A single domain antibody against the Cys- and His-rich domain of PCSK9 and evolocumab exhibit different inhibition mechanisms in humanized PCSK9 mice
-
Rachid Essalmani
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a secreted protein that binds and escorts the low density lipoprotein receptor (LDLR) into the lysosomal degradation pathway. Prescribed monoclonal antibodies (mAbs) against PCSK9 prevent its binding to the LDLR, and result in ~60% lower LDL cholesterol (LDLc) levels. Although efficient, mAbs are expensive. Hence other PCSK9 inhibitors are needed. For screening purpose, we developed C57BL/6J mice expressing the human PCSK9 gene under the control of its own promoter, but lacking endogenous mouse PCSK9. All lines recapitulate the endogenous PCSK9 expression pattern. The Tg2 line that expresses physiological levels of human PCSK9 (hPCSK9) was selected to characterize the inhibitory properties of a previously reported single domain antibody (sdAb), PKF8-mFc, which binds the C-terminal domain of PCSK9. Upon intraveinous injection of 10 mg/kg, PKF8-mFc and the mAb evolocumab neutralized ~50% and 100% of the hPCSK9 impact on total cholesterol (TC) levels, respectively, but PKF8-mFc had a more sustained effect. PKF8-mFc barely affected hPCSK9 levels, whereas evolocumab promoted a 4-fold increase 3 days post-injection, suggesting very different inhibitory mechanisms. The present study also shows that the new transgenic mice are well suited to screen a variety of hPCSK9 inhibitors.
Acknowledgments
We would like to thank Manon Laprise for animal experimentation, Suzie Riverin for animal care, and Odile Neyret, Myriam Rondeau and Agnès Dumont for mouse genotyping and BAC copy numbers. This work was supported by the Canadian Institutes of Health Research grants Foundation Scheme, Funder Id: 10.13039/501100000035, 148363 and Funder Id: 10.13039/501100000029, MOP 102741, a Pfizer Aspire 1 cardiovascular research award, Funder Id: 10.13039/100004319, WI207162, a Canada Research Chair, Funder Id: 10.13039/501100001804, 231335, and a Fondation Leducq grant, Funder Id: 10.13039/501100001674, #13CVD03.
References
Abifadel, M., Varret, M., Rabes, J.P., Allard, D., Ouguerram, K., Devillers, M., Cruaud, C., Benjannet, S., Wickham, L., Erlich, D., et al. (2003). Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat. Genet. 34, 154–156.10.1038/ng1161Search in Google Scholar PubMed
Allard, D., Amsellem, S., Abifadel, M., Trillard, M., Devillers, M., Luc, G., Krempf, M., Reznik, Y., Girardet, J.P., Fredenrich, A., et al. (2005). Novel mutations of the PCSK9 gene cause variable phenotype of autosomal dominant hypercholesterolemia. Hum. Mutat. 26, 497–506.10.1002/humu.9383Search in Google Scholar PubMed
Baigent, C., Blackwell, L., Emberson, J., Holland, L.E., Reith, C., Bhala, N., Peto, R., Barnes, E.H., Keech, A., Simes, J., et al. (2010). Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 376, 1670–1681.10.1016/S0140-6736(10)61350-5Search in Google Scholar PubMed PubMed Central
Bartunek, J., Barbato, E., Heyndrickx, G., Vanderheyden, M., Wijns, W., and Holz, J.B. (2013). Novel antiplatelet agents: ALX-0081, a nanobody directed towards von Willebrand factor. J. Cardiovasc. Transl. Res. 6, 355–363.10.1007/s12265-012-9435-ySearch in Google Scholar PubMed
Benjannet, S., Rhainds, D., Hamelin, J., Nassoury, N., and Seidah, N.G. (2006). The proprotein convertase PCSK9 is inactivated by furin and/or PC5/6A: functional consequences of natural mutations and post-translational modifications. J. Biol. Chem. 281, 30561–30572.10.1074/jbc.M606495200Search in Google Scholar PubMed
Blasiole, D.A., Oler, A.T., and Attie, A.D. (2008). Regulation of ApoB secretion by the low density lipoprotein receptor requires exit from the endoplasmic reticulum and interaction with ApoE or ApoB. J. Biol. Chem. 283, 11374–11381.10.1074/jbc.M710457200Search in Google Scholar PubMed PubMed Central
Bottomley, M.J., Cirillo, A., Orsatti, L., Ruggeri, L., Fisher, T.S., Santoro, J.C., Cummings, R.T., Cubbon, R.M., Lo, S.P., Calzetta, A., et al. (2009). Structural and biochemical characterization of the wild type PCSK9-EGF(AB) complex and natural familial hypercholesterolemia mutants. J. Biol. Chem. 284, 1313–1323.10.1074/jbc.M808363200Search in Google Scholar PubMed
Butkinaree, C., Canuel, M., Essalmani, R., Poirier, S., Benjannet, S., Asselin, M.-C., Roubtsova, A., Hamelin, J., Marcinkiewicz, J., Chamberland, A., et al. (2015). Amyloid precursor-like protein 2 and sortilin do not regulate the PCSK9-mediated low density lipoprotein receptor degradation but interact with each other. J. Biol. Chem. 290, 18609–18620.10.1074/jbc.M115.647180Search in Google Scholar PubMed PubMed Central
Cameron, J., Holla, O.L., Ranheim, T., Kulseth, M.A., Berge, K.E., and Leren, T.P. (2006). Effect of mutations in the PCSK9 gene on the cell surface LDL receptors. Hum. Mol. Genet. 15, 1551–1558.10.1093/hmg/ddl077Search in Google Scholar PubMed
Canuel, M., Sun, X., Asselin, M.-C., Paramithiotis, E., Prat, A., and Seidah, N.G. (2013). Proprotein convertase subtilisin/kexin type 9 (PCSK9) can mediate degradation of the low density lipoprotein receptor-related protein 1 (LRP-1). PLoS One 8, e64145.10.1371/journal.pone.0064145Search in Google Scholar PubMed PubMed Central
Chan, J.C., Piper, D.E., Cao, Q., Liu, D., King, C., Wang, W., Tang, J., Liu, Q., Higbee, J., Xia, Z., et al. (2009). A proprotein convertase subtilisin/kexin type 9 neutralizing antibody reduces serum cholesterol in mice and nonhuman primates. Proc. Natl. Acad. Sci. U.S.A. 106, 9820–9825.10.1073/pnas.0903849106Search in Google Scholar PubMed PubMed Central
Cohen, J., Pertsemlidis, A., Kotowski, I.K., Graham, R., Garcia, C.K., and Hobbs, H.H. (2005). Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat. Genet. 37, 161–165.10.1038/ng1509Search in Google Scholar PubMed
Cohen, J.C., Boerwinkle, E., Mosley, T.H., Jr., and Hobbs, H.H. (2006). Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N. Engl. J. Med. 354, 1264–1272.10.1056/NEJMoa054013Search in Google Scholar PubMed
Cunningham, D., Danley, D.E., Geoghegan, K.F., Griffor, M.C., Hawkins, J.L., Subashi, T.A., Varghese, A.H., Ammirati, M.J., Culp, J.S., Hoth, L.R., et al. (2007). Structural and biophysical studies of PCSK9 and its mutants linked to familial hypercholesterolemia. Nat. Struct. Mol. Biol. 14, 413–419.10.1038/nsmb1235Search in Google Scholar PubMed
Dubuc, G., Chamberland, A., Wassef, H., Davignon, J., Seidah, N.G., Bernier, L., and Prat, A. (2004). Statins upregulate PCSK9, the gene encoding the proprotein convertase neural apoptosis-regulated convertase-1 implicated in familial hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol. 24, 1454–1459.10.1161/01.ATV.0000134621.14315.43Search in Google Scholar PubMed
Dubuc, G., Tremblay, M., Pare, G., Jacques, H., Hamelin, J., Benjannet, S., Boulet, L., Genest, J., Bernier, L., Seidah, N.G., et al. (2010). A new method for measurement of total plasma PCSK9: clinical applications. J. Lipid Res. 51, 140–149.10.1194/jlr.M900273-JLR200Search in Google Scholar PubMed PubMed Central
Essalmani, R., Hamelin, J., Marcinkiewicz, J., Chamberland, A., Mbikay, M., Chretien, M., Seidah, N.G., and Prat, A. (2006). Deletion of the gene encoding proprotein convertase 5/6 causes early embryonic lethality in the mouse. Mol. Cell. Biol. 26, 354–361.10.1128/MCB.26.1.354-361.2006Search in Google Scholar PubMed PubMed Central
Essalmani, R., Susan-Resiga, D., Chamberland, A., Abifadel, M., Creemers, J.W., Boileau, C., Seidah, N.G., and Prat, A. (2011). In vivo evidence that furin from hepatocytes inactivates PCSK9. J. Biol. Chem. 286, 4257–4263.10.1074/jbc.M110.192104Search in Google Scholar PubMed PubMed Central
Garattini, L. and Padula, A. (2017). Cholesterol-lowering drugs: science and marketing. J. R. Soc. Med. 110, 57–64.10.1177/0141076816681951Search in Google Scholar PubMed PubMed Central
Hampton, E.N., Knuth, M.W., Li, J., Harris, J.L., Lesley, S.A., and Spraggon, G. (2007). The self-inhibited structure of full-length PCSK9 at 1.9 A reveals structural homology with resistin within the C-terminal domain. Proc. Natl. Acad. Sci. U.S.A. 104, 14604–14609.10.1073/pnas.0703402104Search in Google Scholar PubMed PubMed Central
Herbert, B., Patel, D., Waddington, S.N., Eden, E.R., McAleenan, A., Sun, X.M., and Soutar, A.K. (2010). Increased secretion of lipoproteins in transgenic mice expressing human D374Y PCSK9 under physiological genetic control. Arterioscler. Thromb. Vasc. Biol. 30, 1333–1339.10.1161/ATVBAHA.110.204040Search in Google Scholar PubMed
Hobbs, H.H., Brown, M.S., and Goldstein, J.L. (1992). Molecular genetics of the LDL receptor gene in familial hypercholesterolemia. Hum. Mutat. 1, 445–466.10.1002/humu.1380010602Search in Google Scholar PubMed
Ito, M.K. and Santos, R.D. (2017). PCSK9 inhibition with monoclonal antibodies: modern management of hypercholesterolemia. J. Clin. Pharmacol. 57, 7–32.10.1002/jcph.766Search in Google Scholar PubMed PubMed Central
Koren, M.J., Sabatine, M.S., Giugliano, R.P., Langslet, G., Wiviott, S.D., Kassahun, H., Ruzza, A., Ma, Y., Somaratne, R., and Raal, F.J. (2017). Long-term low-density lipoprotein cholesterol-lowering efficacy, persistence, and safety of evolocumab in treatment of hypercholesterolemia: results up to 4 years from the Open-label OSLER-1 Extension Study. J. Am. Med. Assoc. Cardiol. 2, 598–607.10.1001/jamacardio.2017.0747Search in Google Scholar PubMed PubMed Central
Kotowski, I.K., Pertsemlidis, A., Luke, A., Cooper, R.S., Vega, G.L., Cohen, J.C., and Hobbs, H.H. (2006). A spectrum of PCSK9 alleles contributes to plasma levels of low-density lipoprotein cholesterol. Am. J. Hum. Genet. 78, 410–422.10.1086/500615Search in Google Scholar PubMed PubMed Central
Kratz, F. and Elsadek, B. (2012). Clinical impact of serum proteins on drug delivery. J. Control Release 161, 429–445.10.1016/j.jconrel.2011.11.028Search in Google Scholar PubMed
Labonte, P., Begley, S., Guevin, C., Asselin, M.C., Nassoury, N., Mayer, G., Prat, A., and Seidah, N.G. (2009). PCSK9 impedes hepatitis C virus infection in vitro and modulates liver CD81 expression. Hepatology 50, 17–24.10.1002/hep.22911Search in Google Scholar PubMed
Langhi, C., Le May, C., Gmyr, V., Vandewalle, B., Kerr-Conte, J., Krempf, M., Pattou, F., Costet, P., and Cariou, B. (2009). PCSK9 is expressed in pancreatic delta-cells and does not alter insulin secretion. Biochem. Biophys. Res. Commun. 390, 1288–1293.10.1016/j.bbrc.2009.10.138Search in Google Scholar PubMed
Larsson, S.L., Skogsberg, J., and Bjorkegren, J. (2004). The low density lipoprotein receptor prevents secretion of dense apoB100-containing lipoproteins from the liver. J. Biol. Chem. 279, 831–836.10.1074/jbc.M303057200Search in Google Scholar PubMed
Le May, C., Kourimate, S., Langhi, C., Chetiveaux, M., Jarry, A., Comera, C., Collet, X., Kuipers, F., Krempf, M., Cariou, B., et al. (2009). Proprotein convertase subtilisin kexin type 9 null mice are protected from postprandial triglyceridemia. Arterioscler. Thromb. Vasc. Biol. 29, 684–690.10.1161/ATVBAHA.108.181586Search in Google Scholar PubMed
Luo, Y., Warren, L., Xia, D., Jensen, H., Sand, T., Petras, S., Qin, W., Miller, K.S., and Hawkins, J. (2009). Function and distribution of circulating human PCSK9 expressed extrahepatically in transgenic mice. J. Lipid Res. 50, 1581–1588.10.1194/jlr.M800542-JLR200Search in Google Scholar PubMed PubMed Central
Masuda, Y., Yamaguchi, S., Suzuki, C., Aburatani, T., Nagano, Y., Miyauchi, R., Suzuki, E., Yamamura, N., Nagatomo, K., Ishihara, H., et al. (2018). Generation and characterization of a novel small biologic alternative to proprotein convertase subtilisin/kexin type 9 (PCSK9) antibodies, DS-9001a, albumin binding domain-fused anticalin protein. J. Pharmacol. Exp. Ther. 365, 368–378.10.1124/jpet.117.246652Search in Google Scholar PubMed
Maxwell, K.N. and Breslow, J.L. (2004). Adenoviral-mediated expression of Pcsk9 in mice results in a low-density lipoprotein receptor knockout phenotype. Proc. Natl. Acad. Sci. U.S.A. 101, 7100–7105.10.1073/pnas.0402133101Search in Google Scholar PubMed PubMed Central
Maxwell, K.N., Soccio, R.E., Duncan, E.M., Sehayek, E., and Breslow, J.L. (2003). Novel putative SREBP and LXR target genes identified by microarray analysis in liver of cholesterol-fed mice. J. Lipid Res. 44, 2109–2119.10.1194/jlr.M300203-JLR200Search in Google Scholar PubMed
Mitchell, T., Chao, G., Sitkoff, D., Lo, F., Monshizadegan, H., Meyers, D., Low, S., Russo, K., DiBella, R., Denhez, F., et al. (2014). Pharmacologic profile of the Adnectin BMS-962476, a small protein biologic alternative to PCSK9 antibodies for low-density lipoprotein lowering. J. Pharmacol. Exp. Ther. 350, 412–424.10.1124/jpet.114.214221Search in Google Scholar PubMed
Muyldermans, S. (2013). Nanobodies: natural single-domain antibodies. Annu. Rev. Biochem. 82, 775–797.10.1146/annurev-biochem-063011-092449Search in Google Scholar PubMed
Nassoury, N., Blasiole, D.A., Tebon, O.A., Benjannet, S., Hamelin, J., Poupon, V., McPherson, P.S., Attie, A.D., Prat, A., and Seidah, N.G. (2007). The cellular trafficking of the secretory proprotein convertase PCSK9 and its dependence on the LDLR. Traffic 8, 718–732.10.1111/j.1600-0854.2007.00562.xSearch in Google Scholar PubMed
Naureckiene, S., Ma, L., Sreekumar, K., Purandare, U., Lo, C.F., Huang, Y., Chiang, L.W., Grenier, J.M., Ozenberger, B.A., Jacobsen, J.S., et al. (2003). Functional characterization of Narc 1, a novel proteinase related to proteinase K. Arch. Biochem. Biophys. 420, 55–67.10.1016/j.abb.2003.09.011Search in Google Scholar PubMed
Ni, Y.G., Condra, J.H., Orsatti, L., Shen, X., Di, M.S., Pandit, S., Bottomley, M.J., Ruggeri, L., Cummings, R.T., Cubbon, R.M., et al. (2010). A proprotein convertase subtilisin-like/kexin type 9 (PCSK9) C-terminal domain antibody antigen-binding fragment inhibits PCSK9 internalization and restores low density lipoprotein uptake. J. Biol. Chem. 285, 12882–12891.10.1074/jbc.M110.113035Search in Google Scholar PubMed PubMed Central
Piper, D.E., Jackson, S., Liu, Q., Romanow, W.G., Shetterly, S., Thibault, S.T., Shan, B., and Walker, N.P. (2007). The crystal structure of PCSK9: a regulator of plasma LDL-cholesterol. Structure 15, 545–552.10.1016/j.str.2007.04.004Search in Google Scholar PubMed
Poirier, S., Mayer, G., Benjannet, S., Bergeron, E., Marcinkiewicz, J., Nassoury, N., Mayer, H., Nimpf, J., Prat, A., and Seidah, N.G. (2008). The proprotein convertase PCSK9 induces the degradation of low density lipoprotein receptor (LDLR) and its closest family members VLDLR and ApoER2. J. Biol. Chem. 283, 2363–2372.10.1074/jbc.M708098200Search in Google Scholar PubMed
Rashid, S., Curtis, D.E., Garuti, R., Anderson, N.N., Bashmakov, Y., Ho, Y.K., Hammer, R.E., Moon, Y.A., and Horton, J.D. (2005). Decreased plasma cholesterol and hypersensitivity to statins in mice lacking Pcsk9. Proc. Natl. Acad. Sci. U.S.A. 102, 5374–5379.10.1073/pnas.0501652102Search in Google Scholar PubMed PubMed Central
Roubtsova, A., Munkonda, M.N., Awan, Z., Marcinkiewicz, J., Chamberland, A., Lazure, C., Cianflone, K., Seidah, N.G., and Prat, A. (2011). Circulating proprotein convertase subtilisin/kexin 9 (PCSK9) regulates VLDLR protein and triglyceride accumulation in visceral adipose tissue. Arterioscler. Thromb. Vasc. Biol. 31, 785–791.10.1161/ATVBAHA.110.220988Search in Google Scholar PubMed
Sarker, S.A., Jakel, M., Sultana, S., Alam, N.H., Bardhan, P.K., Chisti, M.J., Salam, M.A., Theis, W., Hammarstrom, L., and Frenken, L.G. (2013). Anti-rotavirus protein reduces stool output in infants with diarrhea: a randomized placebo-controlled trial. Gastroenterology 145, 740–748.10.1053/j.gastro.2013.06.053Search in Google Scholar PubMed
Schiele, F., Park, J., Redemann, N., Luippold, G., and Nar, H. (2014). An antibody against the C-terminal domain of PCSK9 lowers LDL cholesterol levels in vivo. J. Mol. Biol. 426, 843–852.10.1016/j.jmb.2013.11.011Search in Google Scholar PubMed
Seidah, N.G. and Prat, A. (2012). The biology and therapeutic targeting of the proprotein convertases. Nat. Rev. Drug Discov. 11, 367–383.10.1038/nrd3699Search in Google Scholar PubMed
Seidah, N.G., Benjannet, S., Wickham, L., Marcinkiewicz, J., Jasmin, S.B., Stifani, S., Basak, A., Prat, A., and Chretien, M. (2003). The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation. Proc. Natl. Acad. Sci. U.S.A. 100, 928–933.10.1073/pnas.0335507100Search in Google Scholar PubMed PubMed Central
Shan, L., Pang, L., Zhang, R., Murgolo, N.J., Lan, H., and Hedrick, J.A. (2008). PCSK9 binds to multiple receptors and can be functionally inhibited by an EGF-A peptide. Biochem. Biophys. Res. Commun. 375, 69–73.10.1016/j.bbrc.2008.07.106Search in Google Scholar PubMed
Surdo, P.L., Bottomley, M.J., Calzetta, A., Settembre, E.C., Cirillo, A., Pandit, S., Ni, Y.G., Hubbard, B., Sitlani, A., and Carfi, A. (2011). Mechanistic implications for LDL receptor degradation from the PCSK9/LDLR structure at neutral pH. EMBO Rep. 12, 1300–1305.10.1038/embor.2011.205Search in Google Scholar PubMed PubMed Central
Toth, P.P., Danese, M., Villa, G., Qian, Y., Beaubrun, A., Lira, A., and Jansen, J.P. (2017). Estimated burden of cardiovascular disease and value-based price range for evolocumab in a high-risk, secondary-prevention population in the US payer context. J. Med. Econ. 20, 555–564.10.1080/13696998.2017.1284078Search in Google Scholar PubMed
van der Linden, R., de Geus, B., Stok, W., Bos, W., van Wassenaar, D., Verrips, T., and Frenken, L. (2000). Induction of immune responses and molecular cloning of the heavy chain antibody repertoire of Lama glama. J. Immunol. Methods 240, 185–195.10.1016/S0022-1759(00)00188-5Search in Google Scholar
Weider, E., Susan-Resiga, D., Essalmani, R., Hamelin, J., Asselin, M.C., Nimesh, S., Ashraf, Y., Wycoff, K.L., Zhang, J., Prat, A., et al. (2016). Proprotein convertase subtilisin/kexin type 9 (PCSK9) single domain antibodies are potent inhibitors of low density lipoprotein receptor degradation. J. Biol. Chem. 291, 16659–16671.10.1074/jbc.M116.717736Search in Google Scholar PubMed PubMed Central
Zaid, A., Roubtsova, A., Essalmani, R., Marcinkiewicz, J., Chamberland, A., Hamelin, J., Tremblay, M., Jacques, H., Jin, W., Davignon, J., et al. (2008). Proprotein convertase subtilisin/kexin type 9 (PCSK9): hepatocyte-specific low-density lipoprotein receptor degradation and critical role in mouse liver regeneration. Hepatology 48, 646–654.10.1002/hep.22354Search in Google Scholar PubMed
Zhang, D.W., Lagace, T.A., Garuti, R., Zhao, Z., McDonald, M., Horton, J.D., Cohen, J.C., and Hobbs, H.H. (2007). Binding of proprotein convertase subtilisin/kexin type 9 to epidermal growth factor-like repeat a of low density lipoprotein receptor decreases receptor recycling and increases degradation. J. Biol. Chem. 282, 18602–18612.10.1074/jbc.M702027200Search in Google Scholar PubMed
Zhang, D.W., Garuti, R., Tang, W.J., Cohen, J.C., and Hobbs, H.H. (2008). Structural requirements for PCSK9-mediated degradation of the low-density lipoprotein receptor. Proc. Natl. Acad. Sci. U.S.A. 105, 13045–13050.10.1073/pnas.0806312105Search in Google Scholar PubMed PubMed Central
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/hsz-2018-0194).
©2018 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Highlight: Frontiers in Proteolysis
- Host cell-surface proteins as substrates of gingipains, the main proteases of Porphyromonas gingivalis
- A single domain antibody against the Cys- and His-rich domain of PCSK9 and evolocumab exhibit different inhibition mechanisms in humanized PCSK9 mice
- Characterization of PdCP1, a serine carboxypeptidase from Pseudogymnoascus destructans, the causal agent of White-nose Syndrome
- An internally quenched peptide as a new model substrate for rhomboid intramembrane proteases
- An alternative processing pathway of APP reveals two distinct cleavage modes for rhomboid protease RHBDL4
- Reviews
- Salivary peptide histatin 1 mediated cell adhesion: a possible role in mesenchymal-epithelial transition and in pathologies
- Modulation of dynamin function by small molecules
- Chemotherapeutic resistance: a nano-mechanical point of view
- Research Articles/Short Communications
- Protein Structure and Function
- Biochemical and kinetic properties of the complex Roco G-protein cycle
- Cell Biology and Signaling
- Aberrant expression of hsa_circ_0025036 in lung adenocarcinoma and its potential roles in regulating cell proliferation and apoptosis
Articles in the same Issue
- Frontmatter
- Highlight: Frontiers in Proteolysis
- Host cell-surface proteins as substrates of gingipains, the main proteases of Porphyromonas gingivalis
- A single domain antibody against the Cys- and His-rich domain of PCSK9 and evolocumab exhibit different inhibition mechanisms in humanized PCSK9 mice
- Characterization of PdCP1, a serine carboxypeptidase from Pseudogymnoascus destructans, the causal agent of White-nose Syndrome
- An internally quenched peptide as a new model substrate for rhomboid intramembrane proteases
- An alternative processing pathway of APP reveals two distinct cleavage modes for rhomboid protease RHBDL4
- Reviews
- Salivary peptide histatin 1 mediated cell adhesion: a possible role in mesenchymal-epithelial transition and in pathologies
- Modulation of dynamin function by small molecules
- Chemotherapeutic resistance: a nano-mechanical point of view
- Research Articles/Short Communications
- Protein Structure and Function
- Biochemical and kinetic properties of the complex Roco G-protein cycle
- Cell Biology and Signaling
- Aberrant expression of hsa_circ_0025036 in lung adenocarcinoma and its potential roles in regulating cell proliferation and apoptosis