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Abstract: Homerla is upregulated by several different
antidepressant measures, including non-pharmacologi-
cal treatments, like sleep deprivation (SD) and electrocon-
vulsive therapy (ECT) and antidepressant drugs, such as
imipramine, fluoxetine and ketamine. Homerla induction
might thus be a crucial joint mechanism for antidepres-
sant therapy in general. However, the upstream signaling
pathways that regulate or induce Homerla expression are
still not well understood. The main focus of the present
review is to offer an overview of the current knowledge
about the potential role of Homerla in depression and the
signaling pathways responsible for Homerla regulation. It
is suggested here that a detailed characterization of the
signaling mechanisms leading to Homerla expression
might provide novel therapeutic targets for antidepres-
sant drug development.

Keywords: adenosine A, receptor; BDNF; depression; ERK
pathway; Homerla; Ras.

Introduction

Major depressive disorder is one of the most prevalent
forms of mental illness. It is a complex and heterogeneous
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disorder, which imposes a severe economic burden on
society (Krishnan and Nestler 2010). Most of the available
antidepressant drugs require weeks or months to relieve
the symptoms, they have low response and remittance
rates and cause various side effects. The limited efficacy
of the current antidepressants underlines the need to
look for novel fast-acting and effective antidepressant
measures. Treatment with a low dose of ketamine and
non-pharmacological interventions, such as sleep depri-
vation (SD) and electroconvulsive therapy (ECT) emerged
as rapid and effective antidepressant therapies, though
their mechanism of action is not well understood (Berman
et al., 2000; Kato, 2009; Benedetti and Colombo, 2011).
A solid knowledge of the mechanism of action and the
neurobiological effects of the current antidepressant ther-
apies would facilitate the development of new antidepres-
sant drugs.

Recently, we proposed that the induction of Homerla,
a neuronal immediate-early gene involved in the regula-
tion of synaptic plasticity, is a common mechanism of
action of several antidepressant treatments (Serchov et al.,
2015a). The main focus of the present review is to offer an
overview of the current knowledge about the relationship
that Homerla has with depression and with antidepres-
sant therapy and the signaling pathways responsible for
Homerla regulation.

Homerl proteins

The Homer family consists of three independent mamma-
lian genes (Brakeman et al., 1997; Kato et al., 1998), each
with several splice variants including the long isoform
Homer1b/c and the short isoform Homerla, which are the
most studied among them (Bottai et al., 2002; Klugmann
et al., 2005). The long Homer isoforms are constitutively
expressed, while the expression of Homerla is relatively
low under normal conditions and similar to other imme-
diate early genes (IEG) increases rapidly to neuronal
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activity (Brakeman et al., 1997). In contrast to BDNF,
another complex IEG, which uses different promoters to
switch from constitutive to activity-dependent expression
(Timmusk et al., 1993), a different mechanism operates
for Homerl. Homer1b/c and Homerla are derived by alter-
native splicing of a common primary transcript adapting
a constitutively expressed gene to function also as IEG.
Homerl gene contains promoter-distal and promoter-
proximal functional poly(A) sites at the end of the exons
corresponding, respectively to Homerlb/c and Homerla
(Bottai et al., 2002). Homerla results from switching of
the transcriptional termination from promoter-distal to
promoter-proximal poly(A) site within the central intron 5.
This process is enhanced by extracellular stimuli and it
is independent from Homerl promoter (Niibori et al.,
2006). Unlike most IEGs that encode transcription factors,
Homerla is unique, because it functions directly at the
synapses.

All Homer isoforms are characterized by a conserved
N-terminal EVH1 ligand-binding domain, that interacts
with many components of the postsynaptic density (PSD)
(Brakeman et al., 1997; Kato et al., 1998; Xiao et al., 1998;
Tu et al., 1998, 1999; Beneken et al., 2000; Feng et al.,
2002; Hwang et al., 2003; Yuan et al., 2003). In addition
to EVH1 domain, all long Homer isoforms, including
Homerlb/c, exhibit a C-terminal coiled-coil (CC) domain,
which mediates self-association and multimerization.
Thus, via CC domain the constitutively expressed long
Homer proteins act as scaffolding molecules that form
a polymeric network structure at the PSD and facilitate
clustering of specific synaptic proteins, modulating their
activities at neuronal synapses (Xiao et al., 1998; Tu et al.,
1988, 1999; Xiao et al., 2000; Hayashi et al., 2006, 2009).
In addition to its role as an adaptor protein, it has been
shown that Homer functions as ligand and directly modu-
lates the Ca* release gain via ryanodine receptor (Feng
et al., 2002). The long Homerlb/c links metabotropic
glutamate receptors (mGluR1 and mGluR5) with NMDA
receptors (Perroy et al., 2008; Bertaso et al., 2010) and
many proteins involved in Ca* signaling (Tu et al., 1998;
Feng et al., 2002; Hwang et al., 2003; Yuan et al., 2003),
all of which have been implicated in the pathophysiology
of mood disorders (Galeotti et al., 2008a,b; Krystal et al.,
2010; Miller et al., 2014; Newell and Matosin, 2014). There-
fore, abnormal clustering and declustering of Homerlb/c
may provide an important mechanism that underlies the
pathophysiological processes of depression (Szumlinski
etal., 2006; Luo et al., 2012).

The short Homerla lacks the CC domain and there-
fore does not form dimers with other Homer proteins
(Brakeman et al., 1997; Kato et al., 1998). Instead it
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interferes with the scaffolding capability of long Homers
by competitively binding the target proteins of Homerlb/c
(Kammermeier and Worley, 2007). In general, Homerla
appears to be an important regulator of the activity-
induced remodeling of synaptic structures (Inoue et al.,
2007). Indeed, it has been identified as a member of the
so-called plasticity-related proteins that promote persis-
tent late phase synaptic plasticity (Okada et al., 2009).
Thus, Homerla provides flexible adaptation to environ-
mental demands and as much as clinical depression can
be seen as a result of failed adaptation to stress, Homerla
up-regulation might evoke its antidepressant effects by
improving synaptic reorganization in neural networks
salient for mood regulation.

Homerla in depression and anti-
depressant treatments

The potential involvement of Homerla in depression-like
behavior has been suggested in several reports (Lominac
et al., 2005; Szumlinski et al., 2005, 2006; Kato, 2009;
Rietschel et al., 2010; Sun et al., 2011). Collectively, the
data on Homer1 suggest distinct roles for both isoforms:
Homerla and Homerlb/c in behavioral response to
stress. General deletion of Homerl enhances anxiety- and
depression-like behavior in mice (Szumlinski et al., 2005).
Homer1 knockout (KO) mice have elevated plasma levels
of corticosterone and aldosterone (Grinevich et al., 2011),
suggesting that Homer1 is involved in the regulation of
hypothalamic-pituitary-adrenal axis activity (Grinevich
et al., 2012). The amplified behavioral response to stress-
ors in Homer1KO mice appears to result from an inability
to induce an increase of Homerla in the medial prefrontal
cortex (mPFC), because adeno-associated virus-mediated
restoration of Homerla in the mPFC of KO mice relieves the
depression-like behavior (Lominac et al., 2005). In contrast,
restoration of Homer1b/c in mPFC of Homer1KO mice even
enhance genotypic differences (Lominac et al., 2005), con-
sistent with anxiogenic effects observed by hippocampal
overexpression of Homerlg, a Homer1 isoform possessing
only CC domain (Klugmann et al., 2005). Thus, an induc-
tion of Homerla within cortical structures facilitates the
ability to cope with stressors, whereas the overexpression
of the CC-Homer1 isoforms leads to behavioral debilitation
(Szumlinski et al., 2006). In support of this proposition,
we demonstrated that mice subjected to model of chronic
depression (CDM) show reduced Homerla expression in
the mPFC, whereas treatment with several antidepres-
sant measures, including chronic treatment with classical
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antidepressants, like imipramine and fluoxetine, as well
as acute ketamine treatment or 6 h of SD strongly increase
Homer1la levels in this region (Serchov et al., 2015a). Inter-
estingly, specific siRNA knockdown of Homerla in mPFC
enhances depressive-like behavior and prevented the anti-
depressant effects of SD, imipramine and ketamine treat-
ment, while viral overexpression of Homerla in this region
promotes antidepressant effects, demonstrating that
Homerla expression specifically in the mPFC is inversely
correlated to the depressive-like behavior (Serchov et al.,
2015a). In addition, non-pharmacological treatments of
depression, like ECT and transcranial magnetic stimula-
tion, a less invasive non-pharmacological antidepressant
treatment, alternative to ECT, also upregulate Homerla
expression levels in the cortex (Sakagami et al., 2005;
Conti et al., 2007; Sun et al., 2011). Indeed, Homerla was
proposed to be instrumental for the therapeutic effect of
ECT in depression (Sakagami et al., 2005; Kato, 2009).
Therefore, we proposed that the induction of Homerla is
a final common pathway mediating the antidepressant
effects of different antidepressant treatments (Figure 1)
(Serchov et al., 2015a). Taken together these data point
towards a general importance of Homerla for antidepres-
sant therapy. However, the upstream signaling pathways
that regulate or induce Homerla expression are still not
well investigated.

Adenosine A receptor (AR)
signaling to Homerla in anti-
depressant therapy

Several non-pharmacological treatments of depression
are associated with increased adenosinergic signaling

Classical Non-pharmacological

antidepressants: treatments:
imipramine, fluoxetine ECT, SD

~~ { —

Antidepressant effects

Ketamine

Figure 1: Homerla induction mediates the antidepressant effects of
several antidepressant treatments.

The antidepressant effects of the chronic treatment with classical
antidepressants, such as imipramine or fluoxetine, non-pharmaco-
logical treatments, like SD and ECT, as well as single dose of keta-
mine are all accompanied and strictly dependent on the increased
expression of Homerla in the mPFC.
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(van Calker and Biber, 2005; Burnstock et al., 2011; Sadek
et al., 2011). Adenosine is a neuromodulator in the central
nervous system exhibiting anticonvulsive, neuroprotective
and sleep regulating properties (Fredholm et al., 2005).
Adenosine’s actions are mediated by four receptor sub-
types, A, A,,, A, and A, (Fredholm et al., 2001). It is known
that SD evokes an increased release of adenosine in the
brain and up-regulation of adenosine A, receptors (AR)
in rodents and humans (Basheer et al., 2007; Elmenhorst
et al., 2007, 2009). Two other non-pharmacological inter-
ventions for depression ECT and deep brain stimulation
are associated with an increased release of adenosine and
stimulation of A R (van Calker and Biber, 2005; Bekar et al.,
2008; Hamani et al., 2010; Sadek et al., 2011). Furthermore,
direct experimental data indicate that adenosine agonists
have antidepressant activity (Hines et al., 2013). Recently,
we demonstrated that conditional doxycycline-regulated
upregulation of A R expression (Serchov et al., 2012) in the
forebrain neurons of transgenic mice (Al mice) leads to
pronounced acute and chronic resilience towards depres-
sive-like behavior in various tests (Serchov et al., 2015a).
Conversely, A RKO mice displayed an increased depres-
sive-like behavior and were resistant to the antidepressant
effects of SD (Serchov et al., 2015a).

Interestingly, Homer1a is up-regulated by SD and ECT,
antidepressant therapies also associated with increased
AR signaling (Sakagami et al., 2005; Conti et al., 2007;
Elmenhorst et al., 2007, 2009; Sadek et al., 2011). We
described that Homerla expression is increased in the
brain of Al mice, while A RKO mice have low Homerla
levels and display no induction of Homerla in mPFC after
SD (Serchov et al., 2015a). In addition, agonist stimulation
of AR in vitro in primary neuronal cultures and in vivo in
mice increases Homerla expression (Serchov et al., 2015a).
AR are usually coupled with Gi proteins, that inhibit
cAMP formation (Fredholm et al., 2001), but when highly
expressed in cells (e.g. neurons or smooth muscle cells)
AR can also regulate phospholipase C (PLC) (Biber et al.,
1997; Rogel et al., 2006; Fenton et al., 2010; Robin et al.,
2011) and extracellular signal-regulated kinase (ERK)
pathway (Migita et al., 2008; Kunduri et al., 2013). Indeed,
inhibition of PLC or ERK1,2 completely abolishes the A R
mediated increase of Homerla expression in primary
neurons (Serchov et al., 2015a). In addition, in vivo appli-
cation of the AR agonist MRS5474 induces ERK1,2 acti-
vation and Homerla levels in the mouse cortex (Serchov
et al., 2015a), corroborating previous reports on ERKs in
Homerla regulation (Sato et al. 2001; Mahan et al., 2012;
Wang et al., 2012) and providing evidence for the impor-
tance of this signaling route in depression. Taken together
these reports suggest that several non-pharmacological
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treatments of depression elicit their antidepressant effects
by activation of A R-ERK1,2 signaling mediated induction
of Homerla (Figure 2).

BDNF/Ras/ERK-mediated regulation
of Homerla in depression

Several lines of evidence show that chronic treatment
with classical antidepressants, like imipramine and fluox-
etine upregulate Homerla expression (Conti et al., 2007;
Sun et al., 2011; Serchov et al., 2015a). The fact that these
drugs require at least 2 weeks to increase Homerla sug-
gests for indirect mechanism of regulation (Serchov et al.,
2015a). Such a mechanism might be explained by the neu-
rotrophin hypothesis, which is one of the leading hypoth-
esis towards the neurobiological basis of depression and
which focuses on the role of brain-derived neurotrophic
factor (BDNF). Chronic stress, a major risk factor for devel-
opment of depressive episodes, and a subsequent rise in
plasma corticosteroid levels, causes a decrease in BDNF
levels in several brain regions implicated in the physi-
ology of depression (Smith et al., 1995). Conversely, a

Antidepressants
SSRI./SNRI

v
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stress-induced downregulation of BDNF can be reversed
by antidepressants or ECT, consistent with a delayed
onset of the clinical efficacy of these treatments (Nibuya
et al., 1995). Moreover, intraventricular BDNF infusion
causes rapid and sustained antidepressant-like effects
(Shirayama et al., 2002). In addition, the antidepressant
effects of ketamine require BDNF as ketamine is not affect-
ing BDNF-deficient mice (Autry et al., 2011).

According to the neurotrophin hypothesis, chronic
treatment with classical antidepressants activate the tran-
scriptional factor cAMP response element binding protein
(CREB), which enhances BDNF expression (Figure 2)
(Nibuya et al., 1996; Thome et al., 2000). One of the best
studied BDNF-regulated signaling cascades is the ERK
pathway (Heumann, 1994). The activation of ERK-path-
way is mediated by Ras-induced MEK1,2 activation, that
phosphorylates ERK1,2 (Figure 2) (Katz and McCormick,
1997). Several studies have suggested that the BDNF-Ras-
ERK pathway is implicated in the control of depressive-
like behavior. The acute blockade of the ERK-pathway by
MEK1,2 inhibition produces depressive-like phenotype
and inhibits the effects of BDNF and several antidepres-
sant drugs on behavior (Shirayama et al., 2002; Duman
et al., 2007). The BDNF-Ras-ERK pathway in turn couples

Non-pharmacological

treatments

Adenosine

AR Extracellular

5-HT/NE BDNF
TrkB

5-HT/NE Rec

Figure 2: Signaling pathways regulating Homerla expression.

Nucleus

PLCB

According to the neurotrophin hypothesis, classical antidepressant medications, like selective serotonin reuptake inhibitors (SSRI) and
selective noradrenaline reuptake inhibitors (SNRI), activate by an increase of serotonin (5HT) and noradrenaline (NE) mediated signaling the
transcription factor CREB, which enhances BDNF expression. BDNF, in turn, induces Homerla expression via TrkB receptor-Ras-ERK-CREB
signaling cascade. Furthermore, several non-pharmacological treatments of depression, like SD, ECT and deep brain stimulation, lead to
increased AR signaling. In turn, activated adenosine A, receptor (A R) upregulates Homerla levels by PLCB-IP3-Ca?*-mediated activation of

the ERK pathway; endoplasmic reticulum (ER).
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to CREB phosphorylation (Figure 2) (Xing et al., 1996). At
the clinical level, postmortem investigations have shown
that untreated depressive patients have lower levels of
CREB and phosphorylated CREB in the cortex compared to
healthy controls. In contrast, higher concentration of CREB
was detected in patients under antidepressant medication
compared to untreated patients (Dowlatshani et al., 1998;
Yamada et al., 2003). Taken together these results indicate
that stress and depression coincide with a decreased activ-
ity of the BDNF-Ras-ERK-CREB pathway, while antidepres-
sants evoke an activation of this signaling cascade.
Several reports demonstrate that the BDNF-ERK
pathway plays an important role in the activity-depend-
ent regulation of Homerla (Sato et al. 2001; Mahan et al.,
2012; Wang et al., 2012). In vitro study in primary neuronal
cultures showed that BDNF, selectively via ERK1,2 activa-
tion, upregulates Homerla mRNA and protein levels (Sato
etal., 2001). Furthermore, Mahan et al. (2012) reported that
BDNF increases Homerla mRNA expression in an ERK-
dependent manner via epigenetic modulation of Homerla
transcription. BDNF stimulation strongly increases histone
H3 acetylation or decreases H3K9 methylation around the
Homerl promoter, resulting in enhanced Homerla expres-
sion (Mahan et al., 2012). Interestingly, the promoter region
of the Homer1 gene family contains several CRE binding
sites, suggesting CREB mediation of gene transcription
(Mahan et al., 2012). These data suggest that the antide-
pressant drugs induced upregulation of Homerla might be
mediated by the BDNF-Ras-ERK-CREB pathway (Figure 2).
A recent report showed that chronic photic stimulation
in mice has antidepressant effects and increases Homerla
expression in the cortex (Sun et al., 2015). Interestingly, we
have demonstrated light-induced regulation of the Ras sign-
aling cascade (Serchov and Heumann, 2006; Serchov et al.,
2015b). In order to study the role of Ras, we have generated
a transgenic mouse model expressing constitutively acti-
vated Ras selectively in neurons (synRas mice) (Heumann
et al., 2000). As Ras appears to be the major effector of
BDNF signaling and one of the main upstream regulators of
the ERK pathway resulting in elevated levels of CREB phos-
phorylation (Hansen et al., 2004), such a mouse model
might be a suitable approach to study the role of upstream
signaling pathways regulating Homerla in depression.

Conclusions and future
prospectives

As the antidepressant effects mediated by chronic treat-
ment with classical antidepressant medications, like
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imipramine and fluoxetine, as well as the very rapid actions
of ketamine and SD are all accompanied by and strictly
dependent on an increased expression of Homerla specifi-
cally in the mPFC, it is concluded that Homerla induction
is a crucial joint mechanism mediating the antidepressant
effects. However, how Homerla mediates antidepressant
effects is currently unknown. As the key scaffolding mol-
ecule at the PSD, constitutively expressed long Homers
form a polymeric network complexes linking mGluR5 with
NMDA receptors and various proteins involved in Ca*
homeostasis (Tu et al., 1998; Feng et al., 2002; Hwang et al.,
2003; Yuan et al., 2003; Perroy et al., 2008; Bertaso et al.,
2010), which have been all implicated in the pathophysiol-
ogy and treatment of depression (Galeotti et al., 2008a,b;
Krystal et al., 2010; Miller et al., 2014; Newell and Matosin,
2014). The induction of Homerla, which acts as a dominant
negative protein and declusters long Homer complexes,
might serve as a therapeutic method in depression to mod-
ulate activity of the target proteins. Interestingly, several
studies have shown that in vivo and in vitro application of
a decoy peptide, which contains the Homer binding site
of mGlIuR5, specifically disrupts mGluR5/Homer interac-
tions and mimics the effects of Homerla induction (Yang
et al., 2004; Mao et al., 2005; Ronesi and Huber, 2008;
Tronson et al., 2010). Further investigation of the effects of
this peptide in depression might provide insights on the
mechanism of action of Homerla and might be adopted as
a novel approach to treat depression.

The reports presented here indicate the ERK signal-
ing cascade to be a key mediator that links distinct anti-
depressant treatments to the transcriptional induction of
Homerla. On the one hand, various non-pharmacological
treatments, which are associated with increased A R sign-
aling, might result in ERK1,2 stimulation via PLC activa-
tion, subsequent production of IP, and intracellular Ca*
release. On the other hand, several antidepressant drugs,
both classical and novel, increase BDNF expression and
activate the BDNF-Ras-ERK pathway. However, besides
the ERK-dependent epigenetic modulation of Homerla
transcription, the precise mechanism of ERK-mediated
regulation of Homerla is not clear. Thus, further char-
acterization of the signaling mechanisms stimulating
Homerla expression might provide novel therapeutic
targets for antidepressant drug development.
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