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Abstract: Ribosome profiling is a new emerging technol-
ogy that uses massively parallel amplification of ribosome-
protected fragments and next-generation sequencing to
monitor translation in vivo with codon resolution. Stud-
ies using this approach provide insightful views on the
regulation of translation on a global cell-wide level. In
this review, we compare different experimental set-ups
and current protocols for sequencing data analysis. Spe-
cifically, we review the pitfalls at some experimental steps
and highlight the importance of standardized protocol for
sample preparation and data processing pipeline, at least
for mapping and normalization.
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Introduction

At any given time, the amounts and types of proteins
reflect the functional status of the cell. The protein com-
position is a balance between protein synthesis and
degradation. On the synthesis side, protein production
is controlled at the level of transcription and translation
and the messenger RNA (mRNA) is the connecting entity
between these two processes. Moreover, emerging evi-
dence suggests that the mRNA open-reading frame bears
far more information than just the amino acid sequence
of the synthesized protein. Codon choice to encode one
amino acid (Plotkin and Kudla, 2011), tRNA modifications
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(Nedialkova and Leidel, 2015; Tyagi and Pedrioli, 2015) or
secondary structures (Wen et al., 2008; Chen et al., 2013)
modulate the local speed at which mRNA is translated
and link it to protein biogenesis or stress response. Recent
developments in the next-generation sequencing (NGS)
technologies revealed additional layers embedded in the
mRNA to regulate its translatability and consequently the
downstream processes in protein biogenesis including
cotranslational folding, insertion into membranes and
interactions with auxiliary factors (Kramer et al., 2009;
Zhang and Ignatova, 2011; Pechmann et al., 2014). Spe-
cifically, a recent twist of the NGS technologies to capture
translating ribosomes, named ribosome profiling (Ingolia
etal.,2009), has significantly advanced our understanding
on translation regulation in various organisms [reviewed
in (Ingolia, 2014)]. Ribosome profiling is based on high-
throughput sequencing of ribosome-protected RNA frag-
ments, or ribosomal ‘footprints’, which specifically report
on the position of the translating ribosomes with a nucle-
otide resolution (Ingolia et al., 2009). A growing body of
published literature illustrates the power of this approach
to unravel new aspects on translation regulation, for
example identification of extensive upstream initiation at
non-AUG codons in eukaryotes (Ingolia et al., 2009, 2011;
Fritsch et al., 2012; Lee et al., 2012) and specific regulation
of the stress response at translation level (Liu et al., 2013;
Shalgi et al., 2013; Andreev et al., 2015). Further develop-
ment of the profiling technology to isolate a fraction of
ribosomes that are involved in specific cellular processes
revealed new insights into the localized protein synthesis
in yeast (Jan et al., 2014) or the interaction with a trigger
factor, an auxiliary factor facilitating cotranslational
folding in bacteria (Oh et al., 2011).

Without doubt, ribosome profiling is a powerful
technology to address various aspects of translation
regulation on a genome-wide scale, and several excel-
lent reviews summarize the power of this technology
(Morris, 2009; Kuersten et al., 2013; Michel and Baranov,
2013; Ingolia, 2014). However, this approach is relatively
young, with steadily evolving experimental protocol and a
non-standardized platform for data analysis. The pace of
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exploration creates some difficulties in comparing results
produced in different laboratories. In addition, different
approaches to analyze the data disclose variations in their
interpretation (Gerashchenko and Gladyshev, 2014). Here,
we focus on the ribosome profiling procedure and data
analyses and critically review the biases of the various
steps in the profiling protocol as a potential source of
variation. We also provide examples on how variations in
the ribosome profiling procedure put restrictions on the
downstream analysis and determine the information that
can be extracted from the data. We suggest standardizing
ribosome profiling protocol and adjusting only a step (or
few steps) depending on the specific scientific question.

Isolation of intact translating
ribosomes

At the core of ribosome profiling is a nuclease digestion of
mRNA unprotected by the ribosome and recovering ribo-
some-protected mRNA fragments (i.e. ribosome footprints)
(Steitz, 1969) and their conversion into a DNA library that
is further analyzed by deep sequencing (Ingolia et al.,
2009) (Figure 1). Thus, this approach maps the position of
the translating ribosomes on each mRNA and provides a
snap-shot of translation.

Harvesting the cells and antibiotic
pretreatment

The most delicate step in the sample preparation is the
isolation of intact ribosome-mRNA complexes. Ideally, the
isolation procedure should faithfully freeze the translat-
ing ribosomes and avoid conditions that stimulate riboso-
mal drop-off and, most importantly, ribosome relocation
on the mRNA during the sample processing.

Early in the development of the ribosome profiling
approach, cells were pre-incubated with elongation inhib-
itors (mainly chloramphenicol for bacteria and cychlohex-
imide for eukaryotes) to inhibit further movement of the
elongating ribosomes along the mRNA (Ingolia et al.,
2009). The antibiotic treatment markedly affects the cov-
erage profiles and introduces some bias in the results;
the elongation inhibitors do not uniformly stall elongat-
ing ribosomes but rather show a codon-dependent mode
of action (Orelle et al., 2013). Cycloheximide also allows
one complete translocation cycle before blocking the ribo-
some (Pestova and Hellen, 2003; Schneider-Poetsch et al.,
2010) and thus diffuses the read-out when determining
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Figure 1: Flow-chart of isolation of intact ribosome-mRNA
complexes and library preparation for the ribosome profiling
experiment.

Crucial steps at which specific decisions need to be taken are
color-coded in orange. Detailed knowledge of the bias of each of
those procedures is essential for the careful interpretation of the
sequencing data.

codon-dependent stalling (Nedialkova and Leidel, 2015),
while non-antibiotic treated cells deliver much sharper
pause sites corresponding to rare codons (Pelechano
et al., 2015).

In addition, a broad cumulative peak downstream
of the start codon has been seen in the earlier profiling
papers that use elongation inhibitors and interpreted
as slow initiation (Ingolia et al., 2009). The initial peak,
albeit still present, significantly decreases when cell
mass is flash-frozen and elongation inhibiters are omitted
(Guydosh and Green, 2014; Lareau et al., 2014).

The disproportionately high accumulation of reads
at initiation is rather an artifact of the antibiotic pretreat-
ment (Becker et al., 2013) and results from inhibition of
translation elongation with ongoing initiation (Ingolia
et al., 2011). The antibiotic does not immediately reach the
threshold of complete inhibition of elongation; instead
its concentration increases gradually in the cell (Gerash-
chenko and Gladyshev, 2014). Hence, upon treatment,
some initiating ribosomes continue into the elongation
cycle until they encounter the drug, which results in an
excess of ribosomal footprints over the first five to ten
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codons from the coding sequence (Gerashchenko and
Gladyshev, 2014). Additionally, an 80S ribosome stalled
in the proximity of the start codon will prevent any sub-
sequent scanning ribosome from reaching the initiation
codon, which may result in an apparent stalling at an
upstream open-reading frame (uORF). Thus, an initia-
tion site with mediocre context in uORF will be occupied
because of the highly efficient but blocked downstream
start site (Jackson and Standart, 2015), which may lead to
an erroneous interpretation of alternative uORF-induced
initiation.

Careful consideration of the effect of antibiotics on
ribosome coverage offers little support that the large
number of genes with uORFs is involved in shaping the
resistance to oxidative stress (Gerashchenko and Glady-
shev, 2014). Ribosome profiling without antibiotics prior
to cell harvesting revealed that translation of only a small
fraction of uORF-bearing mRNA was refractory to oxida-
tive stress (Andreev et al., 2015). Elongation inhibitors
added prior to harvesting the ribosome-mRNA complexes
alter the distribution of reads in the cumulative ribo-
some profiles (namely, the aligned and averaged profiles
of many genes). For example, emetine-stalled elongat-
ing ribosomes give slightly longer fragments than those
isolated from cycloheximide-treated mammalian cells,
suggesting that various antibiotics stabilize different
ribosome conformation (Ingolia et al., 2011). Conversely,
drug pretreatment may eliminate some features of bio-
logical importance in the cumulative ribosome profiles.
For example, antibiotic pretreatment in mammalian cells
eliminates the ribosomal peak at the end of the open-read-
ing frames, which is observed in untreated cells (Ingolia
et al., 2011).

The most widely applied cell harvesting procedure
involves rapid cooling of the cell suspension and cen-
trifugation (Becker et al., 2013) (Figure 1). Bacteria are
cooled by pouring the cell suspension over crushed ice,
while eukaryotic (mammalian) cells cultured in mon-
olayer are re-suspended in ice-cold PBS supplemented
with elongation inhibitor and immediately pelleted by
centrifugation (Guo et al., 2010). Tissues are usually
flash-frozen and grinded in the lysis buffer supple-
mented with elongation inhibitor (Gonzalez et al., 2014).
An alternative approach for harvesting of cells growing
in suspension is a rapid filtration of the cells in a pre-
warmed glass nitrocellulose filtration system and flash-
freezing the membrane with the cells (Figure 1). So far,
this filtration approach has been mainly used in unicel-
lular organisms (yeast and Escherichia coli, for example)
(Ingolia et al., 2009; Oh et al., 2011; Li et al., 2012). Both
harvesting protocols show good reproducibility between
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biological replicates (r=0.99, Pearson correlation coef-
ficient) (Becker et al., 2013). Importantly, however, the
RPF accumulation at native stalling sites, e.g. SecM and
TnaC, is higher using the filtration harvesting (Becker
et al., 2013). Most likely, the filtration approach com-
pared to the centrifugation is less susceptible to vari-
ations and faithfully halts the translating ribosomes.
Still, harvesting by centrifugation might be the only
option for cells that cannot be rapidly filtered. However,
it is important to perform it as quickly as possible using
pre-chilled devices.

In summary, the procedure for isolation of ribosome-
mRNA complexes is of crucial importance. While drug
pretreatment may not influence differential expression
analysis, as the expression of each gene is compared
under two different conditions with an otherwise uniform
protocol, the use of elongation inhibitors or the harvesting
procedure may alter the interpretation of position-specific
information.

Cell lysis

Similar to the cell harvesting procedure, the aim at this
step is to recover the ribosome-mRNA complexes with
minimal losses from ribosomal dissociation (or drop-
off) and mRNA degradation. The composition of the lysis
buffer is optimized to stabilize the ribosome-mRNA com-
plexes with high concentration of magnesium (between 5
and 20 mM) and an additional salt, such as KCI or NaCl
and NH4CI.

The isolation of intact polysomes is a procedure
established in early ribosome research and is still applied
today almost unchanged (Wettstein et al., 1963; Dresden
and Hoagland, 1965). The composition of the lysis buffer
underwent several variations. However, some compo-
nents of the lysis buffer, if overdosed, may distort the
ribosome profiles. For example, high NaCl concentration
decreases the monosome peak and enhances the fraction
of dissociated ribosomal subunits (Becker et al., 2013);
high salt concentration increases the fraction of vacant
ribosomes that are not engaged in translation (Blobel and
Sabatini, 1971) and consequently decreases the number of
RPF. Magnesium stabilizes the translating ribosomes (Ron
et al., 1968) and at high concentrations freezes the con-
formational changes in the bacterial ribosome (Blanchard
et al., 2004). Moreover, high magnesium concentration
induces folding of the mRNA, which hinders the subse-
quent nucleolytic digestion (Andreev et al., 2015). Low-
ering the magnesium concentration from 15 mM to 5 mm
greatly improves the codon positioning of the footprints
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and the resolution of the ribosome profiling (Ingolia et al.,
2012). Also, low magnesium conditions permit conforma-
tional flexibility of the ribosome and create heterogeneity
in the length ribosomal footprints (Lareau et al., 2014); the
variant ribosomal footprints are informative on distinct
stages of the translating ribosome during the elongation
cycle.

The lysis buffer also contains an elongation inhibitor
to additionally stabilize the ribosome-mRNA complexes
during sample processing. The binding Kkinetics of the
antibiotic when present in the cell lysis is rapid com-
pared to the diffusion-driven process of antibiotic enrich-
ment in intact cells during the pretreatment procedure.
Generation of cell extracts from Saccharomyces cells
in the cycloheximide-containing lysis buffer faithfully
halted the ribosomes along the mRNA with no distortion
(Guydosh and Green, 2014). Cycloheximide should be
preferred over alternative substances that stabilize eukar-
yotic ribosome-mRNA complexes, e.g. the non-hydro-
lyzable GTP analog GMP-PNP, as they slightly increase
the size of the ribosome footprints (Guydosh and Green,
2014). Although such studies with bacterial elongation
inhibitors are missing, it can be expected that their mode
of action will be similar to that of the cycloheximide when
added to the lysis buffer.

Along with variations in the composition of the lysis
buffer, the lysis procedure also varies. In general, despite
the presence of components stabilizing the ribosome-
mRNA complexes (e.g. elongation inhibitors, magne-
sium) to avoid ribosomal reallocation or dissociation,
lysis is usually carried out at low temperatures by either
adding frozen drops of lysis buffer to a frozen cell powder
or flash-freezing with the cell mass. When this is not
applicable, i.e. by ribosome profiling of tissues, the lysis
buffer is generally added to the sample ice-cold (Gonzalez
et al., 2014).

Eukaryotic cells are lysed on ice by repeated micro-
pipetting or homogenization (Guo et al., 2010; Becker
et al., 2013; Chew et al., 2013). Pulverized bacteria or
monocellular eukaryotes are homogenized in a mill with
liquid nitrogen (Oh et al., 2011; Guydosh and Green,
2014; Woolstenhulme et al., 2015). This method is trans-
ferrable to any cell type and frozen tissue and should
be the preferred lysis approach as it allows treatment of
the sample at very low temperatures. During the homog-
enization, local temperature fluctuations in the sample
should be avoided by careful choice of the conditions,
i.e. short homogenization pulses and pre-cooling the
grinder jar before and after each homogenization cycle
(Oh et al., 2011; Guydosh and Green, 2014; Woolsten-
hulme et al., 2015).
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Nucleolytic generation of ribosomal
footprints

The clarified lysate is then digested with a nuclease to
generate monosomes (Figure 1). RNase I has been exclu-
sively used in eukaryotic ribosome profiling (Ingolia et al.,
2012) and micrococcal nuclease (MNase) from Staphylo-
coccus aureus in bacteria; RNase I is inactive in bacteria
(Datta and Burma, 1972). MNase can also be used in
eukaryotic lysates (Reid and Nicchitta, 2012; Dunn et al.,
2013), and, in fact, it leads to a reduced amount of ribo-
somal RNA (rRNA) contamination compared to RNase
I treatment (Oh et al., 2011; Miettinen and Bjorklund,
2015). The activity of the MNase is modulated by calcium
ions. A disadvantage of MNase is its preferential cleavage
at A or T nucleotides (Dingwall et al., 1981) and conse-
quently, the MNase-generated ribosome footprints might
be enriched in A or T nucleotides at their 5" ends. Com-
pared to fragments derived from yeast lysates treated
with RNase I, the MNase-generated footprints are more
heterogeneous in length (Becker et al., 2013) due to steric
effects and less precise 5" cleavage (Woolstenhulme et al.,
2015). In contrast, MNase cleaves precisely at the 3’ end
contour of the ribosome, thus the calibration of the reads
in bacterial system should be preferably done using the 3
ends of the reads (Woolstenhulme et al., 2015) (see section
‘Analysis of the sequencing data’). RNase I cleavages are
precise at both 5" and 3’ ends, enabling calibration using
both termini. Conversely, RNase I-treated samples show a
slight bias towards enrichment of short genes (Miettinen
and Bjorklund, 2015), although the reason for this remains
unclear.

Contamination with rRNA fragments released by the
nucleolytic digestion substantially decreases the amount
of informative sequencing data. Importantly, the rRNA
fragments generated during the nucleolysis of the poly-
somes are species-specific, but are limited to only few
fragments and can be efficiently removed to near com-
pleteness by using few complementary oligonucleotides.
Thus, in setting up a protocol for ribosome profiling in a
new cell line or species, it is recommendable by to perform
a pioneer sequencing run to identify the contaminant
rRNA species and design specific oligonuclotides for the
depletion of rRNA-derived fragements.

Finally, the amount of each nuclease needs a careful
determination; enhanced nuclease activity (caused either
by large amounts of enzyme, pH variations or long diges-
tion times) leads primarily to an increased contamination
of the ribosome footprint libraries with rRNA fragments.
By contrast, insufficient amount of MNase causes less
stringent cleavage of the mRNA and results in longer
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fragments which migrate outside of the range selected for
ribosomal fragments during the gel purification proce-
dure. Consequently, it will yield lower depth and coverage
of the mRNAs and it will decrease the accuracy in deter-
mining ribosome positions along mRNAs (Becker et al.,
2013).

Generation of the deep-sequencing library

The preparation of libraries for deep sequencing involves
fusion of adapters to the generated small DNA or RNA frag-
ments. This process also contains biases and a detailed
knowledge is of crucial importance to avoid erroneous
interpretation of the data. A recent review summarizes
the critical caveats in each step of library preparation
(van Dijk et al., 2014). Here, we only compare various
methods for adaptor ligations to the ribosomal footprints,
which are unique to the ribosome profiling procedure. In
principle, after nucleolytic digestion the ribosome profil-
ing follows the typical steps of library preparation in the
micro RNA-Seq methodology (Guo et al., 2010), including
sequential adaptor ligation, reverse transcription of the
RNA fragments and PCR amplification of the transcribed
DNA. The earliest approach uses circularization of the
fragments to fuse adaptors at both ends (Ingolia et al.,
2009). Prior to this, each fragment is polyadenylated at
its 3’ ends with poly(A)-polymerase (Ingolia et al., 2009),
which serves as a priming site for the reverse transcription.
Polyadenylation was also introduced to produce uniform
3’ ends of all fragments and to reduce the bias in the liga-
tion (Ingolia, 2010), however the sequenced fragments are
enriched in adenines at their 3’ termini (Artieri and Fraser,
2014). Furthermore, in the circularization procedure, an
additional preference for adenine at the first 5’-position is
observed (Lamm et al., 2011; Artieri and Fraser, 2014): it
does not depend on the polyA-tails of the fragments and
the origin of this bias is unknown.

Later developments in the library preparation of ribo-
somal footprints use ligation approaches established in
the sequencing of miRNAs, in which 3’ and 5 adaptors
are ligated sequentially to the fragments without circu-
larization (Guo et al., 2010). This allowed capture of low-
abundance fragments and omitted the sequence bias (i.e.
the preference for adenines at 5" and 3’ positions). Note
that direct ligation of a 3" adapter might be applied also
as an alternative to polyA-tailing, preceding the circu-
larization approach. However, some sequences in the
libraries generated with sequential adaptor ligation were
overrepresented compared to a sequencing in which the
adaptors were ligated using the circularization protocol.
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The overrepresented fragments are a consequence of
local secondary structure preferences (Hafner et al., 2011;
Zhuang et al., 2012) and their propensity to co-fold with
the adaptor sequences (Jackson et al., 2014). Using trun-
cated T4 RNA Ligase 2 instead of the previously used
full-length, non-truncated version decreased the amount
of those fragments by a half (Jackson et al., 2014). Intro-
ducing short (2-4 nt) randomized sequences at the 5" and
3’ ends of the adaptors also reduced the adaptor ligation
bias (Jayaprakash et al., 2011; Sorefan et al., 2012; Zhang
etal., 2013).

Analysis of the sequencing results

The ribosomal footprints are very short (25-35 nt depend-
ent on the organism, nucleolytic digestion protocol and
manually excised region of the gel) and are usually
sequenced by a single-end sequencing approach. The
maximum number of total reads coming from a sequenc-
ing machine vary between sequencing samples (Mortazavi
et al., 2008; Garber et al., 2011): for example, our experi-
ence with various organisms (bacteria, mouse cell lines
and tissues, plants and human samples) for which we
performed ribosome profiling on a Illumina HiSeq2000
(Illumina, San Diego, USA), have generated 40-195 million
reads per sequencing lane. The final amount of reads cor-
relates with the quality and quantity of the input mate-
rial. The first step in the data processing undergoes an
initial quality and adaptor trimming (Figure 2). There is no
uniform quality cut-off score and most ribosome profiling
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Figure 2: Flow-chart of data analysis in ribosome profiling.
Crucial steps are color-coded in orange.
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data are processed with a Phred score in the range ~20-30
or with 99.0-99.9% base accuracy (Ingolia et al., 2012;
Zhang et al., 2012). In NGS data sets the quality drops
towards the 3’ end of the reads (Dohm et al., 2008) which
is also mirrored in the ribosome profiling libraries despite
the short length of the fragments. Most of the tools used
for this initial data processing (https://code.google.com/p/
cutadapt/; http://hannonlab.cshl.edu/fastx_toolkit) (Lind-
green, 2012; Bolger et al., 2014) also offer removal of reads
with length shorter than expected upon adaptor cutting.

Read mapping

Read mapping is the most crucial procedure. Although
principally the ribosomal footprints are in their core an
RNA-Seq data set, there is no standardized pipeline with
recommended mapping parameters. Mapping can be per-
formed to genomes or transcriptomes, but the short single-
end reads generated in the ribosome profiling experiment
cannot be used for de novo assembly of genomes or tran-
scriptomes (Simpson and Pop, 2015). Mapping to the
genome should be preferred as it is unbiased towards
known exon and intron annotations and allows for dis-
covery of previously undescribed ORFs (Andreev et al.,
2015). Genome mapping usually gives greater coverage
than mapping to transcriptomes (the loss of reads on exon
junctions is minor) (Oshlack et al., 2010). Furthermore,
genomes are better defined than transcriptomes, which
are constructed in several different ways (reviewed in
Garber et al., 2011). Also, mapping to genomes is less com-
putationally intense and thus faster.

A prerequisite to good results is complete genome
annotation, i.e. the availability of the gene coordinates.
Genome annotation is a subject of intensive and constant
improvement. For example the E.coli genome hosted on
the NCBI server (Freddolino et al., 2012) is updated daily
and the number of genes constantly changes. Although
this fast adjustment makes new findings immediately
available, it creates a gap with the hand-curated data-
bases, some of which may offer more precise annotation
of additional features. For example, RegulonDB (Salgado
etal., 2013) offers more information on additional features
than the NCBI annotations, including genes organized in
operons, 5" and 3’ UTRs. For eukaryotes the development is
equally fast with frequently updated versions of genomes
and their annotations. Three important webservers host
various eukaryotic genomes: NCBI reference sequences,
RefSeq (Pruitt et al., 2007), ensembl (Cunningham et al.,
2015) and UCSC (Kent et al., 2002). The genome annota-
tion choice may significantly influence the downstream
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quantification of expression and differential analysis
(Zhao and Zhang, 2015), although a simple advice on
which database to use is not possible and should be
driven by the purpose of the analysis. For research aiming
at reproducible and robust gene expression estimates,
RefSeq might be preferred (Wu et al., 2013). More explora-
tory questions may rely on more complex annotations,
e.g. ensembl.

The mapping tools can be classified into two major
groups: hash-table based (Li et al., 2008; Homer et al.,
2009); or Burrows-Wheeler Transform (BWT) algorithms
(Langmead et al., 2009; Li and Durbin, 2009). While
BWT-based approaches are faster and less computation-
ally demanding, the hash-table-based algorithms are
more flexible in aligning reads with non-perfect matches.
Also the efficiency of BWT-based mapping approaches
inversely correlates with the number of mismatches
[reviewed in (Li and Homer, 2010; Garber et al., 2011)].
Comparison of the tools is not trivial and differs depend-
ing on the data set, thus only few objective investigations
have been performed so far (Giannoulatou et al., 2014). In
the majority of ribosome profiling experiments (Ingolia
et al., 2009, 2011; Guo et al., 2010; Gerashchenko et al.,
2012; Li et al., 2012; Chew et al., 2013; Guttman et al.,
2013; Aspden et al., 2014; Baudin-Baillieu et al., 2014;
Bazzini et al., 2014; Subramaniam et al., 2014), Bowtie
(Langmead et al., 2009) is used as a BWT-based mapping
program. Bowtie offers two ways of mapping a read to a
reference sequence: seed- (parameter n) and mismatch-
based approach (parameter v, Table 1). The seed approach
aligns first a seed (or core) of a read and then extends the
alignment further along the read length. Thereby, the
mismatches in the seed count stronger than those in the
extensions. Mostly, default Bowtie parameters (parameter
n for the seed-based approach) are used (Guo et al., 2010;
Li et al., 2012; Baudin-Baillieu et al., 2014; Subramaniam
et al., 2014). Some studies apply the mismatch approach
(Ingolia et al., 2011; Gerashchenko et al., 2012) which
scores every base of each read equally. As the default seed
length of 28 nt remains unchanged when using the default
parameter settings, the seed-based strategy effectively
works as a mismatch approach.

A general drawback of Bowtie is its inability to map
splice junctions. One commonly used tool to align short
reads across junctions is TopHat (Trapnell et al., 2009;
Kim et al., 2013) which can also find junctions de novo.
First, the TopHat pipeline maps to all reads to a reference
genome using Bowtie and allows reporting more than one
alignment of a read (i.e. m=inf k=20 [translated to Bowtie
parameters]). TopHat then assembles the mapped reads
using the assembly module in Maq (Li et al., 2008) in
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E § % § Stringent criterion leads to sparse and incomplete cover-
?5 N g e 2 g g *2 . age of each gene (Figure 3B-C), while allowing mapping
£ :,E g § :,9 E éé’ § to multiple positions in the genome improves signifi-
E Slf|l83=2258 =8 can.tly the coverage of a singlfe gene (Figure 3D—'E'). Th'e
E assignment .Of Fhe reads mappmg to multiple positions is
5 = o 2 also of crucial importance. Multimappable reads can be
o Cl o 0o o assigned randomly to one of the possible positions they
o Sl>a== o= map (Figure 3D) or to all possible positions (Figure 3E).
§ However, choosing the mapping parameter in such a way
2 ;:: that the first hit position is reported (Figure 3D) bears
2 § § 2 2 some caveats as the origin of the reads is unclear, i.e.
i RISl c_ 588« whether they are from the same gene or originate from
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Figure 3: Effects of different mapping strategies on gene coverage.
(A) Total reads mapped to the genome allowing different number of maximal best mappable positions per read (at m=1, a read with one
best position (uniquely mappable) is allowed, otherwise discarded; at m=100 a read can be mapped to the 100 best positions and all posi-
tions are recorded). Mapping of ribosome profiling data of mouse brain was performed with Bowtie using the mouse genome (assembly
GRCm38) allowing two mismatches per read (-v2 —strata —best). (B—E) Different mapping strategies result in variations in the read coverage
of a human rplA gene mapped from ribosome profiling data with Bowtie using the human genome (assembly GRCm38). Mapping with (B)
a single hit (uniquely mappable) fulfilling the restrictions of maximum two mismatches (-v2 -m1), (C) with a single best hit (uniquely mappa-
ble) (-v2 —-m1 —strata —best), (D) with default parameter and restrictions to maximum 100 positions with two mismatches, but with only one
listed in the output (v2 -m100), (E) with multimapping restricted to 100 multimappable best positions (i.e. lowest number of mismatches)
and best positions listed in the output (-v2 -m100 —k100). Best, the parameters strata best are given to ensure that a multimappable posi-
tion is counted as such only by the same minimum number of mismatches; no best, default mode with no strata best parameters chosen;
m, maximum number of multiple positions per read; k, maximum number of reported alignment. Note settings as in B should be avoided.
Parameters as in C show the most reliable data, although the coverage is incomplete. The loss of reads in D compared to E is most likely
due to the reporting of only one of the valid alignment positions.

another position in the genome. Thus, it might artifi-
cially increase the total number of reads on a gene. In

with uniquely mappable reads (Figure 3C) might be the
best choice.

this context, mapping to multiple positions with equal
weighting of all positions (Figure 3E) might be a better
choice as it does not prefer between positions and maps
uniformly to all best mappable positions. For some analy-
sis, to avoid overinterpretation of the data (for example
by differential analysis), the most conservative mapping

The majority of the ribosome profiling datasets
mapped with Bowtie do not set parameters to evaluate the
quality of the alignments for a read (e.g. strata best), that
compares, for example, whether a zero-mismatch mapping
is better than an alignment with two mismatches. Usually,
the first encountered alignment of a read is assigned to
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it (Gerashchenko et al., 2012; Li et al., 2012; Subrama-
niam et al., 2014). Thus, when multimapping is allowed, a
read with zero mismatches in a certain position may also
be mapped to a different position with two mismatches.
Consequently, it creates a bias because the best alignment
would not be satisfied, but a read is randomly assigned
to one of the two positions independent of the number
of the mismatches. The choice of the parameters for the
mapping are of crucial importance as they can result in
significant variations in the mapping and gene coverage
profiles (Figure 3B-E). For reproducibility of the results
it is advisable to clearly state the mapping parameter in
each publication.

As both nucleases (RNase I for eukaryotic and MNase
for bacterial systems) that are used to produce ribosomal
footprints, cleave also rRNA, the rRNA reads comprise
a large fraction of the sequencing reads, despite their
removal in the experimental procedure. rRNA mapping
and subtraction of those reads can be done in an extra
round before or after mapping to the genome. Thereby, the
mapping of the rRNA reads should be strict, i.e. allowing
only a single mismatch.

In summary, mapping defines the shape of dataset
to be used for further analysis and hence is a crucial step
for which the parameters should be chosen carefully. In
studies aiming at reproducible and robust gene expres-
sion estimates, uniquely mappable reads aligned to a ref-
erence genome (i.e. m=1 strata best) should be selected as
they bear the lowest bias. However, for some genes (e.g.
isoforms, duplicates), using only uniquely mapped reads
may result in a partial coverage of a gene (Figure 3B,C);
an incomplete coverage cannot be used to extract specific
positions on which the ribosomes may pause or enrich-
ment of reads over specific codons. For such analysis a
multiple alignment of the multimappable reads (i.e. m=10
a strata best) might be chosen to ensure a maximal gene
coverage. This parameter set bears drawbacks in analyz-
ing the coverage of simultaneous expression of genes
sharing large sequence identity (i.e. isoforms and dupli-
cates). Such genes should be carefully assessed and might
be separately compared only with their uniquely mappa-
ble reads or their expression should be confirmed with
alternative methods (e.g. qRT-PCR).

Normalization of the read counts

Following mapping, read counts, also called gene counts,
are collected and assigned to each gene or non-coding
RNAs. Overlapping genes can be an issue here. As the
ribosome profiling protocol is strand-specific, overlapping
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genes on different strands are well resolved. For genes
overlapping on the same strand, as commonly observed
in E. coli in which the coding sequence of the one gene
falls into the end of the coding sequence of another, some
read counting tools correct for this by randomly distribut-
ing the reads to the two overlapping genes (Anders et al.,
2015), while other tools do not recognize overlapping fea-
tures (Quinlan, 2014).

A commonly applied approach for normalization of
the read counts is reads per kilobase of exon per million
mapped reads, rpkM, (Mortazavi et al., 2008), which
accounts for the differences in the sequencing depth (i.e.
total number of the mapped reads) between sequencing
libraries and for the length variation of each gene (i.e. per
kilobase). Note that for short genes this normalization can
give quite high rpkM values despite the presence of only
few raw counts. Thus the detection limit should be set up
using the raw counts (Ingolia et al., 2011). Other normali-
zation approaches frequently applied in the RNA sequenc-
ing (RNA-Seq) might be applied too (Anders and Huber,
2010; Robinson et al., 2010; Dillies et al., 2013) but the
statistical behavior of ribosome profiling data with those
normalization procedures has not yet been tested (Olshen
etal., 2013).

Further downstream analysis and
post-processing

In the RNA-Seq datasets, several tools are used to iden-
tify differentially expressed (DE) genes (Guo et al., 2013),
some of which (e.g. DESeq tool) have been applied in a
few ribosome profiling studies (Baudin-Baillieu et al.,
2014; Sidrauski et al., 2015). Still, they require a test that
the ribosome profiling read counts follow the underly-
ing distributions required by many tools designed for
DE analysis of RNA-Seq, for example DESeq (Anders and
Huber, 2010), EdgeR (Robinson et al., 2010), and baySeq
(Hardcastle and Kelly, 2010). In all cases, a careful and
conservative interpretation of the data is needed because,
unlike RNA-Seq (Dillies et al., 2013), no uniform pipeline
exists for ribosome profiling data. So far, only one tool has
been developed specifically for ribosome profiling data
(Olshen et al., 2013). Instead of performing DE analysis,
a simple fold-change analysis can be carried out (Dunn
et al., 2013) with the assumption that most of the genes
are unchanged.

Still, a fascinating issue of ribosome profiling is the
ability to record the position of ribosomes with single
nucleotide resolution (Ingolia et al., 2009; Woolstenhulme
et al., 2015), which enables detecting ribosomal pausing
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(i.e. specific positions at which ribosomes pause) or encod-
ing events (e.g. readthrough or frameshifting) (Li et al.,
2012; Michel et al., 2012; O’Connor et al., 2013). The align-
ment of the ribosomal reads to the open-reading frame is
called calibration in which the start codon is assigned to
the ribosomal P-site (Ingolia et al., 2009) or the stop codon
is assigned to the A-site (Woolstenhulme et al., 2015). If
the ribosomes are not completely halted during the iso-
lation procedure, it will compromise the calibration and
would not allow for codon resolution (Ingolia et al., 2009).
While ribosomal footprints of eukaryotic ribosomes can
be calibrated using both stop and start codons, i.e. both
5 and 3’ of the reads, reads from bacterial systems give
only codon resolution when calibrated using their 3" ends,
most likely because of the sharp cleavage of the MNase at
the 3’ of the reads but not at the 5" ends (Woolstenhulme
et al., 2015). Another approach to gain positional infor-
mation of the translating ribosomes is center-weighted
or center-assigned approach (Li et al., 2012). A defined
number of nucleotides are excluded from both 5" and 3’
sides of a read and the remaining centrally positioned
nucleotides are weighted equally. This approach deliv-
ers less sharp resolution and defines the position of the
ribosomal A- or P-sites with a subcodon resolution. Thus,
it has limited applications and cannot be used for deter-
mining the reading frame (Woolstenhulme et al., 2015).
Both, calibrated and center-weighted ribosomal reads
can be used to assess ribosomal enrichment over specific
codons (Li et al., 2012; Ishimura et al., 2014) or to deter-
mine sequences over which ribosomes transiently pause
(Li et al., 2012; Woolstenhulme et al., 2015).

In the library preparation, RNA fragments over a
typical length range of 25-35 nt, tightly distributed around
a peak of ~28 nt, are selected from the gel upon ribonucle-
olytic digestion (Ingolia et al., 2009; Guydosh and Green,
2014). It should be noted that reads outside this range
may also bear some biological information and, depend-
ent on the specific question, might also be included in the
library preparation. Reads shorter than the average length
of ~28 nt represent different conformational states of the
elongating ribosome (Lareau et al., 2014) or report on
ribosomes stalled over 3’ truncated mRNAs (Guydosh and
Green, 2014). In turn, longer reads may be informative on
frameshifting events (O’Connor et al., 2013). When com-
paring expression level on a gene basis in the DE analysis,
all reads independent of their length might be considered
under the assumption that each ribosome read produces
one protein. For more specific analysis, including ribo-
somal stalling at specific positions, the reads should be
separated by their length and each length group should
be treated separately.
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Computational demand and infrastructure

Raw data from one sequencing lane of Illuminas HiSeq
machine (Illumina, San Diego, USA) can reach a size of
more than 20 GB (uncompressed). Preprocessing and
mapping of these raw files easily exceeds another 20 GB;
discarding the intermediate preprocessing file and
keeping only compressed raw files requires hard disk
space for one lane of about 20 GB. The demand of RAM
varies dependent on the type of analysis and program-
ming languages. For example, using a simple Perl hash
index build on each of the ~4 million nucleotides of the
relatively small E. coli genome requires more than 4 GB of
RAM. Mapping with BWT-based algorithms demands rela-
tively low memory (Langmead et al., 2009; Li and Durbin,
2009). For example, the human genome can be mapped
with <8 GB of RAM (Langmead et al., 2009; Li and Durbin,
2009). The mapping programs offer an option to use more
than one CPU in parallel to increase speed (Langmead
et al., 2009). Many of pre- and post-processing steps are
not implemented as full programs but as a collection of
scripts or even in-house scripts (Anders et al., 2015).

Conclusions

Ribosome profiling is a powerful technology to study
translation in vivo on a cell-wide scale. While introducing
this approach we are beginning to appreciate the variety
of mechanisms that control translation and gene expres-
sion. However, non-standardized sample preparation and
ambiguous processing of the data has produced some
inconsistencies and has challenged direct comparisons
between different studies. Experimentally, ribosome pro-
filing is a multistep procedure that is in constant develop-
ment and improvement of the single experimental steps.
The task would be to understand the intrinsic bias of each
step in order to carefully design the experimental protocol
and interpret the data.

The analysis of data is complex, in part because of
the short read lengths. Particularly crucial is the mapping
procedure and normalization that defines the data set for
further downstream analysis. The goal in the data analy-
sis is to develop a uniform protocol, at least for mapping
and normalization, as the broadness of the downstream
analysis does not allow full standardization of this part
of the pipeline. With the development of more standard-
ized ribosome profiling technology and optimized sample
preparation, we will move to a higher reproducibility of
the data and a more accurate quantitative understanding
of the mechanisms of translational control.
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