogenesis in the hippocampal dentate gyrus of old *GFAP*-/-Vim-/- mice. Neurochem. Res. 29, 2069-2073.
- Lepekhin, E.A., Eliasson, C., Berthold, C.H., Berezin, V., Bock, E., and Pekny, M. (2001). Intermediate filaments regulate astrocyte motility. J. Neurochem. 79, 617-625.
- Li, L., Lundkvist, A., Andersson, D., Wilhelmsson, U., Nagai, N., Pardo, A.C., Nodin, C., Stahlberg, A., Aprico, K., Larsson, K., et al. (2008). Protective role of reactive astrocytes in brain ischemia. J. Cereb. Blood Flow Metab. 28, 468-481.
- Lundkvist, A., Reichenbach, A., Betsholtz, C., Carmeliet, P., Wolburg, H., and Pekny, M. (2004). Under stress, the absence of intermediate filaments from Muller cells in the retina has structural and functional consequences. J. Cell Sci. 117, 3481-3488.
- Macauley, S.L., Pekny, M., and Sands, M.S. (2011). The role of attenuated astrocyte activation in infantile neuronal ceroid lipofuscinosis. J. Neurosci. 31, 15575-15585.
- Menet, V., Prieto, M., Privat, A., and Gimenez y Ribotta, M. (2003). Axonal plasticity and functional recovery after spinal cord injury in mice deficient in both glial fibrillary acidic protein and vimentin genes. Proc. Natl. Acad. Sci. USA 100, 8999-9004.
- Mor-Vaknin, N., Legendre, M., Yu, Y., Serezani, C.H., Garg, S.K., Jatzek, A., Swanson, M.D., Gonzalez-Hernandez, M.J., Teitz-Tennenbaum, S., Punturieri, A., et al. (2013). Murine colitis is mediated by vimentin. Sci. Rep. 3, 1045.
- Nieminen, M., Henttinen, T., Merinen, M., Marttila-Ichihara, F., Eriksson, J.E., and Jalkanen, S. (2006). Vimentin function in lymphocyte adhesion and transcellular migration. Nat. Cell Biol. 8, 156-162.
- Pekny, M. and Lane, E.B. (2007). Intermediate filaments and stress. Exp. Cell Res. 313, 2244-2254.
- Pekny, M. and Pekna, M. (2014). Astrocyte reactivity and reactive astrogliosis: costs and benefits. Physiol. Rev. 94, 1077-1098.
- Pekny, M., Johansson, C.B., Eliasson, C., Stakeberg, J., Wallen, A., Perlmann, T., Lendahl, U., Betsholtz, C., Berthold, C.H., and Frisen, J. (1999). Abnormal reaction to central nervous system injury in mice lacking glial fibrillary acidic protein and vimentin. J. Cell Biol. 145, 503-514.

- Pekny, M., Pekna, M., Messing, A., Steinhauser, C., Lee, J.M., Parpura, V., Hol, E.M., Sofroniew, M.V., and Verkhratsky, A. (2016). Astrocytes: a central element in neurological diseases. Acta Neuropathol. 131, 323-345.
- Pekny, M., Wilhelmsson, U., Tatlisumak, T., and Pekna, M. (2018). Astrocyte activation and reactive gliosis - a new target in stroke? Neurosci. Lett. 10.1016/j.neulet.2018.07.021.
- Shen, W.J., Patel, S., Natu, V., Hong, R., Wang, J., Azhar, S., and Kraemer, F.B. (2003). Interaction of hormone-sensitive lipase with steroidogenic acute regulatory protein: facilitation of cholesterol transfer in adrenal. J. Biol. Chem. 278, 43870-43876.
- Shen, W.J., Patel, S., Eriksson, J.E., and Kraemer, F.B. (2010). Vimentin is a functional partner of hormone sensitive lipase and facilitates lipolysis. I. Proteome. Res. 9, 1786-1794.
- Shen, W.J., Zaidi, S.K., Patel, S., Cortez, Y., Ueno, M., Azhar, R., Azhar, S., and Kraemer, F.B. (2012). Ablation of vimentin results in defective steroidogenesis. Endocrinology 153, 3249-3257.
- Terzi, F., Henrion, D., Colucci-Guyon, E., Federici, P., Babinet, C., Levy, B.I., Briand, P., and Friedlander, G. (1997). Reduction of renal mass is lethal in mice lacking vimentin. Role of endothelin-nitric oxide imbalance. J. Clin. Invest. 100, 1520-1528.
- Toivola, D.M., Strnad, P., Habtezion, A., and Omary, M.B. (2010). Intermediate filaments take the heat as stress proteins. Trends Cell Biol. 20, 79-91.
- Verardo, M.R., Lewis, G.P., Takeda, M., Linberg, K.A., Byun, J., Luna, G., Wilhelmsson, U., Pekny, M., Chen, D.F., and Fisher, S.K. (2008). Abnormal reactivity of muller cells after retinal detachment in mice deficient in GFAP and vimentin. Invest. Ophthalmol. Vis. Sci. 49, 3659-3665.
- Widestrand, A., Faijerson, J., Wilhelmsson, U., Smith, P.L., Li, L., Sihlbom, C., Eriksson, P.S., and Pekny, M. (2007). Increased neurogenesis and astrogenesis from neural progenitor cells grafted in the hippocampus of GFAP-/- Vim-/- mice. Stem Cells 25, 2619-2627.
- Wilhelmsson, U., Li, L., Pekna, M., Berthold, C.H., Blom, S., Eliasson, C., Renner, O., Bushong, E., Ellisman, M., Morgan, T.E., et al. (2004). Absence of glial fibrillary acidic protein and vimentin prevents hypertrophy of astrocytic processes and improves post-traumatic regeneration. J. Neurosci. 24, 5016-5021.
- Wilhelmsson, U., Faiz, M., de Pablo, Y., Sjoqvist, M., Andersson, D., Widestrand, A., Potokar, M., Stenovec, M., Smith, P.L., Shinjyo, N., et al. (2012). Astrocytes negatively regulate neurogenesis through the Jagged1-mediated Notch pathway. Stem Cells 30, 2320-2329.
- Wunderlich, K.A., Tanimoto, N., Grosche, A., Zrenner, E., Pekny, M., Reichenbach, A., Seeliger, M.W., Pannicke, T., and Perez, M.T. (2015). Retinal functional alterations in mice lacking intermediate filament proteins glial fibrillary acidic protein and vimentin. FASEB J. 29, 4815-4828.

Supplementary Material: The online version of this article offers supplementary material (https://doi.org/10.1515/hsz-2019-0170).