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Abstract: Ribosome profiling is a new emerging technol-
ogy that uses massively parallel amplification of ribosome-
protected fragments and next-generation sequencing to 
monitor translation in vivo with codon resolution. Stud-
ies using this approach provide insightful views on the 
regulation of translation on a global cell-wide level. In 
this review, we compare different experimental set-ups 
and current protocols for sequencing data analysis. Spe-
cifically, we review the pitfalls at some experimental steps 
and highlight the importance of standardized protocol for 
sample preparation and data processing pipeline, at least 
for mapping and normalization.
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Introduction
At any given time, the amounts and types of proteins 
reflect the functional status of the cell. The protein com-
position is a balance between protein synthesis and 
degradation. On the synthesis side, protein production 
is controlled at the level of transcription and translation 
and the messenger RNA (mRNA) is the connecting entity 
between these two processes. Moreover, emerging evi-
dence suggests that the mRNA open-reading frame bears 
far more information than just the amino acid sequence 
of the synthesized protein. Codon choice to encode one 
amino acid (Plotkin and Kudla, 2011), tRNA modifications 

(Nedialkova and Leidel, 2015; Tyagi and Pedrioli, 2015) or 
secondary structures (Wen et al., 2008; Chen et al., 2013) 
modulate the local speed at which mRNA is translated 
and link it to protein biogenesis or stress response. Recent 
developments in the next-generation sequencing (NGS) 
technologies revealed additional layers embedded in the 
mRNA to regulate its translatability and consequently the 
downstream processes in protein biogenesis including 
cotranslational folding, insertion into membranes and 
interactions with auxiliary factors (Kramer et  al., 2009; 
Zhang and Ignatova, 2011; Pechmann et  al., 2014). Spe-
cifically, a recent twist of the NGS technologies to capture 
translating ribosomes, named ribosome profiling (Ingolia 
et al., 2009), has significantly advanced our understanding 
on translation regulation in various organisms [reviewed 
in (Ingolia, 2014)]. Ribosome profiling is based on high-
throughput sequencing of ribosome-protected RNA frag-
ments, or ribosomal ‘footprints’, which specifically report 
on the position of the translating ribosomes with a nucle-
otide resolution (Ingolia et al., 2009). A growing body of 
published literature illustrates the power of this approach 
to unravel new aspects on translation regulation, for 
example identification of extensive upstream initiation at 
non-AUG codons in eukaryotes (Ingolia et al., 2009, 2011; 
Fritsch et al., 2012; Lee et al., 2012) and specific regulation 
of the stress response at translation level (Liu et al., 2013; 
Shalgi et al., 2013; Andreev et al., 2015). Further develop-
ment of the profiling technology to isolate a fraction of 
ribosomes that are involved in specific cellular processes 
revealed new insights into the localized protein synthesis 
in yeast (Jan et al., 2014) or the interaction with a trigger 
factor, an auxiliary factor facilitating cotranslational 
folding in bacteria (Oh et al., 2011).

Without doubt, ribosome profiling is a powerful 
technology to address various aspects of translation 
regulation on a genome-wide scale, and several excel-
lent reviews summarize the power of this technology 
(Morris, 2009; Kuersten et al., 2013; Michel and Baranov, 
2013; Ingolia, 2014). However, this approach is relatively 
young, with steadily evolving experimental protocol and a 
non-standardized platform for data analysis. The pace of 
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exploration creates some difficulties in comparing results 
produced in different laboratories. In addition, different 
approaches to analyze the data disclose variations in their 
interpretation (Gerashchenko and Gladyshev, 2014). Here, 
we focus on the ribosome profiling procedure and data 
analyses and critically review the biases of the various 
steps in the profiling protocol as a potential source of 
variation. We also provide examples on how variations in 
the ribosome profiling procedure put restrictions on the 
downstream analysis and determine the information that 
can be extracted from the data. We suggest standardizing 
ribosome profiling protocol and adjusting only a step (or 
few steps) depending on the specific scientific question.

Isolation of intact translating 
ribosomes
At the core of ribosome profiling is a nuclease digestion of 
mRNA unprotected by the ribosome and recovering ribo-
some-protected mRNA fragments (i.e. ribosome footprints) 
(Steitz, 1969) and their conversion into a DNA library that 
is further analyzed by deep sequencing (Ingolia et  al., 
2009) (Figure 1). Thus, this approach maps the position of 
the translating ribosomes on each mRNA and provides a 
snap-shot of translation.

Harvesting the cells and antibiotic 
pretreatment

The most delicate step in the sample preparation is the 
isolation of intact ribosome-mRNA complexes. Ideally, the 
isolation procedure should faithfully freeze the translat-
ing ribosomes and avoid conditions that stimulate riboso-
mal drop-off and, most importantly, ribosome relocation 
on the mRNA during the sample processing.

Early in the development of the ribosome profiling 
approach, cells were pre-incubated with elongation inhib-
itors (mainly chloramphenicol for bacteria and cychlohex-
imide for eukaryotes) to inhibit further movement of the 
elongating ribosomes along the mRNA (Ingolia et  al., 
2009). The antibiotic treatment markedly affects the cov-
erage profiles and introduces some bias in the results; 
the elongation inhibitors do not uniformly stall elongat-
ing ribosomes but rather show a codon-dependent mode 
of action (Orelle et al., 2013). Cycloheximide also allows 
one complete translocation cycle before blocking the ribo-
some (Pestova and Hellen, 2003; Schneider-Poetsch et al., 
2010) and thus diffuses the read-out when determining 

Figure 1: Flow-chart of isolation of intact ribosome-mRNA 
complexes and library preparation for the ribosome profiling 
experiment.
Crucial steps at which specific decisions need to be taken are 
color-coded in orange. Detailed knowledge of the bias of each of 
those procedures is essential for the careful interpretation of the 
sequencing data.

codon-dependent stalling (Nedialkova and Leidel, 2015), 
while non-antibiotic treated cells deliver much sharper 
pause sites corresponding to rare codons (Pelechano 
et al., 2015).

In addition, a broad cumulative peak downstream 
of the start codon has been seen in the earlier profiling 
papers that use elongation inhibitors and interpreted 
as slow initiation (Ingolia et al., 2009). The initial peak, 
albeit still present, significantly decreases when cell 
mass is flash-frozen and elongation inhibiters are omitted 
(Guydosh and Green, 2014; Lareau et al., 2014).

The disproportionately high accumulation of reads 
at initiation is rather an artifact of the antibiotic pretreat-
ment (Becker et  al., 2013) and results from inhibition of 
translation elongation with ongoing initiation (Ingolia 
et al., 2011). The antibiotic does not immediately reach the 
threshold of complete inhibition of elongation; instead 
its concentration increases gradually in the cell (Gerash-
chenko and Gladyshev, 2014). Hence, upon treatment, 
some initiating ribosomes continue into the elongation 
cycle until they encounter the drug, which results in an 
excess of ribosomal footprints over the first five to ten 
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codons from the coding sequence (Gerashchenko and 
Gladyshev, 2014). Additionally, an 80S ribosome stalled 
in the proximity of the start codon will prevent any sub-
sequent scanning ribosome from reaching the initiation 
codon, which may result in an apparent stalling at an 
upstream open-reading frame (uORF). Thus, an initia-
tion site with mediocre context in uORF will be occupied 
because of the highly efficient but blocked downstream 
start site (Jackson and Standart, 2015), which may lead to 
an erroneous interpretation of alternative uORF-induced 
initiation.

Careful consideration of the effect of antibiotics on 
ribosome coverage offers little support that the large 
number of genes with uORFs is involved in shaping the 
resistance to oxidative stress (Gerashchenko and Glady-
shev, 2014). Ribosome profiling without antibiotics prior 
to cell harvesting revealed that translation of only a small 
fraction of uORF-bearing mRNA was refractory to oxida-
tive stress (Andreev et  al., 2015). Elongation inhibitors 
added prior to harvesting the ribosome-mRNA complexes 
alter the distribution of reads in the cumulative ribo-
some profiles (namely, the aligned and averaged profiles 
of many genes). For example, emetine-stalled elongat-
ing ribosomes give slightly longer fragments than those 
isolated from cycloheximide-treated mammalian cells, 
suggesting that various antibiotics stabilize different 
ribosome conformation (Ingolia et al., 2011). Conversely, 
drug pretreatment may eliminate some features of bio-
logical importance in the cumulative ribosome profiles. 
For example, antibiotic pretreatment in mammalian cells 
eliminates the ribosomal peak at the end of the open-read-
ing frames, which is observed in untreated cells (Ingolia 
et al., 2011).

The most widely applied cell harvesting procedure 
involves rapid cooling of the cell suspension and cen-
trifugation (Becker et  al., 2013) (Figure 1). Bacteria are 
cooled by pouring the cell suspension over crushed ice, 
while eukaryotic (mammalian) cells cultured in mon-
olayer are re-suspended in ice-cold PBS supplemented 
with elongation inhibitor and immediately pelleted by 
centrifugation (Guo et  al., 2010). Tissues are usually 
flash-frozen and grinded in the lysis buffer supple-
mented with elongation inhibitor (Gonzalez et al., 2014). 
An alternative approach for harvesting of cells growing 
in suspension is a rapid filtration of the cells in a pre-
warmed glass nitrocellulose filtration system and flash-
freezing the membrane with the cells (Figure 1). So far, 
this filtration approach has been mainly used in unicel-
lular organisms (yeast and Escherichia coli, for example) 
(Ingolia et al., 2009; Oh et al., 2011; Li et al., 2012). Both 
harvesting protocols show good reproducibility between 

biological replicates (r = 0.99, Pearson correlation coef-
ficient) (Becker et al., 2013). Importantly, however, the 
RPF accumulation at native stalling sites, e.g. SecM and 
TnaC, is higher using the filtration harvesting (Becker 
et  al., 2013). Most likely, the filtration approach com-
pared to the centrifugation is less susceptible to vari-
ations and faithfully halts the translating ribosomes. 
Still, harvesting by centrifugation might be the only 
option for cells that cannot be rapidly filtered. However, 
it is important to perform it as quickly as possible using 
pre-chilled devices.

In summary, the procedure for isolation of ribosome-
mRNA complexes is of crucial importance. While drug 
pretreatment may not influence differential expression 
analysis, as the expression of each gene is compared 
under two different conditions with an otherwise uniform 
protocol, the use of elongation inhibitors or the harvesting 
procedure may alter the interpretation of position-specific 
information.

Cell lysis

Similar to the cell harvesting procedure, the aim at this 
step is to recover the ribosome-mRNA complexes with 
minimal losses from ribosomal dissociation (or drop-
off) and mRNA degradation. The composition of the lysis 
buffer is optimized to stabilize the ribosome-mRNA com-
plexes with high concentration of magnesium (between 5 
and 20 mm) and an additional salt, such as KCl or NaCl 
and NH4Cl.

The isolation of intact polysomes is a procedure 
established in early ribosome research and is still applied 
today almost unchanged (Wettstein et al., 1963; Dresden 
and Hoagland, 1965). The composition of the lysis buffer 
underwent several variations. However, some compo-
nents of the lysis buffer, if overdosed, may distort the 
ribosome profiles. For example, high NaCl concentration 
decreases the monosome peak and enhances the fraction 
of dissociated ribosomal subunits (Becker et  al., 2013); 
high salt concentration increases the fraction of vacant 
ribosomes that are not engaged in translation (Blobel and 
Sabatini, 1971) and consequently decreases the number of 
RPF. Magnesium stabilizes the translating ribosomes (Ron 
et  al., 1968) and at high concentrations freezes the con-
formational changes in the bacterial ribosome (Blanchard 
et  al., 2004). Moreover, high magnesium concentration 
induces folding of the mRNA, which hinders the subse-
quent nucleolytic digestion (Andreev et  al., 2015). Low-
ering the magnesium concentration from 15 mm to 5 mm 
greatly improves the codon positioning of the footprints 
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and the resolution of the ribosome profiling (Ingolia et al., 
2012). Also, low magnesium conditions permit conforma-
tional flexibility of the ribosome and create heterogeneity 
in the length ribosomal footprints (Lareau et al., 2014); the 
variant ribosomal footprints are informative on distinct 
stages of the translating ribosome during the elongation 
cycle.

The lysis buffer also contains an elongation inhibitor 
to additionally stabilize the ribosome-mRNA complexes 
during sample processing. The binding kinetics of the 
antibiotic when present in the cell lysis is rapid com-
pared to the diffusion-driven process of antibiotic enrich-
ment in intact cells during the pretreatment procedure. 
Generation of cell extracts from Saccharomyces cells 
in the cycloheximide-containing lysis buffer faithfully 
halted the ribosomes along the mRNA with no distortion 
(Guydosh and Green, 2014). Cycloheximide should be 
preferred over alternative substances that stabilize eukar-
yotic ribosome-mRNA complexes, e.g. the non-hydro-
lyzable GTP analog GMP-PNP, as they slightly increase 
the size of the ribosome footprints (Guydosh and Green, 
2014). Although such studies with bacterial elongation 
inhibitors are missing, it can be expected that their mode 
of action will be similar to that of the cycloheximide when 
added to the lysis buffer.

Along with variations in the composition of the lysis 
buffer, the lysis procedure also varies. In general, despite 
the presence of components stabilizing the ribosome-
mRNA complexes (e.g. elongation inhibitors, magne-
sium) to avoid ribosomal reallocation or dissociation, 
lysis is usually carried out at low temperatures by either 
adding frozen drops of lysis buffer to a frozen cell powder 
or flash-freezing with the cell mass. When this is not 
applicable, i.e. by ribosome profiling of tissues, the lysis 
buffer is generally added to the sample ice-cold (Gonzalez 
et al., 2014).

Eukaryotic cells are lysed on ice by repeated micro-
pipetting or homogenization (Guo et  al., 2010; Becker 
et  al., 2013; Chew et  al., 2013). Pulverized bacteria or 
monocellular eukaryotes are homogenized in a mill with 
liquid nitrogen (Oh et  al., 2011; Guydosh and Green, 
2014; Woolstenhulme et al., 2015). This method is trans-
ferrable to any cell type and frozen tissue and should 
be the preferred lysis approach as it allows treatment of 
the sample at very low temperatures. During the homog-
enization, local temperature fluctuations in the sample 
should be avoided by careful choice of the conditions, 
i.e. short homogenization pulses and pre-cooling the 
grinder jar before and after each homogenization cycle 
(Oh et  al., 2011; Guydosh and Green, 2014; Woolsten-
hulme et al., 2015).

Nucleolytic generation of ribosomal 
footprints

The clarified lysate is then digested with a nuclease to 
generate monosomes (Figure 1). RNase I has been exclu-
sively used in eukaryotic ribosome profiling (Ingolia et al., 
2012) and micrococcal nuclease (MNase) from Staphylo-
coccus aureus in bacteria; RNase I is inactive in bacteria 
(Datta and Burma, 1972). MNase can also be used in 
eukaryotic lysates (Reid and Nicchitta, 2012; Dunn et al., 
2013), and, in fact, it leads to a reduced amount of ribo-
somal RNA (rRNA) contamination compared to RNase 
I treatment (Oh et  al., 2011; Miettinen and Bjorklund, 
2015). The activity of the MNase is modulated by calcium 
ions. A disadvantage of MNase is its preferential cleavage 
at A or T nucleotides (Dingwall et  al., 1981) and conse-
quently, the MNase-generated ribosome footprints might 
be enriched in A or T nucleotides at their 5′ ends. Com-
pared to fragments derived from yeast lysates treated 
with RNase I, the MNase-generated footprints are more 
heterogeneous in length (Becker et al., 2013) due to steric 
effects and less precise 5′ cleavage (Woolstenhulme et al., 
2015). In contrast, MNase cleaves precisely at the 3′ end 
contour of the ribosome, thus the calibration of the reads 
in bacterial system should be preferably done using the 3′ 
ends of the reads (Woolstenhulme et al., 2015) (see section 
‘Analysis of the sequencing data’). RNase I cleavages are 
precise at both 5′ and 3′ ends, enabling calibration using 
both termini. Conversely, RNase I-treated samples show a 
slight bias towards enrichment of short genes (Miettinen 
and Bjorklund, 2015), although the reason for this remains 
unclear.

Contamination with rRNA fragments released by the 
nucleolytic digestion substantially decreases the amount 
of informative sequencing data. Importantly, the rRNA 
fragments generated during the nucleolysis of the poly-
somes are species-specific, but are limited to only few 
fragments and can be efficiently removed to near com-
pleteness by using few complementary oligonucleotides. 
Thus, in setting up a protocol for ribosome profiling in a 
new cell line or species, it is recommendable by to perform 
a pioneer sequencing run to identify the contaminant 
rRNA species and design specific oligonuclotides for the 
depletion of rRNA-derived fragements.

Finally, the amount of each nuclease needs a careful 
determination; enhanced nuclease activity (caused either 
by large amounts of enzyme, pH variations or long diges-
tion times) leads primarily to an increased contamination 
of the ribosome footprint libraries with rRNA fragments. 
By contrast, insufficient amount of MNase causes less 
stringent cleavage of the mRNA and results in longer 
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The overrepresented fragments are a consequence of 
local secondary structure preferences (Hafner et al., 2011; 
Zhuang et al., 2012) and their propensity to co-fold with 
the adaptor sequences (Jackson et al., 2014). Using trun-
cated T4 RNA Ligase 2 instead of the previously used 
full-length, non-truncated version decreased the amount 
of those fragments by a half (Jackson et al., 2014). Intro-
ducing short (2–4 nt) randomized sequences at the 5′ and 
3′ ends of the adaptors also reduced the adaptor ligation 
bias (Jayaprakash et al., 2011; Sorefan et al., 2012; Zhang 
et al., 2013).

Analysis of the sequencing results
The ribosomal footprints are very short (25–35 nt depend-
ent on the organism, nucleolytic digestion protocol and 
manually excised region of the gel) and are usually 
sequenced by a single-end sequencing approach. The 
maximum number of total reads coming from a sequenc-
ing machine vary between sequencing samples (Mortazavi 
et al., 2008; Garber et al., 2011): for example, our experi-
ence with various organisms (bacteria, mouse cell lines 
and tissues, plants and human samples) for which we 
performed ribosome profiling on a Illumina HiSeq2000 
(Illumina, San Diego, USA), have generated 40–195 million 
reads per sequencing lane. The final amount of reads cor-
relates with the quality and quantity of the input mate-
rial. The first step in the data processing undergoes an 
initial quality and adaptor trimming (Figure 2). There is no 
uniform quality cut-off score and most ribosome profiling 

fragments which migrate outside of the range selected for 
ribosomal fragments during the gel purification proce-
dure. Consequently, it will yield lower depth and coverage 
of the mRNAs and it will decrease the accuracy in deter-
mining ribosome positions along mRNAs (Becker et  al., 
2013).

Generation of the deep-sequencing library

The preparation of libraries for deep sequencing involves 
fusion of adapters to the generated small DNA or RNA frag-
ments. This process also contains biases and a detailed 
knowledge is of crucial importance to avoid erroneous 
interpretation of the data. A recent review summarizes 
the critical caveats in each step of library preparation 
(van Dijk et  al., 2014). Here, we only compare various 
methods for adaptor ligations to the ribosomal footprints, 
which are unique to the ribosome profiling procedure. In 
principle, after nucleolytic digestion the ribosome profil-
ing follows the typical steps of library preparation in the 
micro RNA-Seq methodology (Guo et al., 2010), including 
sequential adaptor ligation, reverse transcription of the 
RNA fragments and PCR amplification of the transcribed 
DNA. The earliest approach uses circularization of the 
fragments to fuse adaptors at both ends (Ingolia et  al., 
2009). Prior to this, each fragment is polyadenylated at 
its 3′ ends with poly(A)-polymerase (Ingolia et al., 2009), 
which serves as a priming site for the reverse transcription. 
Polyadenylation was also introduced to produce uniform 
3′ ends of all fragments and to reduce the bias in the liga-
tion (Ingolia, 2010), however the sequenced fragments are 
enriched in adenines at their 3′ termini (Artieri and Fraser, 
2014). Furthermore, in the circularization procedure, an 
additional preference for adenine at the first 5′-position is 
observed (Lamm et al., 2011; Artieri and Fraser, 2014): it 
does not depend on the polyA-tails of the fragments and 
the origin of this bias is unknown.

Later developments in the library preparation of ribo-
somal footprints use ligation approaches established in 
the sequencing of miRNAs, in which 3′ and 5′ adaptors 
are ligated sequentially to the fragments without circu-
larization (Guo et al., 2010). This allowed capture of low-
abundance fragments and omitted the sequence bias (i.e. 
the preference for adenines at 5′ and 3′ positions). Note 
that direct ligation of a 3′ adapter might be applied also 
as an alternative to polyA-tailing, preceding the circu-
larization approach. However, some sequences in the 
libraries generated with sequential adaptor ligation were 
overrepresented compared to a sequencing in which the 
adaptors were ligated using the circularization protocol. 

Figure 2: Flow-chart of data analysis in ribosome profiling.
Crucial steps are color-coded in orange.
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data are processed with a Phred score in the range ~20–30 
or with 99.0–99.9% base accuracy (Ingolia et  al., 2012; 
Zhang et  al., 2012). In NGS data sets the quality drops 
towards the 3′ end of the reads (Dohm et al., 2008) which 
is also mirrored in the ribosome profiling libraries despite 
the short length of the fragments. Most of the tools used 
for this initial data processing (https://code.google.com/p/
cutadapt/; http://hannonlab.cshl.edu/fastx_toolkit) (Lind-
green, 2012; Bolger et al., 2014) also offer removal of reads 
with length shorter than expected upon adaptor cutting.

Read mapping

Read mapping is the most crucial procedure. Although 
principally the ribosomal footprints are in their core an 
RNA-Seq data set, there is no standardized pipeline with 
recommended mapping parameters. Mapping can be per-
formed to genomes or transcriptomes, but the short single-
end reads generated in the ribosome profiling experiment 
cannot be used for de novo assembly of genomes or tran-
scriptomes (Simpson and Pop, 2015). Mapping to the 
genome should be preferred as it is unbiased towards 
known exon and intron annotations and allows for dis-
covery of previously undescribed ORFs (Andreev et  al., 
2015). Genome mapping usually gives greater coverage 
than mapping to transcriptomes (the loss of reads on exon 
junctions is minor) (Oshlack et  al., 2010). Furthermore, 
genomes are better defined than transcriptomes, which 
are constructed in several different ways (reviewed in 
Garber et al., 2011). Also, mapping to genomes is less com-
putationally intense and thus faster.

A prerequisite to good results is complete genome 
annotation, i.e. the availability of the gene coordinates. 
Genome annotation is a subject of intensive and constant 
improvement. For example the E.coli genome hosted on 
the NCBI server (Freddolino et al., 2012) is updated daily 
and the number of genes constantly changes. Although 
this fast adjustment makes new findings immediately 
available, it creates a gap with the hand-curated data-
bases, some of which may offer more precise annotation 
of additional features. For example, RegulonDB (Salgado 
et al., 2013) offers more information on additional features 
than the NCBI annotations, including genes organized in 
operons, 5′ and 3′ UTRs. For eukaryotes the development is 
equally fast with frequently updated versions of genomes 
and their annotations. Three important webservers host 
various eukaryotic genomes: NCBI reference sequences, 
RefSeq (Pruitt et al., 2007), ensembl (Cunningham et al., 
2015) and UCSC (Kent et al., 2002). The genome annota-
tion choice may significantly influence the downstream 

quantification of expression and differential analysis 
(Zhao and Zhang, 2015), although a simple advice on 
which database to use is not possible and should be 
driven by the purpose of the analysis. For research aiming 
at reproducible and robust gene expression estimates, 
RefSeq might be preferred (Wu et al., 2013). More explora-
tory questions may rely on more complex annotations, 
e.g. ensembl.

The mapping tools can be classified into two major 
groups: hash-table based (Li et  al., 2008; Homer et  al., 
2009); or Burrows-Wheeler Transform (BWT) algorithms 
(Langmead et  al., 2009; Li and Durbin, 2009). While 
BWT-based approaches are faster and less computation-
ally demanding, the hash-table-based algorithms are 
more flexible in aligning reads with non-perfect matches. 
Also the efficiency of BWT-based mapping approaches 
inversely correlates with the number of mismatches 
[reviewed in (Li and Homer, 2010; Garber et  al., 2011)]. 
Comparison of the tools is not trivial and differs depend-
ing on the data set, thus only few objective investigations 
have been performed so far (Giannoulatou et al., 2014). In 
the majority of ribosome profiling experiments (Ingolia 
et  al., 2009, 2011; Guo et  al., 2010; Gerashchenko et  al., 
2012; Li et  al., 2012; Chew et  al., 2013; Guttman et  al., 
2013; Aspden et  al., 2014; Baudin-Baillieu et  al., 2014; 
Bazzini et  al., 2014; Subramaniam et  al., 2014), Bowtie 
(Langmead et al., 2009) is used as a BWT-based mapping 
program. Bowtie offers two ways of mapping a read to a 
reference sequence: seed- (parameter n) and mismatch-
based approach (parameter v, Table 1). The seed approach 
aligns first a seed (or core) of a read and then extends the 
alignment further along the read length. Thereby, the 
mismatches in the seed count stronger than those in the 
extensions. Mostly, default Bowtie parameters (parameter 
n for the seed-based approach) are used (Guo et al., 2010; 
Li et al., 2012; Baudin-Baillieu et al., 2014; Subramaniam 
et al., 2014). Some studies apply the mismatch approach 
(Ingolia et  al., 2011; Gerashchenko et  al., 2012) which 
scores every base of each read equally. As the default seed 
length of 28 nt remains unchanged when using the default 
parameter settings, the seed-based strategy effectively 
works as a mismatch approach.

A general drawback of Bowtie is its inability to map 
splice junctions. One commonly used tool to align short 
reads across junctions is TopHat (Trapnell et  al., 2009; 
Kim et  al., 2013) which can also find junctions de novo. 
First, the TopHat pipeline maps to all reads to a reference 
genome using Bowtie and allows reporting more than one 
alignment of a read (i.e. m = inf k = 20 [translated to Bowtie 
parameters]). TopHat then assembles the mapped reads 
using the assembly module in Maq (Li et  al., 2008) in 

https://code.google.com/p/cutadapt/;
https://code.google.com/p/cutadapt/;
http://hannonlab.cshl.edu/fastx_toolkit


A. Bartholomäus et al.: Ribosome profiling technology      29

contiguous sequences inferring them to be putative exons, 
then uses seed and extended alignment to match reads to 
possible splice sites (Trapnell et al., 2009). The pipeline 
of TopHat is more structured, with fewer possibilities 
for changing the mapping parameters (Table 1), whereas 
Bowtie allows flexible adjustment of the mapping parame-
ters. A new version of Bowtie, Bowtie2, has been launched 
(Langmead and Salzberg, 2012) which however differs 
conceptually from Bowtie and can find gapped alignments 
of reads resulting from insertions or deletions or sequenc-
ing errors. Note that Bowtie2 is suitable for reads longer 
than 50 nt.

In general, mapping can be defined as a procedure 
to find the unique position of each read in the reference 
genome (Oshlack et al., 2010). The logical consequence of 
this is to discard all reads with more than one best position. 
As ribosomal footprints are very short, the proportion of 
reads mapping at more than one position increases with 
the size of the genome. In the ribosome profiling datasets 
a large fraction of the reads map at multiple positions to 
the genome (in the range of 30% and more), however there 
is no uniform strategy on how to handle them. Strategies 
range from considering only reads uniquely mapping 
to the genome (Guo et  al., 2010; Baudin-Baillieu et  al., 
2014), to allowing more than 200 or unlimited number of 
positions (Ingolia et  al., 2011). One strategy to estimate 
the true location of reads that map to many (multimap-
pable) locations involves proportional assignment of 
reads based on the read density of the neighboring posi-
tions (Trapnell et al., 2010). We varied the number of the 
mapping positions when aligning reads from ribosome 
profiling data (Figure  3A) and observed a clear differ-
ence between unique mapping (Figure 3B,C) and allow-
ing multiple positions (Figure 3D,E). The number of the 
mapped reads increases when multiple mapping posi-
tions are allowed (Figure 3A). Such scenarios are relevant 
mostly to genes with duplications or highly homologous 
isoforms, nevertheless the fraction of the discarded non-
uniquely mappable reads can be in the range of 30%. 
Stringent criterion leads to sparse and incomplete cover-
age of each gene (Figure 3B–C), while allowing mapping 
to multiple positions in the genome improves signifi-
cantly the coverage of a single gene (Figure 3D–E). The 
assignment of the reads mapping to multiple positions is 
also of crucial importance. Multimappable reads can be 
assigned randomly to one of the possible positions they 
map (Figure 3D) or to all possible positions (Figure 3E). 
However, choosing the mapping parameter in such a way 
that the first hit position is reported (Figure 3D) bears 
some caveats as the origin of the reads is unclear, i.e. 
whether they are from the same gene or originate from Ta
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another position in the genome. Thus, it might artifi-
cially increase the total number of reads on a gene. In 
this context, mapping to multiple positions with equal 
weighting of all positions (Figure 3E) might be a better 
choice as it does not prefer between positions and maps 
uniformly to all best mappable positions. For some analy-
sis, to avoid overinterpretation of the data (for example 
by differential analysis), the most conservative mapping 

with uniquely mappable reads (Figure 3C) might be the 
best choice.

The majority of the ribosome profiling datasets 
mapped with Bowtie do not set parameters to evaluate the 
quality of the alignments for a read (e.g. strata best), that 
compares, for example, whether a zero-mismatch mapping 
is better than an alignment with two mismatches. Usually, 
the first encountered alignment of a read is assigned to 

Figure 3: Effects of different mapping strategies on gene coverage.
(A) Total reads mapped to the genome allowing different number of maximal best mappable positions per read (at m = 1, a read with one 
best position (uniquely mappable) is allowed, otherwise discarded; at m = 100 a read can be mapped to the 100 best positions and all posi-
tions are recorded). Mapping of ribosome profiling data of mouse brain was performed with Bowtie using the mouse genome (assembly 
GRCm38) allowing two mismatches per read (-v2 –strata –best). (B–E) Different mapping strategies result in variations in the read coverage 
of a human rplA gene mapped from ribosome profiling data with Bowtie using the human genome (assembly GRCm38). Mapping with (B) 
a single hit (uniquely mappable) fulfilling the restrictions of maximum two mismatches (-v2 –m1), (C) with a single best hit (uniquely mappa-
ble) (-v2 –m1 –strata –best), (D) with default parameter and restrictions to maximum 100 positions with two mismatches, but with only one 
listed in the output (-v2 –m100), (E) with multimapping restricted to 100 multimappable best positions (i.e. lowest number of mismatches) 
and best positions listed in the output (-v2 –m100 –k100). Best, the parameters strata best are given to ensure that a multimappable posi-
tion is counted as such only by the same minimum number of mismatches; no best, default mode with no strata best parameters chosen; 
m, maximum number of multiple positions per read; k, maximum number of reported alignment. Note settings as in B should be avoided. 
Parameters as in C show the most reliable data, although the coverage is incomplete. The loss of reads in D compared to E is most likely 
due to the reporting of only one of the valid alignment positions.
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it (Gerashchenko et  al., 2012; Li et  al., 2012; Subrama-
niam et al., 2014). Thus, when multimapping is allowed, a 
read with zero mismatches in a certain position may also 
be mapped to a different position with two mismatches. 
Consequently, it creates a bias because the best alignment 
would not be satisfied, but a read is randomly assigned 
to one of the two positions independent of the number 
of the mismatches. The choice of the parameters for the 
mapping are of crucial importance as they can result in 
significant variations in the mapping and gene coverage 
profiles (Figure 3B–E). For reproducibility of the results 
it is advisable to clearly state the mapping parameter in 
each publication.

As both nucleases (RNase I for eukaryotic and MNase 
for bacterial systems) that are used to produce ribosomal 
footprints, cleave also rRNA, the rRNA reads comprise 
a large fraction of the sequencing reads, despite their 
removal in the experimental procedure. rRNA mapping 
and subtraction of those reads can be done in an extra 
round before or after mapping to the genome. Thereby, the 
mapping of the rRNA reads should be strict, i.e. allowing 
only a single mismatch.

In summary, mapping defines the shape of dataset 
to be used for further analysis and hence is a crucial step 
for which the parameters should be chosen carefully. In 
studies aiming at reproducible and robust gene expres-
sion estimates, uniquely mappable reads aligned to a ref-
erence genome (i.e. m = 1 strata best) should be selected as 
they bear the lowest bias. However, for some genes (e.g. 
isoforms, duplicates), using only uniquely mapped reads 
may result in a partial coverage of a gene (Figure 3B,C); 
an incomplete coverage cannot be used to extract specific 
positions on which the ribosomes may pause or enrich-
ment of reads over specific codons. For such analysis a 
multiple alignment of the multimappable reads (i.e. m = 10 
a strata best) might be chosen to ensure a maximal gene 
coverage. This parameter set bears drawbacks in analyz-
ing the coverage of simultaneous expression of genes 
sharing large sequence identity (i.e. isoforms and dupli-
cates). Such genes should be carefully assessed and might 
be separately compared only with their uniquely mappa-
ble reads or their expression should be confirmed with 
alternative methods (e.g. qRT-PCR).

Normalization of the read counts

Following mapping, read counts, also called gene counts, 
are collected and assigned to each gene or non-coding 
RNAs. Overlapping genes can be an issue here. As the 
ribosome profiling protocol is strand-specific, overlapping 

genes on different strands are well resolved. For genes 
overlapping on the same strand, as commonly observed 
in E. coli in which the coding sequence of the one gene 
falls into the end of the coding sequence of another, some 
read counting tools correct for this by randomly distribut-
ing the reads to the two overlapping genes (Anders et al., 
2015), while other tools do not recognize overlapping fea-
tures (Quinlan, 2014).

A commonly applied approach for normalization of 
the read counts is reads per kilobase of exon per million 
mapped reads, rpkM, (Mortazavi et  al., 2008), which 
accounts for the differences in the sequencing depth (i.e. 
total number of the mapped reads) between sequencing 
libraries and for the length variation of each gene (i.e. per 
kilobase). Note that for short genes this normalization can 
give quite high rpkM values despite the presence of only 
few raw counts. Thus the detection limit should be set up 
using the raw counts (Ingolia et al., 2011). Other normali-
zation approaches frequently applied in the RNA sequenc-
ing (RNA-Seq) might be applied too (Anders and Huber, 
2010; Robinson et  al., 2010; Dillies et  al., 2013) but the 
statistical behavior of ribosome profiling data with those 
normalization procedures has not yet been tested (Olshen 
et al., 2013).

Further downstream analysis and 
post-processing

In the RNA-Seq datasets, several tools are used to iden-
tify differentially expressed (DE) genes (Guo et al., 2013), 
some of which (e.g. DESeq tool) have been applied in a 
few ribosome profiling studies (Baudin-Baillieu et  al., 
2014; Sidrauski et al., 2015). Still, they require a test that 
the ribosome profiling read counts follow the underly-
ing distributions required by many tools designed for 
DE analysis of RNA-Seq, for example DESeq (Anders and 
Huber, 2010), EdgeR (Robinson et al., 2010), and baySeq 
(Hardcastle and Kelly, 2010). In all cases, a careful and 
conservative interpretation of the data is needed because, 
unlike RNA-Seq (Dillies et al., 2013), no uniform pipeline 
exists for ribosome profiling data. So far, only one tool has 
been developed specifically for ribosome profiling data 
(Olshen et  al., 2013). Instead of performing DE analysis, 
a simple fold-change analysis can be carried out (Dunn 
et al., 2013) with the assumption that most of the genes 
are unchanged.

Still, a fascinating issue of ribosome profiling is the 
ability to record the position of ribosomes with single 
nucleotide resolution (Ingolia et al., 2009; Woolstenhulme 
et al., 2015), which enables detecting ribosomal pausing 
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(i.e. specific positions at which ribosomes pause) or encod-
ing events (e.g. readthrough or frameshifting) (Li et  al., 
2012; Michel et al., 2012; O’Connor et al., 2013). The align-
ment of the ribosomal reads to the open-reading frame is 
called calibration in which the start codon is assigned to 
the ribosomal P-site (Ingolia et al., 2009) or the stop codon 
is assigned to the A-site (Woolstenhulme et  al., 2015). If 
the ribosomes are not completely halted during the iso-
lation procedure, it will compromise the calibration and 
would not allow for codon resolution (Ingolia et al., 2009). 
While ribosomal footprints of eukaryotic ribosomes can 
be calibrated using both stop and start codons, i.e. both 
5′ and 3′ of the reads, reads from bacterial systems give 
only codon resolution when calibrated using their 3′ ends, 
most likely because of the sharp cleavage of the MNase at 
the 3′ of the reads but not at the 5′ ends (Woolstenhulme 
et  al., 2015). Another approach to gain positional infor-
mation of the translating ribosomes is center-weighted 
or center-assigned approach (Li et  al., 2012). A defined 
number of nucleotides are excluded from both 5′ and 3′ 
sides of a read and the remaining centrally positioned 
nucleotides are weighted equally. This approach deliv-
ers less sharp resolution and defines the position of the 
ribosomal A- or P-sites with a subcodon resolution. Thus, 
it has limited applications and cannot be used for deter-
mining the reading frame (Woolstenhulme et  al., 2015). 
Both, calibrated and center-weighted ribosomal reads 
can be used to assess ribosomal enrichment over specific 
codons (Li et al., 2012; Ishimura et al., 2014) or to deter-
mine sequences over which ribosomes transiently pause 
(Li et al., 2012; Woolstenhulme et al., 2015).

In the library preparation, RNA fragments over a 
typical length range of 25–35 nt, tightly distributed around 
a peak of ~28 nt, are selected from the gel upon ribonucle-
olytic digestion (Ingolia et al., 2009; Guydosh and Green, 
2014). It should be noted that reads outside this range 
may also bear some biological information and, depend-
ent on the specific question, might also be included in the 
library preparation. Reads shorter than the average length 
of ~28 nt represent different conformational states of the 
elongating ribosome (Lareau et  al., 2014) or report on 
ribosomes stalled over 3′ truncated mRNAs (Guydosh and 
Green, 2014). In turn, longer reads may be informative on 
frameshifting events (O’Connor et  al., 2013). When com-
paring expression level on a gene basis in the DE analysis, 
all reads independent of their length might be considered 
under the assumption that each ribosome read produces 
one protein. For more specific analysis, including ribo-
somal stalling at specific positions, the reads should be 
separated by their length and each length group should 
be treated separately.

Computational demand and infrastructure

Raw data from one sequencing lane of Illuminas HiSeq 
machine (Illumina, San Diego, USA) can reach a size of 
more than 20 GB (uncompressed). Preprocessing and 
mapping of these raw files easily exceeds another 20 GB; 
discarding the intermediate preprocessing file and 
keeping only compressed raw files requires hard disk 
space for one lane of about 20 GB. The demand of RAM 
varies dependent on the type of analysis and program-
ming languages. For example, using a simple Perl hash 
index build on each of the ~4 million nucleotides of the 
relatively small E. coli genome requires more than 4 GB of 
RAM. Mapping with BWT-based algorithms demands rela-
tively low memory (Langmead et al., 2009; Li and Durbin, 
2009). For example, the human genome can be mapped 
with  < 8 GB of RAM (Langmead et al., 2009; Li and Durbin, 
2009). The mapping programs offer an option to use more 
than one CPU in parallel to increase speed (Langmead 
et al., 2009). Many of pre- and post-processing steps are 
not implemented as full programs but as a collection of 
scripts or even in-house scripts (Anders et al., 2015).

Conclusions
Ribosome profiling is a powerful technology to study 
translation in vivo on a cell-wide scale. While introducing 
this approach we are beginning to appreciate the variety 
of mechanisms that control translation and gene expres-
sion. However, non-standardized sample preparation and 
ambiguous processing of the data has produced some 
inconsistencies and has challenged direct comparisons 
between different studies. Experimentally, ribosome pro-
filing is a multistep procedure that is in constant develop-
ment and improvement of the single experimental steps. 
The task would be to understand the intrinsic bias of each 
step in order to carefully design the experimental protocol 
and interpret the data.

The analysis of data is complex, in part because of 
the short read lengths. Particularly crucial is the mapping 
procedure and normalization that defines the data set for 
further downstream analysis. The goal in the data analy-
sis is to develop a uniform protocol, at least for mapping 
and normalization, as the broadness of the downstream 
analysis does not allow full standardization of this part 
of the pipeline. With the development of more standard-
ized ribosome profiling technology and optimized sample 
preparation, we will move to a higher reproducibility of 
the data and a more accurate quantitative understanding 
of the mechanisms of translational control.
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