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Abstract: Ancestral sequence reconstruction (ASR) is the 
calculation of ancient protein sequences on the basis of 
extant ones. It is most powerful in combination with the 
experimental characterization of the corresponding pro-
teins. Such analyses allow for the study of problems that 
are otherwise intractable. For example, ASR has been 
used to characterize ancestral enzymes dating back to 
the Paleoarchean era and to deduce properties of the cor-
responding habitats. In addition, the historical approach 
underlying ASR enables the identification of amino acid 
residues key to protein function, which is often not pos-
sible by only comparing extant proteins. Along these lines, 
residues responsible for the spectroscopic properties of 
protein pigments were identified as well as residues deter-
mining the binding specificity of steroid receptors. Further 
applications are studies related to the longevity of muta-
tions, the contribution of gene duplications to enzyme 
functionalization, and the evolution of protein complexes. 
For these applications of ASR, we discuss recent examples; 
moreover, we introduce the basic principles of the underly-
ing algorithms and present state-of-the-art protocols.

Keywords: ancestral sequence reconstruction; phylo-
genetic analysis; protein evolution; vertical analysis of 
protein function.

Introduction
Starting from ancestral precursors, gene duplication and 
diversification events have yielded families of homologous 

proteins with highly variable amino acid sequences. 
Multiple sequence alignments of such proteins allow 
for the identification of conserved key amino acids, for 
example active site residues, that are characteristic of the 
entire protein family (Brown and Babbitt, 2014). However, 
such an analysis will rarely uncover the set of residues 
that are responsible for the functional diversity observed 
in large protein families (Gerlt and Babbitt, 2009). The 
reason for this is that many neutral as well as epistatic 
mutations may have accumulated during the evolution 
of the proteins under comparison. Neutral mutations 
produce sequence noise that impedes the identification 
of the crucial mutations, leading to altered functions. 
Epistatic mutations, i.e. mutations that have different 
consequences depending on the genetic background, can 
be divided into permissive and restrictive mutations. Per-
missive mutations, for example stabilizing ones, are often 
the prerequisite for a change in function, when the causa-
tive key mutation is destabilizing. In contrast, restrictive 
mutations will prevent a key mutation from becoming 
effective, for example by introducing steric clashes. Thus, 
the exchange of putative key residues by site-directed 
mutagenesis in the framework of a functional analysis can 
lead to non-functional proteins, when permissive muta-
tions are missing or restrictive mutations are present in 
the alternative background. As a consequence, the resi-
dues that historically led to a new function can often not 
be identified by comparing extant sequences (Harms and 
Thornton, 2010).

From an evolutionary point of view, extant homologs 
are the leaves of a phylogenetic tree and represent varia-
tions observed for one specific point in time. Therefore, 
a comparison of extant sequences was termed “horizon-
tal approach” (Figure 1). It is easy to accept that a “ver-
tical approach”, which additionally takes into account 
the evolutionary history of the proteins under study, is 
a more straightforward strategy to identify crucial but 
subtle amino acid differences (Harms and Thornton, 
2010). Instead of exclusively comparing the leaves, such 
an approach includes the internal nodes of the tree and 
thus considers the chronology of mutations (Figure 1). 
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Moreover, the comparison of the more similar sequences 
that are related to adjacent nodes reduces the number 
of neutral mutations and could help to identify epistatic 
mutations. However, internal nodes represent extinct 
proteins, whose properties cannot easily be determined, 
due to the lack of macromolecular fossils. Fortunately, 
novel computational techniques allow us to reconstruct 
the sequences of such proteins and to travel back in time 
(Thornton, 2004; Hanson-Smith et al., 2010). The outcome 
of these in silico approaches, termed ancestral sequence 
reconstruction (ASR), is a value in itself. Furthermore, 
in combination with modern gene synthesis technology, 
these proteins can be produced in recombinant form and 
characterized by means of all biochemical and biophysi-
cal methods at hand.

Sorting out neutral and epistatic mutations is an 
important but by no means the only application of ASR. 
Driven to extremes, the most ancient sequences that can 
be reconstructed are related to the era of the last universal 
common ancestor (LUCA), which preceded the diversifica-
tion of life and existed in the Paleoarchean era, i.e. at least 
3.8 billion years (Gyr) and presumably 4.5 Gyr ago (Nisbet 
and Sleep, 2001). Thus, due to the enormous number of 
known sequences, ASR makes it possible to follow changes 
in properties like substrate specificity and to reproduce 
the advent of novel or more specialized functions over this 
long evolutionary time span. Moreover, certain features of 
reconstructed macromolecules like stability are correlated 
with important characteristics of the corresponding habi-
tats. Thus, ASR can implicitly reproduce the adaptation of 

Figure 1: An example of a phylogeny.
Leaves representing extant sequences are labeled 1–5, internal 
nodes representing reconstructed ancestral sequences are labeled 
6–8; 0 represents the root. The exclusive comparison of the leaf 
sequences is termed a “horizontal” approach; a “vertical” approach 
additionally takes into account the sequences of the internal nodes. 
The values v1–v8 represent the length of the vertices; example 
according to Felsenstein (1981).

extinct life to climatic, ecological and physiological alter-
ations (see, for example, Boussau et al., 2008).

ASR was also utilized to characterize the promiscu-
ity of ancestral enzymes (Perez-Jimenez et al., 2011) and 
to determine the longevity of mutations (Risso et  al., 
2015). Moreover, the contribution of gene duplications 
to the evolution of modern enzymes (Voordeckers et al., 
2012) and the sophistication of enzyme complexes were 
studied by means of ASR (Bridgham et al., 2006; Perica 
et al., 2014).

In the following sections, we will first review in silico 
techniques that have been developed for ASR. Then we 
will discuss how ASR was used to address the applications 
mentioned above.

Ancestral sequence reconstruction: 
history, theoretical background, 
current protocols
In the following paragraphs, we will survey pioneering 
experiments, give an introduction to the theory of phylo-
genetic algorithms, and present state-of-the-art protocols 
that have been used for ASR.

Pioneering methods of ASR

The idea of reconstructing ancestral amino acid sequences 
based on a comparison of extant sequences was put 
forward by E. Zuckerkandl and L. Pauling in 1963 (Pauling 
and Zuckerkandl, 1963). However, the technology needed 
for ASR is borrowed from phylogenetic analyses and the 
first algorithm was not developed until 1971 (Fitch, 1971). 
Fitch used the principles of maximum parsimony (MP), 
which is a non-parametric statistical method, to deduce 
a phylogenetic tree for a given set of extant sequences. 
Parsimony aims at constructing a tree that minimizes 
the number of mutations needed to explain the observed 
data. Thus, the optimality criterion (Swofford et al., 1996) 
is total tree length len(tree), which is given by

	 1 1
( ) ( , )

B N

j k j k j
k j

len tree w diff x x′ ′′
= =

=∑∑
�

(1)

B is the number of branches, N the number of sites 
(nucleotide or amino acid positions), k′ and k″ are the 
two nodes connected by branch k, and xk′j, xk″j are the cor-
responding nucleotides or amino acids observed in the 
leaves or inferred for internal nodes. The function diff(y, z) 
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specifies the cost of a mutation from y to z and wj assigns 
a weight to each site. This concept was attractive, because 
the tree provided the minimal number of mutations 
required to explain the variations observed in the given 
extant sequences. The corresponding implementation, 
named PAUP (Swofford, 1984), has proved popular and 
the algorithm proposed by Sankoff (Sankoff, 1975) further 
improved this principle by adding costs to mutations.

This parsimonious principle has been the basis for 
pioneering work on ribonucleases (RNases) that hydro-
lyze single- and double-stranded RNA (Stackhouse et al., 
1990). The reconstruction required to infer from five extant 
homologs the protein sequence of a highly conserved 
RNase of a ruminant that lived 5–10 million years ago. 
In a follow-up study, 13 artiodactyl RNases were recon-
structed and characterized. Among them was the RNase 
of the founding ancestor of this lineage, i.e. the ancestor of 
pig, camel, deer, sheep, and ox. The ancestor lived about 
40  million years ago, i.e. in a period where ruminant 
digestion arose. This finding suggests that recent digestive 
RNases evolved from a non-digestive ancestor; the activity 
of the reconstructed RNase was fivefold increased against 
double-stranded RNA (Jermann et al., 1995).

Meanwhile, the drastic increase of computing power 
allowed for the implementation of considerably more 
complex algorithms and the limitations of the Fitch 
approach became evident (see, for example, Frumhoff 
and Reeve, 1994; Cunningham, 1999). For instance, MP 
approaches overestimate the number of common to rare 
changes (Eyre-Walker, 1998). Concurrently, maximum 
likelihood (ML) approaches have been developed (Yang 
et  al., 1995; Koshi and Goldstein, 1996; Pupko et  al., 
2000), as well as Bayesian algorithms (Schultz et  al., 
1996; Huelsenbeck and Bollback, 2001). An ML approach 
searches for the tree with highest probability (likelihood) 
given the extant sequences and the parameters of the 
phylogenetic model used for computation. A Bayesian 
approach searches for trees with the highest posterior 
probability. This value results from the prior probabilities 
of the trees and the likelihood of the data under the given 
evolutionary model. The current ASR protocols, which 
are based on these ideas, model the evolution of proteins 
more precisely than MP. For a detailed history of ASR, see 
Liberles (2007).

State-of-the-art methods of ASR

In the following section, we briefly introduce some of the 
stochastic concepts and phylogenetic models that are 
required to understand modern ASR methods. We give a 

short description of evolutionary models and trees, which 
summarizes two recent publications (Liò and Bishop, 
2008; Whelan, 2008); for a more detailed presentation, 
see Liberles (2007). The reader who is familiar with or is 
not interested in the theoretical background can skip the 
next six paragraphs.

Assessing mutations by means of Markov 
models

Phylogenetic trees can be built by means of parametric ML 
and non-parametric MP, which are cladistic approaches, 
but also with phenetic methods, which construct a tree 
based on a matrix of pairwise distances for the sequences 
under study. Among the latter is the neighbor-joining 
algorithm (Saitou and Nei, 1987), which is frequently used 
to illustrate phylogenetic relationships, because it is a fast 
and robust method. However, phenetic approaches lack 
an evolutionary model and therefore these trees can only 
serve as an approximation, when more complex methods 
are too computationally expensive. In contrast, protocols 
for ASR require a precise model of evolutionary processes, 
which we introduce now.

For the sake of simplicity, we will concentrate on a 
stochastic model of DNA, which however can easily be 
extended to codons and proteins. Additionally, we assume 
independency for the different sites (sequence positions) 
and therefore, the probability of a set of sequences for a 
given tree is the product of the probabilities of each site in 
the sequences.

For each site, pij(t) is the probability that nucleo-
tide i∈{A, C, G, T} will mutate to nucleotide j during 
the time interval t. Thus, a Markov chain with the state 
space SDNA = {A, C, G, T} and a random variable X(t)∈SDNA 
describe the substitution process. The homogeneous 
Markov process, which is used for modeling, assumes that 
p(X(s+t) = j|X(s) = i) holds, which states that the probability 
for a replacement of nucleotide i with j within the time 
interval t is independent of the actual time point s ≥ 0. We 
presume now i) a constant rate μ of mutations per unit 
time (e.g. generation) and ii) a constant prior probability 
πj for a mutation leading to nucleotide j. Consequently, 
the probability that we observe no mutations at the con-
sidered site after t generations is (1-μ)t. Thus, the probabil-
ity for a mutation is

	 -1-( 1- ) 1-t t
Mutp e µµ= ≈ � (2)

and the probability that we observe a change from nucleo-
tide i to nucleotide j within the time interval t is then
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Instead of utilizing discrete generations, the probabil-
ity can also be determined in continuous time. It follows 
for the set of all mutations in analogy to equation (3):

	 ( ) ( ) ( ) ( )( )p t dt p t p t dt p t dt+ = + = +Q I Q � (4)

Here, I is the unit matrix and Q is a rate matrix of tran-
sition probabilities and we get

	 ( ) tp t e= Q � (5)

Substitution models

For DNA, 16 πj values are needed to assess all possible 
mutations and several matrices Q have been proposed. 
A first model was introduced by Jukes and Cantor (1969); 
more frequently used are the models introduced later by 
M. Kimura (1981) and J. Felsenstein (Felsenstein, 1981).

For a more precise assessment of protein evolution, a 
codon-based model has been designed by Z. Yang (Yang 
and Nielsen, 2000). Here, the elements of Q describe the 
rate of change of codon i = i1i2i3 to j = j1 j2 j3 depending on 
rates for transitions and transversions. This approach has 
been improved (Yang et al., 2000) and some of the models 
M0 to M13 are popular choices for evolutionary analyses 
based on codons.

Alternatively, mutational events can also be studied 
on the level of amino acid sequences. Early amino acid 
substitution models are related to the PAM-matrices of 
M.  Dayhoff (Dayhoff et  al., 1978). However, due to the 
small numbers of sequences available at that time, several 
of these substitution frequencies are crude approxima-
tions. The more recent JTT-matrix (Jones et  al., 1992) 
and the WAG-matrix (Whelan and Goldman, 2001) have 
been deduced from much larger data sets and are thus 
more realistic models. It is known that not all domains or 
regions of a protein evolve under the same evolutionary 
constraints. Thus, specific matrices Q have been deduced 
for transmembrane and non-transmembrane regions, for 
α-helices, β-strands, or for buried and exposed residues 
(Koshi and Goldstein, 1996). However, these matrices are 
seldom used for ASR.

Meanwhile, homogeneous substitution models have 
been replaced with more complex ones. A continuous 
distribution, which provides every site with a specific 
rate, seems most plausible. Often, a gamma distribution 
was used (Liò and Bishop, 2008), which represents a full 

family of probability distributions, whose shape depend 
on parameters α and β. However, it has been shown that 
a discrete “gamma model” performs well and is compu-
tationally efficient (Yang, 1994). It consists of only four, 
equally probable categories of rates, which were chosen 
to approximate a gamma distribution. The density of the 
gamma distribution G(α, β) is

	

-1( ;  , ) exp( - ) , 0
( )

g r r r r
α

αβ
α β β

Γ α
= ⋅ < <∞

�
(6)

In this context, α is a given or estimated shape param-
eter and the scale parameter β is redundant and can be 
set equal to α, so that the mean of the distribution is 1. 
The range of r (0, ∞) is divided into k = 4 categories by 
means of cutting points, and each category is character-
ized by a rate ri that indicates the mean of the portion of 
the gamma distribution falling in the category; see Yang 
(1994). Consequently, the unconditional probability p(x) 
for observing symbol x at a site is related to the rate-spe-
cific conditional probabilities through

	 1

1( ) ( | ) ( ) ( | )
k

i
i

p x p x r g r dr p x r r
k=

= ≈ =∑∫
�

(7)

Here, g(r) is the gamma density with parameter α, 
which is chosen so that r1, …, rk give the largest approxi-
mate likelihood ∏i p(xi) and p (x|r) is the conditional prob-
ability of x given the rate r at a site (Susko et al., 2003).

The likelihood of a phylogenetic tree

Using the above model of evolution, the likelihood of a 
tree can be computed. Likelihood is the probability for 
observing the data (sequences) given the parameters of 
the chosen evolutionary model and the topology of the 
tree under study. If all sites mutate independently, then 
this likelihood is the product of all site-specific values. 
Thus, to explain the principle, it is sufficient to consider 
one site S(j) of a sequence S and to compute the likelihood 
for the nucleotides at S(j) at each node of the tree. If the 
length of all edges, which corresponds to a certain time 
interval, is vi and if all nucleotides ei are known for all 
nodes i, which implies a certain ancestral labeling, then 
the likelihood of the tree shown in Figure 1 is:

	

0 0 6 6 1 6 2 0 8

8 3 8 7 7 4 7 5

6 1 2 8

3 7 4 5

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

e e e e e e e e e

e e e e e e e e

L tree p v p v p v p v
p v p v p v p v
π=

� (8)

However, the states (nucleotides) of the internal 
nodes are not known and therefore it is necessary to sum 
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over all possible parameter values (nucleotides at internal 
nodes) which results in

	

0 0 6 6 1 6 2 0 8
0 6 7 8

8 3 8 7 7 4 7 5

6 1 2 8

3 7 4 5

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

e e e e e e e e e
e e e e

e e e e e e e e

L tree p v p v p v p v

p v p v p v p v

π=∑∑∑∑

� (9)

As introduced above, πe0 is the prior probability of 
nucleotide e0. The value L(tree) can be computed quite 
efficiently after a rearrangement of terms, which considers 
the topology of the tree; compare the pattern of brackets 
{[][]} {[][()()]} in equation 10 and the tree topology shown 
in Figure 1:
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0 8 8 3 8 7 7 4 7 5
8 7
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8 3 7 4 5
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This arrangement of terms suggests a bottom-up 
computation based on the likelihood values 

k

k
eL  of all 

states ek at node k. The calculation starts in the first 
iteration with the known likelihood values of the leaves, 
which are 1 for the observed nucleotide and 0 for all 
others. The 

k

k
eL  values of internal nodes are computed 

in a bottom-up fashion by considering the tree topol-
ogy and by summarizing likelihood values of two chil-
dren r, s, which were calculated in one of the preceding 
iterations:

	
( ) ( )

k k r r k s s
r s

k r s
e e e r e e e s e

e e
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∑ ∑
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(11)

Finally L(tree) is

	
0 0

0

0( ) e e
e

L tree Lπ=∑
�

(12)

It follows that the likelihood of a tree can be com-
puted iteratively, if we know all transition probabilities 
pij. The missing length of the edges can be determined 
by means of expectation maximization (Dempster et al., 
1977); for details see Felsenstein (1981). However, in order 
to find the tree with the maximal likelihood, the topology 
– which was taken as given so far – has to be optimized as 
well, which requires the creation and the assessment of 
alternative topologies. Due to its complexity, the problem 
of determining the ML tree is an NP-hard problem for the 
computer scientist (Chor and Tuller, 2005), which means 
that in practice only an approximation can be found in an 
acceptable time interval.

For a comparison of alternative trees, ML approaches 
maximize the likelihood value given in equation 12; for 
Bayesian inference, trees have to be sampled based on 
a score deduced from their likelihood and prior expec-
tations. However, the number of tree topologies grows 
exponentially with the number of sequences, which 
necessitates heuristic approaches to sample tree space. 
Commonly, these approaches progressively optimize the 
tree by examining the score of similar trees, choose the 
highest scoring one as the next estimate, and finally stop, 
if no further improvement can be found.

Popular traversal schemes of tree space propose candi-
date trees by making small rearrangements on the current 
tree, examine each internal branch of the tree in turn, and 
vary the way they alter the topology. New topologies are 
created by means of quartet puzzling (QP) (Strimmer and 
Von Haeseler, 1996), nearest neighbor interchange (NNI), 
subtree pruning and regrafting (SPR) and tree bisection 
and reconnection (TBR) (see Whelan, 2008). QP and NNI 
break an internal edge, which gives four subtrees. These 
can then be combined in three different ways, which give 
novel candidate trees. SPR is more general than NNI and 
QP by adding subtrees to any edge of the other subtrees. 
TBR removes one edge to create two subtrees and all pos-
sible combinations of the two subtrees give new candidate 
trees (for details see Whelan, 2008). As expected, the time 
complexity of the algorithms is high: For QP, algorithms of 
O(n4) have been reported (Ranwez and Gascuel, 2001), a 
Markov chain Monte Carlo (MCMC) approach (see below) 
of NNI is of O(pnl), where p is the number of refinement 
steps and n is the number of taxa, i.e. sequences of length l 
(Guindon et al., 2005). In contrast, the phenetic neighbor-
joining algorithm is of O(n3), which means that execution 
time increases roughly with the third power of the number 
of input sequences.

This outline of these heuristic algorithms makes clear 
that there is no guarantee for finding the optimal tree 
that has the ML. However, the rearrangements of the tree 
topology under study expand the area of searched tree 
space, which increases the probability of finding a nearly 
optimal solution. Searching a wider range is additionally 
supported by starting the refinement from different points 
in tree space; thus, these computations are often executed 
in parallel on a multi-processor computer with varied 
starting conditions.

Bayesian inference of topologies

For Bayesian inference, the topology of the tree and the 
parameters of the evolutionary model are estimated 
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simultaneously, while providing a measure of confidence 
in those estimates. Bayesian inference uses the same 
models of evolution as ML methods, however, it addresses 
a number of complex questions of phylogeny; see Huelsen-
beck et  al. (2001). For ASR, it is important that the tree 
with the maximum posterior probability can be deduced 
from a large number of sampled trees. To do so, Bayes’s 
theorem is used favorably to combine the prior probabil-
ity of a tree p(tree) with the likelihood L(tree) = p(data|tree) 
to compute a posterior probability distribution of trees 
p(tree|data) according to

	

( | ) ( )( | )
( )

p data tree p treep tree data
p data

⋅
=

�
(13)

The posterior probability of a tree gives the prob-
ability that the tree is correct and often the tree with the 
maximum a posterior probability (MAP) is chosen as the 
best estimate. In contrast to ML, Bayesian approaches 
generally include a prior expectation about the problem 
under study. For phylogeny, uninformative priors are fre-
quently used, which means that all trees are equally likely 
and the likelihood L(tree) can be calculated analogously 
as described above.

Unfortunately, a comprehensive analysis of the poste-
rior distribution is not feasible as it requires a summation 
over all possible tree topologies. However, an approxima-
tion of the posterior distribution can be determined by 
means of MCMC methods, which generate a series (chain) 
of pseudo-random samples. MCMC approaches can cor-
rectly sample from the posterior probability, because 
newly proposed trees are accepted based on a probability 
function. The probability of being accepted depends pri-
marily on the difference in likelihood scores of the current 
and the new tree. Thus, the chain will contain many trees 
that offer an improvement over initial trees and few trees 
with poor scores. If the parameters are sampled correctly, 
the amount of time a chain spends in different regions of 
tree space corresponds to the posterior distribution, which 
allows a straightforward approximation of the MAP tree.

For a more detailed description of an MCMC approach, 
which is taken from Larget and Simon (1999), we define 
a tree ψ = (τ, β) by its topology τ and associated branch 
lengths β. Additionally we need a likelihood model L(x|ω) 
for observed data x that contains several parameters, 
where ω = (ψ, ϕ) represents a specific choice of a tree topo
logy, branch lengths, and model parameters ϕ. The cor-
responding parameter space Ω = (Ψ, Φ) contains the set of 
all possible trees Ψ and all possible values of the model 
parameters Φ. As MCMCs utilize the Metropolis-Hastings 
criterion (Metropolis et al., 1953) to accept new solutions, 

the chains create a dependent series of points in Ω, ω(0), 
ω(1), ω(2), …, such that after some time all subsequently 
sampled points are distributed approximately accord-
ing to their posterior distribution. As a consequence, the 
long-run frequencies are arbitrarily close to their posterior 
probabilities. In order to scan Ω = (Ψ, Φ), a combination 
of two update mechanisms has been proposed (Larget 
and Simon, 1999), to sample tree topologies and model 
parameters. The algorithm starts with an initial tree (e.g. 
a neighbor-joining tree) and model parameters ω(0) = (ψ(0), 
ϕ(0)), which are randomly chosen. Subsequently, each indi-
vidual cycle i+1 of the algorithm consists of two steps that 
utilize the parameters of the current state ω(i) = (ψ(i), ϕ(i)). 
In the first step – while keeping the current tree ψ(i) fixed 
– the algorithm can choose new model parameters ϕ* from 
Φ, which are – according to the Metropolis-Hastings algo-
rithm – either accepted ϕ(i+1) = ϕ* or rejected ϕ(i+1) = ϕ(i). The 
second step modifies the current tree ψ(i), while holding 
the parameters ϕ(i+1) fixed. For more details of the update 
algorithms see, for example, Larget and Simon (1999).

When applying MCMC methods, the adequate sam-
pling of the posterior distribution is related to two factors 
named convergence and mixing. Convergence means that 
the chain accurately samples from the posterior distribu-
tion, which is the case after the pre-convergence phase 
(named also burn-in phase). Thus, trees computed in the 
burn-in phase are ignored. A chain mixes well, if all trees 
can be reached from all other ones. In contrast, if a chain is 
mixing poorly, the sampling of the posterior probability is 
compromised. In order to assess the quality of a computa-
tion, i.e. convergence and mixing, each implementation of 
an MCMC algorithm offers a series of diagnostic tools that 
compute specific indicators. One can assume convergence, 
if several chains that were started in parallel with differ-
ent initial parameter sets concentrate their sampling in 
the same region of tree space. Comparing trees taken from 
converged chains allows for the analysis of mixing: If these 
trees are clearly different, the chains are mixing poorly. 
Additionally, model parameters or likelihood values can be 
plotted vs. the sample number; more details can be found 
in the documentation of the respective programs. For ASR, 
a high posteriori probability and a short length are of spe-
cific relevance for all edges, as both are prerequisites for 
the reliability of the reconstructed sequences.

More complex models of evolutionary 
processes

The above-described methods reconstruct a phylogeny for 
one sequence per species – or few concatenated ones – and 
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aim at representing the history of the considered genes 
(gene products). Consequently, the resulting trees were 
named gene trees; however, in many cases the evolution-
ary history of a gene differs substantially from the history 
of the species from which the genes originate (Maddison, 
1997; Szöllősi and Daubin, 2012). Duplication, horizontal 
gene transfer and gene loss cause drastic differences in 
the size and composition of genomes and thus produce 
phylogenetic discord. Moreover, horizontally transferred 
genes are frequently acquired from species that are extinct 
or do not belong to the dataset under study (Szöllősi et al., 
2013). This is why a gene phylogeny does often not provide 
enough information to distinguish between statistically 
equivalent relationships, a fact that is indicated by poor 
posteriori probabilities of individual edges.

One reason for horizontal gene transfer is the recom-
bination of genetic material. A statistical model that consi
ders recombination in ancestral sequences may give rise to 
a graph that is no longer a tree but a network. It is feasible 
to estimate the number of recombination events in a given 
sample of sequences, however the algorithm is very com-
putationally intensive (see Griffiths and Marjoram, 1996).

An alternative approach, which can more easily 
be integrated into an ASR protocol, is based on the rec-
onciliation of a gene tree and a second one that reflects 
the phylogeny of the considered species. The topology of 
this tree is also affected by the extra processes that con-
tribute to the evolution of species, which are speciation 
and lineage sorting, gene duplication and loss, and gene 
transfer. If these additional evolutionary events, which 
are ignored for gene tree computation, are considered, all 
models of gene family evolution can be seen as generating 
a tree inside a tree, that is, a gene tree inside a species tree 
(Szöllősi et al., 2015).

In pioneering work, an MP tree was determined that 
minimizes the number of nucleotide substitutions, gene 
duplications and gene losses (Goodman et  al., 1979). 
Meanwhile, more complex models for species evolution 
were beneficially integrated in gene tree inference (Mad-
dison, 1997; Akerborg et  al., 2009; Groussin et  al., 2015) 
and species tree can be deduced from the shared history 
of several gene families; see, for example, De Oliveira 
Martins et  al. (2014); Mirarab et  al. (2014); Mirarab and 
Warnow (2015).

Deducing ancestral sequences

For a phylogenetic analysis, two types of trees, unrooted 
and rooted ones, can be computed. In contrast to rooted 
trees, unrooted trees do not specify the location of the 

common ancestor. For rooting, which is required for the 
ASR of this ancestor, an outgroup can be used or, alterna-
tively, the position of the root is approximated based on 
additional phylogenetic knowledge. For time-reversible 
models, which are commonly used for computation, the 
position of the root does not affect the likelihood score 
(Felsenstein, 1981), which allows for subsequent rooting. 
Using the set of extant sequences and the corresponding 
phylogenetic tree, the most plausible ancestral sequences 
can be deduced by a ML reconstruction following the prin-
ciples introduced above. Applying the Bayesian approach, 
a reconstruction maximizes the probability for the set of 
ancient sequences given the extant ones (Pupko et  al., 
2000). Two variants of ancestral ML reconstructions exist 
(Yang et al., 1995), originating from different optimization 
criteria, which are the joint ML or the marginal ML, respec-
tively. For ASR of proteins, joint reconstruction determines 
the most likely set of amino acids for all internal nodes at 
a site, which yields the maximum joint likelihood of the 
tree. In contrast, marginal reconstruction compares the 
probabilities of different amino acids at an internal node 
at a site and selects the one amino acid that yields the 
ML for the tree at that site (Cai et  al., 2004). The result-
ing sequences may differ, and marginal reconstruction is 
considered to be an approximation of the joint approach 
(Pupko et al., 2000).

The basic idea of a ML ancestral reconstruction can 
be illustrated by concentrating on the internal nodes of a 
tree whose topology and branch lengths are assumed to 
be known. The tree given in Figure 1 has five operational 
taxonomic units (the leaves, labeled 1–5) and four hypo-
thetical taxonomic units (HTU) labeled 0, 6, 7, 8. For each 
site of these four internal nodes there are 204 combina-
tions of amino acids ei. It is the aim of joint ML to iden-
tify for these four nodes a quartet ν with the largest value 
p(ν|data), which is in a Bayesian approach the quartet that 
maximizes

	

( | ) ( )
( )

p data p
p data

ν ν⋅

�
(14)

As p(data) is identical for all candidate quartets, it is 
sufficient to maximize p(data|ν)·p(ν). More specifically, 
for this tree and the given four nodes the quartet is found 
by solving
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The solution computed for equation 15 is the maximum 
over all possible 204 quartets. For larger trees with h HTUs, 
it is necessary to maximize overall h ancestral states, 
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which results in 20h combinations. To solve this problem of 
joint ML reconstruction, an algorithm, which is based on 
dynamic programming, has been implemented that scales 
linearly with the number of sequences; see Pupko et  al. 
(2000) for details. If all joint probabilities are known, the 
marginal distribution can by computed by marginalizing 
over joint probabilities; for an example see Pupko et  al. 
(2007).

Current software protocols for ASR

In the previous section, we have introduced basic prin-
ciples of phylogenetic methods, which are required for 
ASR. Now, we describe in more detail the software pro-
tocols that were used in those ASR experiments we will 
review in the following paragraphs. Generally, each pro-
tocol for ASR requires four steps (A–D) that are depicted 
in Figure 2.

(A) Select extant sequences: Commonly, homologous 
sequences were retrieved from databases like GenBank 
of the NCBI or UniProtKB of the EBI (see, for example, 
Boussau et al., 2008; Gaucher et al., 2008; Finnigan et al., 
2012; Voordeckers et al., 2012; Bar-Rogovsky et al., 2013; 
Risso et al., 2013; Perica et al., 2014), most often with the 
help of BLAST (Altschul et al., 1990). If the number of hits 
was very large, highly similar sequences were eliminated 
by using CD-HIT (Li and Godzik, 2006) to create a set of 
sequences with 30–90% identical residues (Bar-Rogovsky 
et  al., 2013). Alternatively, highly similar sequences, 

Figure 2: Protocol for ASR.
Each ASR requires four steps to deduce ancestral sequences from 
a set of extant homologs. (A) A set of extant sequences is retrieved 
from a database. (B) The selected sequences are aligned in a 
multiple sequence alignment, which allows for the identification 
of mutational events separating the sequences. (C) A phylogeny is 
determined; the extant sequences form the leaves. (D) Based on 
this phylogenetic tree and the input data, ancestral sequences are 
computed for each internal node of the tree.

e.g. those with more that 92% pairwise sequence identity, 
were removed (Voordeckers et  al., 2012). The number of 
extant sequences required for an ASR depends on protein-
specific mutation rates and the time span of interest. Thus, 
the size of the resulting sequence sets varied between 11 
(Yokoyama et al., 2008), 32 (Bar-Rogovsky et al., 2013) and 
up to 200 or more sequences (Perez-Jimenez et al., 2011; 
Harms et  al., 2013). In some cases, protein sequences 
have been concatenated, like those of the HisF and 
HisH enzymes that constitute a heterodimeric complex 
(Reisinger et al., 2014) or 56 nearly universally distributed 
proteins (Boussau et  al., 2008). Moreover, the protein 
sequences and the corresponding DNA sequences were in 
some cases compiled and analyzed in parallel to eliminate 
ambiguities (Ugalde et  al., 2004; Field and Matz, 2010; 
Hobbs et al., 2012; Voordeckers et al., 2012).

(B) Create a multiple alignment: Due to the complex-
ity of the algorithmic problem, heuristic approaches are 
the only way of computing a multiple sequence alignment 
(MSA), which is required to map residues to protein posi-
tions. During recent years, several algorithms have been 
introduced that show comparable alignment quality. 
Therefore, it is not surprising that different methods were 
used for MSA creation. Among them were Clustal X and 
Clustal W (Larkin et  al., 2007) used in Bridgham et  al. 
(2006) and Hobbs et al. (2012) as well as MUSCLE (Edgar, 
2004), which was used frequently (Boussau et al., 2008; 
Richter et al., 2010; Perez-Jimenez et al., 2011; Eick et al., 
2012; Perica et al., 2014). The algorithm PRANK (Löytynoja 
and Goldman, 2008) considers insertions and deletions 
as distinct evolutionary events and has been shown to 
prevent systematic errors related to the gap placement 
of more traditional MSA methods. PRANK was utilized in 
more recent ASR experiments (Bar-Rogovsky et al., 2013; 
Reisinger et al., 2014). In some cases, regions of ambigu-
ous alignment were removed from the MSA by applying 
GBLOCKS (Castresana, 2000) prior to the subsequent com-
putation of a phylogeny (see Reisinger et al., 2014).

(C) Compute a phylogenetic tree: It is state of the art 
to deduce a phylogeny by means of an ML or a Bayesian 
approach. Among ML approaches, PAUP (Swofford, 1984) 
has been chosen (Gaucher et  al., 2003; Perez-Jimenez 
et al., 2011) as well as GARLI (Bazinet et al., 2014), which 
was used in Hobbs et  al. (2012), and PAML (Yang et  al., 
1995) was used in Akanuma et  al. (2013) and Finnigan 
et al. (2012). Frequently used implementations of Bayes-
ian approaches are MrBayes (Ronquist and Huelsenbeck, 
2003; see Ugalde et  al., 2004; Bridgham et  al., 2006; 
Gaucher et al., 2008; Field and Matz, 2010; Voordeckers 
et al., 2012; Risso et al., 2013; Perica et al., 2014), PhyML 
(Guindon and Gascuel, 2003; see Eick et  al., 2012; 
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Bar-Rogovsky et  al., 2013; Harms et  al., 2013), and Phy-
loBayes (Lartillot et al., 2009; see Reisinger et al., 2014). 
nhPhyloBayes (Blanquart and Lartillot, 2008) is a non-
homogeneous Bayesian approach that was also utilized, 
see Akanuma et al. (2013).

Alternatively, phylogenetic relationship between the 
species was deduced from the literature (Yokoyama and 
Radlwimmer, 2001) or a user-defined time-calibrated 
mammalian phylogeny was assembled via Mesquite 
(Maddison and Maddison, 2015; see Mirceta et al., 2013). 
Moreover, node age estimates were made (Hobbs et  al., 
2012) using the ML branch lengths and two calibration 
points taken from the literature (Battistuzzi et al., 2004).

A large set of supplementary programs support phy-
logenetic studies and ASR. To select the best fitting model 
for the data set at hand, ProtTest (Abascal et al., 2005) was 
used (Bar-Rogovsky et al., 2013), which aims at identify-
ing the best generating evolutionary model. In one case, 
the resulting parameters were fed into GARLI (Bazinet 
et al., 2014) to find the best ML tree (Hobbs et al., 2012). 
The validity of the phylogeny was confirmed with differ-
ent approaches. The quality of the PhyML tree (Guindon 
and Gascuel, 2003) was assessed by means of a bootstrap 
resampling test (Bar-Rogovsky et  al., 2013). These boot-
strap values were calculated with RAxML (Stamatakis, 
2006) and the topology was evaluated by means of a Shi-
modaira-Hasegawa test (Shimodaira and Hasegawa, 2001; 
Anisimova et al., 2011), which was used similarly in Finni-
gan et al. (2012). Often, MCMC convergence was checked, 
e.g. by using the AWTY program (Nylander et  al., 2008) 
as in (Voordeckers et  al., 2012) or by determining other 
parameters indicating convergence and well mixing of 
the chains. For example, the maximum difference of pos-
terior probabilities of tree bipartitions and the posterior 
number of biochemical profile categories was estimated 
(Richter et al., 2010). Additional tests were performed to 
exclude long-branch attraction artifacts (see, for example, 
Voordeckers et al., 2012).

(D) Reconstruct ancestral sequences: The extant 
sequences chosen in step (A) and the phylogenetic tree 
determined in step (C) combined with a substitution 
model form the basis for the computation of the ancestral 
sequences. Most often, the one sequence with the highest 
likelihood has been considered for each internal node, see, 
for example, Perica et al. (2014). These ancestral sequences 
were deduced by means of MrBayes (Ronquist and Huelsen-
beck, 2003) and a simple F81-like model (Felsenstein, 1981). 
Frequently, the functions CODEML and ML of PAML (Yang, 
1997) were utilized (Yokoyama and Radlwimmer, 2001; 
Bridgham et  al., 2006; Gaucher et  al., 2008; Yokoyama 
et al., 2008; Perez-Jimenez et al., 2011; Hobbs et al., 2012; 

Akanuma et  al., 2013; Ingles-Prieto et  al., 2013) in com-
bination with gamma distributions modeling variable 
replacement rates across sites. However, different substi-
tution matrices were chosen: in some cases the JTT model 
(Jones et al., 1992) was the basis for a marginal reconstruc-
tion and the synthesis of ancestral enzymes (Voordeckers 
et al., 2012), the same model was used in (Eick et al., 2012) 
in combination with the Lazarus software (Hanson-Smith 
et al., 2010). Alternatively, the WAG (Whelan and Goldman, 
2001) substitution model was utilized (Risso et al., 2013). 
In Field and Matz (2010) and Ugalde et  al. (2004) PAML 
was combined with three alternative ML models. Those 
were the amino acid based JTT (Jones et  al., 1992), the 
codon-based M5 (Yang et  al., 2000), and the nucleotide 
based GTR+G3 (Tavaré, 1986) model. In this case, the pos-
terior probability of the marginal reconstruction at each 
site served as a measure of accuracy. Alternatively, the 
ML approach of FastML (Pupko et al., 2000) was applied 
(Bar-Rogovsky et al., 2013). In Mirceta et al. (2013), only the 
most probable amino acid sequence was considered, which 
was determined utilizing the ML approach implemented 
in MEGA5 (Tamura et  al., 2011) in combination with the 
Dayhoff+G (Dayhoff et al., 1978) model. Moreover, the non-
homogeneous models nhPhyML (Boussau and Gouy, 2006) 
and nhPhyloBayes (Blanquart and Lartillot, 2008) were 
also integrated into sequence reconstruction (see Boussau 
et al., 2008; Richter et al., 2010).

Open issues and problems to be solved in ASR

Is ASR applicable to any protein of interest? Presumably 
not. A phylogeny can be computed if a sufficiently large 
set of sequences is at hand. However, it is the quality of 
the resulting tree that decides on the meaningfulness of a 
reconstruction: if the length of any edge indicates that a 
rate of more than one mutation per site separates the adja-
cent nodes, the corresponding sequences cannot be recon-
structed reliably. Additionally, the topology of the tree has 
to be unambiguous – which demands for high a posteriori 
probabilities or bootstrap values – although this property is 
not extremely crucial for ASR (Hanson-Smith et al., 2010).

Moreover, one has to keep in mind that phylogenetic 
models make implicit assumptions about the data. For 
example, it is assumed that the proteins under study share a 
common ancestor and that all sequences have evolved inde-
pendently. The first assumption is violated, for example if 
multi-domain proteins are examined that possess only one 
common domain. The second one is violated, if sequences 
were exchanged via horizontal gene transfer. For the recon-
struction of sequences related to the LUCA, i.e. the most 
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ancestral node, midpoint rooting is frequently applied as 
no outgroup exists. However, this method is not generally 
accepted (Perez-Jimenez et al., 2011).

The major concern with respect to the reliability 
of ASR is whether the resurrected proteins display the 
same characteristics as the authentic ancestral proteins 
(Gaucher et al., 2008). A reconstructed sequence is some 
kind of consensus sequence and it has been argued, for 
example, that the higher thermostability observed in 
many ASR projects is due to selecting the most probable 
residue at each site (Williams et al., 2006). Higher equi-
librium frequencies of hydrophobic residues in the amino 
acid substitution matrices may strengthen this effect, 
especially if the underlying tree contains long branches. 
Moreover, these matrices have been deduced from extant 
proteins and their use for ASR has been questioned 
(Brooks and Gaucher, 2007). Thus, if thermostability is a 
major issue, special care has been taken to exclude these 
effects in some applications of ASR (see, for example, 
Gaucher et al., 2008).

For the practitioner, two further problems complicate 
the application of ASR: These are (i) the selection of a rep-
resentative sample, if a large number of sequences is at 
hand and (ii) the correct modeling of larger insertions and 
deletions.

To tackle the first problem, tools that choose 
sequences leading to an unambiguous phylogeny would 
be helpful. Alternatively, reconciliation methods like the 
recently introduced TERA approach (Scornavacca et  al., 
2015) incorporate species trees into gene tree reconstruc-
tion and promise drastic improvements in accuracy. Thus, 
it seems reasonable to integrate these concepts into ASR 
protocols in order to simplify sequence selection. A first 
application of a species tree-aware ASR, namely the resur-
rection of the LeuB enzyme for the ancestor of Firmicutes 
was successful (Groussin et al., 2015).

The correct modeling of loops, which underlies the 
second problem, is still in its infancies. It has to be shown 
whether algorithms like PRANK (Löytynoja and Goldman, 
2008) in combination with an adapted reconstruction proto-
col (Perica et al., 2014) contribute to the correct phenotype.

Applications of ASR

Deducing environmental conditions of 
the Precambrian era

An important application of ASR is to “replay the molec-
ular tape of life” (Gaucher, 2007). Along these lines, 

billions-of-years old Precambrian proteins have been 
resurrected (Gaucher et  al., 2008; Perez-Jimenez et  al., 
2011; Akanuma et al., 2013; Ingles-Prieto et al., 2013; Risso 
et al., 2013; Reisinger et al., 2014; Risso et al., 2014). As a 
side-effect, these studies allow one to obtain information 
about environmental conditions surrounding Precam-
brian life.

For example, G.E. Gaucher and colleagues determined 
the thermal melting temperature (Tm) of resurrected trans-
lation elongation factors from organisms living from 3.5 
to 0.5 Gyr ago (Gaucher et al., 2008). The results suggest 
that ancient life cooled progressively by 30°C during this 
period. In accordance with this finding, an almost identi-
cal cooling trend for the ancient ocean was inferred from 
the deposition of silicon isotopes (Robert and Chaussidon, 
2006).

An analogous cooling trend has been deduced from 
the analysis of ancestral thioredoxins (Perez-Jimenez et al., 
2011). Seven Precambrian thioredoxin enzymes dating 
back between about 4 Gyr and 1.4 Gyr were resurrected, 
which are related to the last bacterial common ancestor 
(LBCA), the last archaeal common ancestor (LACA), and 
the archaeal-eucaryotic common ancestor (AECA). These 
organisms are thought to have inhabited Earth 4.2–3.5 Gyr 
ago diverging from the LUCA, which could not be recon-
structed due to technical difficulties. DSC measurements 
showed that these enzymes are up to 32°C more stable 
than modern enzymes, and a plot of the Tm vs. geologi-
cal time revealed a linear decrease with a slope of about 
6°C/Gyr (Figure 3). An activity assay based on single mol-
ecule spectroscopy and an artificial substrate showed that 
ancient thioredoxins used a similar reaction mechanism 
as modern thioredoxins.

The crystal structures of the resurrected thioredox-
ins possess the canonical thioredoxin fold (Ingles-Prieto 
et al., 2013), meaning that the chemistry and three-dimen-
sional structure of thioredoxin were already established 
around 4 Gyr ago. This observation suggests that the step 
from simple reducing compounds to well-structured and 
functional enzymes occurred early in molecular evolution 
(Nisbet and Sleep, 2001). Remarkably, ancient thioredox-
ins are significantly more active at pH 5 than extant ones, 
which fits to the proposed acidity of the ancient oceans 
(Walker, 1983). Taken together the natural habitat in 
which LBCA, LACA, and AECA lived was likely acidic as 
well as hot in accordance with the plausible hypothesis 
that early life thrived in seawater.

The assumption of a hot environment for early life is 
further supported by an analysis of nucleotide kinases 
(NDKs) (Akanuma et al., 2013). Ancestral NDK sequences 
were computed based on two different resurrection 
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there is a good correlation between the growth tempera-
ture of an organism and the thermostability of its pro-
teins (Gromiha et al., 1999), the authors hypothesize that 
the observed fluctuations in thermophily reflect changes 
in the microenvironment encountered by the evolving 
Bacillus species.

In the previous examples, environmental properties 
were estimated by characterizing resurrected proteins 
with the help of biophysical methods. A pure in silico 
analysis was presented by the group of M. Gouy, which 
reconstructed rRNA and protein sequences for the LUCA 
and the ancestors of the three domains of life (Boussau 
et al., 2008). The rRNA sequences consisted of 1043 sites 
from the double-stranded regions of the small and the 
large ribosomal subunit, and the protein sequences com-
prised 3336 sites from 56 nearly universally distributed 
proteins. These ancestral sequences were used to deduce 
the ambient temperature from the G+C content of the 
rRNA and from the content of the amino acids I, V, Y, W, R, 
E, and L in the protein sequences. For both parameters, a 
strong correlation with the optimal growth temperature is 
known (Galtier and Lobry, 1997; Zeldovich et al., 2007). In 
contrast to other findings, these parameters characterize 
the LUCA as a non-hyperthermophilic species. Interest-
ingly, the bacterial ancestor and the archeal ancestor as 
well as the common ancestor of Archaea and Eukaryotes 
were estimated as being thermophilic or hyperthermo-
philic species. In summary, these findings argue for a tem-
perature increase during the era of the LUCA descendants.

Promiscuity of ancestral enzymes

It has been postulated that ancestral enzymes were pro-
miscuous, i.e. processed several different substrates 
during the very first steps of their evolution (Khersonsky 
and Tawfik, 2010). This hypothesis has been tested for 
several protein families using ASR.

J. Sanchez-Ruiz and colleagues have studied four Pre-
cambrian ancestors of β-lactamase (Risso et  al., 2013). 
These ancient β-lactamases were indeed promiscuous: 
activity assays showed that they are able to hydrolyze 
various β-lactam antibiotics with catalytic efficiencies 
similar to those of an average modern enzyme. In contrast, 
the modern β-lactamase TEM-1 is a specialist that can only 
hydrolyze penicillin. The comparison of crystal structures 
of extant and ancestral β-lactamases revealed the same 
topologies and no significant differences of the active 
sites. It was concluded that substrate promiscuity of the 
ancestral β-lactamases is probably due to altered dyna
mics, a hypothesis that was substantiated by extensive 

strategies. At pH 6, the reconstructed archaeal NDKs have 
Tm values of around 110°C, and the bacterial ones have Tm 
values of 109°C and 102°C. These values are higher than 
those for the thermophilic archaeon Archaeoglobus fulgi-
dus and the thermophilic bacterium Thermus thermophi-
lus, respectively.

However, not all enzymes followed this general 
cooling trend in their evolution. An interesting case of 
a more recent thermal adaptation to the local habitat is 
the metabolic enzyme 3-isopropylmalate dehydrogenase 
(LeuB) reconstructed for Bacilli (Hobbs et al., 2012). Four 
ancestral sequences (ANC1–ANC4) of LeuB were deter-
mined. Each was positioned progressively deeper in the 
phylogeny and further back in time. ANC1, 2, 3, and 4 
are approximately 679, 820, 850, and 950 million years 
old, respectively. All four ANC enzymes exhibited kinetic 
parameters comparable to their homologs from contem-
porary Bacillus species. The thermoactivity profiles and 
the thermal melting temperatures of ANC1–ANC4 were 
compared and showed a sharp decline in thermophily 
from ANC1 to ANC2, followed by a gradual increase in 
thermophily from ANC2, through ANC3 to ANC4. A more 
detailed sequence analysis demonstrated that the mecha-
nisms of thermal stability differ between ANC1 and ANC4, 
i.e. thermophily within Bacillus LeuB evolved twice. As 

Figure 3: Denaturation temperatures (Tm) versus geological time for 
ancestral thioredoxin (Trx) enzymes.
Modern Escherichia coli and human Trx enzymes are also indicated. 
The dashed line represents a linear fit to the data. Inset, experi-
mental DSC thermograms for E. coli Trx and LBCA Trx. For ancestral 
thioredoxins, the following abbreviations were used: LBCA, last 
bacterial common ancestor; LACA, last archaeal common ancestor; 
AECA, archaeal-eukaryotic common ancestor; LECA, last eukaryotic 
common ancestor; LPBCA, last common ancestor of the cyanobac-
terial and deinococcus and thermus groups; LGPCA, last common 
ancestor of γ-proteobacteria; LAFCA, last common ancestor of 
animals and fungi. Figure taken from Perez-Jimenez et al. (2011).
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molecular dynamics simulations. The modern TEM-1 
β-lactamases showed a relatively rigid active site region, 
likely reflecting adaptation for efficient degradation of 
a specific substrate (penicillin), whereas the observed 
enhanced flexibility in the ancestral β-lactamases might 
allow for the binding of antibiotics with different sizes 
and geometries (Zou et  al., 2015). In spite of their high 
flexibility, the ancestral proteins were about 35°C more 
thermostable than extant β-lactamases including the one 
from the thermophile Bacillus licheniformis.

This ancestral promiscuity can be explained if 
ancient bacteria benefitted from producing a variety of 
β-lactam antibiotics. Such antibiotics could have served 
as a device to achieve nutrients by killing competitors, 
and β-lactamases might have arisen as a mechanism of 
defense (Risso et al., 2014).

However, promiscuity is not a general feature of 
ancient enzymes: A chymase is a serine protease that con-
verts angiotensin I to angiotensin II. An ancestral chymase, 
which was deduced from mammalian sequences, had an 
efficient and specific angiotensin II-forming activity. Thus, 
it was postulated that the less specific serine proteases 
evolved later and broadened their substrate spectra, 
thereby losing specificity (Chandrasekharan et al., 1996). 
Moreover, the reconstructed cyclase subunit of imidazole 
glycerol phosphate synthase from LUCA (LUCA-HisF) can 
convert only the native HisF substrate into product but not 
the related HisA or TrpF substrates (Reisinger et al., 2014).

The LUCA is a construct that may exemplify a single 
organism (Woese, 1998) or may represent populations of 
organisms capable of sharing large amounts of genetic 
information through horizontal gene transfer (Doolittle, 
2000). Either way, it is clear now that organisms at the 
time of the LUCA possessed many of the fundamental fea-
tures present in modern organisms and likely exhibited a 
level of sophistication comparable with modern Bacteria 
or Archaea (Becerra et  al., 2007). The findings of Reis-
inger et al. (2014) are in full agreement with this notion: 
LUCA-HisF forms a high-affinity imidazole glycerol phos-
phate synthase complex with its associated glutaminase 
subunit LUCA-HisH.

Long-term persistence of beneficial residues 
in proteins

It is an interesting question whether the preferences for 
different amino acids at a given site in a protein change 
during evolution or remain essentially constant. V. Risso 
and colleagues have used resurrected thioredoxins to 
address this problem (Risso et al., 2015). To this end, the 

authors have experimentally determined the effects of 21 
mutations on the stability of both Escherichia coli thiore-
doxin and the thioredoxin of the LBCA. Fourteen muta-
tions were identical for the extant and ancestral proteins 
in terms of the introduced amino acid exchange. For 
example, there is valine at position 16 both in the E. coli 
and the LBCA thioredoxin. Thus, the Val16Ile exchange 
was studied in both cases. In contrast, seven mutations 
had to be analyzed in opposite directions for the extant 
and ancestral backgrounds. For example, there is an iso-
leucine at position 23 in E. coli thioredoxin but a valine at 
the same position in LBCA thioredoxin. Thus, the Ile23Val 
mutation was studied in the extant background whereas 
the Val23Ile mutation was studied in the ancestral back-
ground. Importantly, the extant and ancestral proteins 
substantially differ in the residues present in the molecu-
lar neighborhood of the targeted positions. Nevertheless, 
the effect of the mutation (stabilizing or destabilizing) 
– when considered in the same direction – was qualita-
tively identical for the extant and the ancestral proteins. 
Taken together, this study suggests that site-specific 
amino acid preferences in a protein have essentially 
remained unchanged over long geological timescales 
even when the amino acids themselves changed during 
evolution. The evolutionary persistence of a destabilizing 
mutation might be explained by the fact that it leads to 
an enhanced fitness of the organism caused by functional 
advantages.

Following the evolution of receptor-ligand 
interactions

Can few mutations induce major shifts in protein func-
tion and if so, what are the underlying mechanisms? To 
study this question, the group of J. Thornton analyzed 
the structural basis of the different hormone sensitivities 
of the estrogen receptors (ERs) and the non-aromatized 
steroid receptors (naSRs) (Harms et  al., 2013). Previous 
investigations had revealed that the ancestor of the entire 
steroid receptor family (AncSR1) had ER characteristics 
with respect to hormone binding, whereas its immedi-
ate phylogenetic descendant (AncSR2) was sensitive to 
androgens, progestogens, mineralocorticoids, and gluco-
corticoids, and thus had naSR characteristics (Figure 4A) 
(Eick et al., 2012). The AncSR1 sequence is most similar to 
those of the extant ERs, whereas that of AncSR2 is most 
similar to the naSRs, and this pattern is most pronounced 
at sites in the ligand-contacting pockets (Figure 4B). Alto-
gether, AncSR1 and AncSR2 differ by 171 residues corre-
sponding to a sequence divergence of 70%. Among them 
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are 22 residues that are in AncSR1 identical to the residue 
observed in the extant ERs and in AncSR2 identical to 
the residue observed in the extant naSRs. Two residues 
out of the 22 differences appeared to be involved in dif-
ferential hormone binding according to a comparison of 
the structures of AncSR1 and AncSR2. The two AncSR2-
specific residues (Gln41 and Met75) were replaced by the 
AncSR1-specific residues (Glu41 and Leu75), and vice 
versa. Characterization of the AncSR2 variant showed that 
it had AncSR1-like hormone binding characteristics, and 
characterization of the AncSR1 variant showed that it had 
AncSR2-like hormone binding characteristics. Thus, just 
two relatively minor amino acid differences are responsi-
ble for the distinct ligand specificities of these two major 
clades of vertebrate hormone receptors.

Understanding the evolution of biological systems 
consisting of tightly integrated parts is difficult, due to the 
mutual dependency of the interacting partners. J. Thorn-
ton and colleagues used a vertical approach to elucidate 
the stepwise adaptation in the functional interaction 
between the steroid hormone aldosterone and its binding 
partner, the mineralocorticoid receptor (Bridgham et al., 
2006; Ortlund et al., 2007). The authors were interested in 
identifying the key residue differences between different 
steroid receptors in two related systems, namely the 

mineralocortocoid receptor (MR), which is activated by 
aldosterone and to a lesser extent by cortisol, and the 
glucocorticoid receptor (GR), which is activated by cor-
tisol only (Bridgham et  al., 2006; Ortlund et  al., 2007). 
It was found that the common ancestor of all MRs and 
GRs (AncCR) was MR-like. By resurrecting successive 
ancestors in the GR lineage, it was shown that cortisol-
specificity evolved between AncGR1 (MR-like phenotype) 
and AncGR2 (GR-like phenotype). Within this branch, 37 
residue differences occurred but only five have been con-
served in one state in the MRs and in another state in the 
GRs. These residues were introduced into AncGR1, singly 
and in pairs. None of the single mutations increased cor-
tisol-specificity, but the combination of Ser106Pro and 
Leu111Gln did. A strong epistatic effect with respect to 
these two mutations was observed: Leu111Gln alone had 
little effect on sensitivity to any hormone, but Ser106Pro 
dramatically reduced activation by all ligands. Only the 
combination switched receptor preference from aldoster-
one to cortisol. Introducing these substitutions into the 
human MR yielded a completely non-functional recep-
tor, as did reversing them in the human GR. These results 
emphasize that the functional impacts of historical substi-
tutions can only be evaluated with the ancestral sequence 
at hand.
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Elucidating mutational routes leading to 
highly specific chromophores

Two other studies, focusing on the absorbance and fluo-
rescence properties of chromophores, also nicely illustrate 
how ASR can help to identify key residues distinguishing 
highly specific functions of homologs.

In the first study, the sequence determinants that are 
relevant for the absorption of opsins in the green or the 
red wavelength region were identified (Yokoyama et  al., 
2008). Earlier work had shown that the replacement 
of three putative key residues in red opsin with the cor-
responding residues in green opsin yielded a pigment 
absorbing in the green wavelength region. However, the 
reverse procedure did not yield an opsin absorbing in the 
red (Asenjo et  al., 1994). ASR showed that the common 
ancestor of all red and green opsins absorbed maximally 
in the red. A sequence comparison identified five posi-
tions that were specifically conserved in red and green 
opsins but differed between the two forms. When the five 
green-specific residues were introduced in the ancestral 

opsin, it displayed a shift from the red to the green. Then, 
each mutation was introduced singly and in sets of two or 
three. The results showed that a large fraction of the total 
green shift was the result of epistatic mutations rather 
than the direct effects of the individual mutations.

In the second study, the sequence determinants 
responsible for the different fluorescence properties of 
GFP variants from the coral suborder Faviina were char-
acterized (Ugalde et al., 2004; Field and Matz, 2010). ASR 
revealed that the ancestral GFP-like protein fluoresced in 
the green; subsequent diversification resulted in the emis-
sion of a variety of colors (Figure 5). The authors were 
interested to identify residues that lead to a shift from the 
green ancestor to the red GFP that is present in a certain 
star coral. They first found that these two proteins differed 
by 37 residues. As it was impossible to test all possible 
combinations of exchanges, they generated a library of 
variants that comprised about half of the residues in the 
ancestral green state and half in the derived red state. 
Then, the fluorescence of a large number of clones from 
this library was correlated with the amino acids found 
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at different positions. The statistical analysis of the data 
indicated that 12 of the 37 residues were crucial for red flu-
orescence. The introduction of these 12 residues into the 
green ancestral protein yielded a protein that emitted in 
the red. This work thus illustrates that crucial amino acids 
responsible for different properties of proteins can be 
identified by a combination of ASR with library selection.

Gene duplications and their contribution to 
the evolution of modern enzymes

ASR was also used to study the effect of gene duplication 
on evolutionary innovation (Voordeckers et al., 2012). Fol-
lowing gene duplication, three evolutionary scenarios are 
feasible that explain the subsequent function of the gene 
products: (i) one copy can retain the old function and the 

other copy can adopt a new one (neofunctionalization); 
(ii) it is also possible that the ancestral gene product has 
two different functions, which might be split between the 
two copies (subfunctionalization); (iii) finally, the two 
copies may preserve the same activity; in such a case, gene 
duplication would increase the activity by increasing the 
concentration of the encoded protein (gene dosage effect).

In this study, a family of fungal enzymes (MALS) was 
analyzed that hydrolyze disaccharides. These enzymes all 
originated from the same ancestral gene and underwent 
several duplication events. Activity data were obtained 
for the very first preduplication enzyme ancMALS, for the 
subsequent ancestral enzymes ancMAL-IMA, ancMAL 
and ancIMA1-5, and for the seven extant MALS enzymes 
from Saccharomyces cerevisiae (Figure 6).

The results show that ancMALS and ancMAL-IMA 
were promiscuous, preferring maltose-like substrates 
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such as maltose, maltotriose, maltulose, sucrose, and 
turanose, but also displaying trace activity towards iso-
maltose-like sugars such as palatinose and isomaltose. A 
clear divergence of both subfunctions only occurred after 
duplication of ancMAL-IMA, resulting in the specialized 
ancMAL and ancIMA1-4 proteins. This subdivision is also 
present in the seven extant enzymes: two enzymes (MAL12 
and MAL32) show high activity towards maltose-like sub-
strates, whereas the enzymes of the second class (IMA1-4) 
show high activity for isomaltose-like substrates. These 
findings illustrate how, after duplication, the different 
copies diverged and specialized in one of the functions 
present in the preduplication enzyme. Interestingly, it 
was found that evolution has taken two different molecu-
lar routes to optimize isomaltose-like activity (the evolu-
tion of ancMAL-IMA to ancIMA1–4 and ancIMA5 to IMA5; 
Figure 6). Molecular modeling and site-directed mutagen-
esis studies revealed that the observed different substrate 
specificities are caused by different evolutionary routes: 
when going from ancMAL-IMA to ancIMA1–4 position 279 
is crucial, whereas when going from ancMALS to IMA5 the 
same shift in substrate specificity is caused by residue 219.

Taken together, the data suggest that the evolution-
ary history of the MALS family exhibits aspects of all 
three classical models of gene evolution after duplica-
tion: the preduplication enzyme was multifunctional 
and already contained the different activities found in 

the postduplication enzymes, which is in agreement 
with the idea of subfunctionalization. However, the iso-
maltose-like activity was very weak in the preduplication 
ancestor and only fully developed through mutations 
after duplication, which resembles neofunctionalization. 
Moreover, considerable fitness costs that were observed 
when one of two almost identical copies of extant MALS 
proteins was deleted suggest that gene dosage effects 
may also play an important role in the evolution of this 
enzyme group.

Gene duplication and subsequent specialization are 
also the basis for the evolution of increased complexity in 
a molecular machine (Finnigan et al., 2012). The V0 ring 
of extant V-ATPases from fungi contains three different 
subunits, Vma3, Vma11, and Vma16, which are arranged 
in a specific orientation (Figure 7A). Phylogenetic analy-
sis showed that Vma3 and Vma11 are sister proteins that 
are derived from an ancestral protein (Anc3–11) via a gene 
duplication event. Anc3–11 as well as the last common 
ancestors of Vma3 (Anc3), Vma11 (Anc11), and Vma16 
(Anc16) were reconstructed (Figure 7B). It was found that 
Anc16 can complement a ΔVma16 strain. Likewise, Anc3–
11 (but not Anc3 or Anc11) could complement a yeast 
ΔVma11ΔVma3 double deletion strain. These findings 
show that an ancestral two-subunit ring can function-
ally replace the extant three-subunit ring of yeast. Sub-
sequent subunit fusion experiments demonstrated that 

Figure 7: Structure and evolution of the V-ATPase complex.
(A) In Saccharomyces cerevisiae, the V-ATPase contains two subcomplexes: the octameric V1 domain on the cytosolic side of the organelle 
membrane, and the membrane bound hexameric V0 ring. Subunits Vma3, Vma11, and Vma16 are color-coded. (B) Maximum likelihood 
phylogeny of V-ATPase subunits Vma3, Vma11, and Vma16. The genomes of all eukaryotes contain subunits 3 and 16, but Fungi also contain 
subunit 11. Circles show reconstructed ancestral proteins, colors correspond to those of subunits in panel (A); unduplicated orthologs of 
Vma3 and Vma11 are green. Asterisks show approximate likelihood ratios for major nodes. Figure taken from Finnigan et al. (2012).
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Vma3 and Vma11 evolved their specialized roles because 
they lost specific asymmetric interactions present in 
Anc3–11 that are required for ring assembly. These losses 
were complementary, so both copies, Vma3 and Vma11, 
became obligate components with restricted spatial roles 
in the complex. Site-directed mutagenesis with Anc3–11 
was used to recapitulate this asymmetric degeneration: 
a single amino acid replacement that occurred on the 
branch leading to Anc11 abolished the capacity of Anc3–11 
to function as subunit 3. Conversely, a single amino acid 
replacement that occurred on the branch leading to Anc3 
radically reduced the capacity of Anc3-11 to function as 
subunit 11.

Following the evolution of quaternary 
complexes

Commonly, the quaternary configuration of homologous 
protein complexes is highly conserved. However, in some 
protein families, different oligomeric states are observed. 
An example is PyrR, which is a pyrimidine operon attenua-
tor in Bacillaceae. Here, the thermophilic ortholog (BcPyrR) 
forms a tetramer whereas the mesophilic ortholog (BsPyrR) 
is a dimer. In order to dissect the role of the 49 substitu-
tions that distinguish BsPyrR from BcPyrR, S. Teichmann 
and colleagues combined ASR with biophysical methods 
and structural analysis (Perica et al., 2014). Comparing the 
3D structures and residue contact networks of variants, 11 
allosteric key mutations were identified that control the 
oligomeric state. The results made clear that evolution uti-
lized the intrinsic dynamics of this protein to toggle a con-
formational switch in the same manner as the binding of a 
small molecule does, which is related to the function of this 
attenuator.

Conclusion
The above examples illustrate that evolutionary analysis 
can help to solve biochemical and biological problems, 
which are not accessible with other methods. However, 
to address these problems, it is not sufficient to simply 
reconstruct the protein sequences. Instead, the function-
ally important mutations have to be identified, and the 
physical effects mediating them have to be uncovered by 
means of a biochemical and biophysical characterization 
of the resurrected proteins.

A number of ASR experiments have confirmed that 
Precambrian life was thermophilic, which is in accordance 

with several scenarios, including that ancestral oceans 
were hot, that ancient life thrived in hot spots such as 
hydrothermal systems, or that only robust thermophilic 
organism survived bombardment events in the young 
Earth (Risso et al., 2014). Moreover, several publications 
suggest that essential enzymes had already reached a high 
level of functional sophistication in the LUCA era. Further-
more, crystal structure analysis of Precambrian thioredox-
ins (Ingles-Prieto et al., 2013), β-lactamases (Risso et al., 
2013), nucleoside kinases (Akanuma et al., 2013) and the 
imidazole glycerol phosphate synthase HisF (Reisinger 
et al., 2014) made clear that the three-dimensional struc-
tures of these proteins are similar to those of the corre-
sponding extant proteins, supporting a relatively slow 
evolution of protein structure and function as compared 
to amino acid sequences.

Although ASR is unavoidably uncertain to some 
extent, the presented studies show that ASR is validated 
to a significant degree at the phenotypic level by the 
fact that the properties of the proteins resurrected in the 
laboratory are typically robust. Moreover, their capaci-
ties are consistent with the ancestral properties expected 
from physical science and paleogeology. Additionally, 
state-of-the-art applications of ASR acknowledge that 
reconstructed ancestors are approximations of historical 
reality. For example, several studies carefully explored the 
robustness of their functional inferences to uncertainty 
about the reconstructed ancestors by experimentally 
characterizing alternate plausible reconstructions (see, 
for example, Thornton, 2004; Ugalde et al., 2004).

We have shown that ASR counts on state-of-the-art 
phylogeny. These methods will further improve due the 
permanent increase of computing power, which allows for 
the implementation of more sophisticated models. Addi-
tionally, a much larger number of extant sequences can 
be exploited, which makes plausible that the uncertainty 
related to ASR will further decrease.

It has been argued that ASR has a tendency to over-
predict highly stable predecessors (Perica et al., 2014), a 
suspicion that cannot be ruled out completely. Conversely, 
hyperstability in combination with promiscuity is a 
winning combination from the protein-engineering point 
of view, because both features contribute to high evolv-
ability (Risso et al., 2013).

What are the limitations of ASR? This technology is 
entirely dependent on phylogenetic trees, which conse-
quently hampers the analysis of protein evolution for the 
pre-LUCA era. Thus, the experimental simulation of this very 
early phase of evolution requires alternative approaches, 
which again combine in silico analyses and proteins charac-
terization (see, for example, Farias-Rico et al., 2014).
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What comes next? The next steps are the integration 
of ancestral protein complexes into modern organisms – 
for first examples see Finnigan et al. (2012) and Reisinger 
et  al. (2014) – and in the long-run the reconstruction of 
a full ancestral microorganism. To do so, the ancestral 
genomic content has to be determined at first. This task 
is feasible with methods resembling the approaches intro-
duced here (see Tuller et al., 2010; Jones et al., 2012; Yang 
et al., 2012), but a more detailed survey is out of the scope 
of the current review.
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