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Abstract: Ancestral sequence reconstruction (ASR) is the
calculation of ancient protein sequences on the basis of
extant ones. It is most powerful in combination with the
experimental characterization of the corresponding pro-
teins. Such analyses allow for the study of problems that
are otherwise intractable. For example, ASR has been
used to characterize ancestral enzymes dating back to
the Paleoarchean era and to deduce properties of the cor-
responding habitats. In addition, the historical approach
underlying ASR enables the identification of amino acid
residues key to protein function, which is often not pos-
sible by only comparing extant proteins. Along these lines,
residues responsible for the spectroscopic properties of
protein pigments were identified as well as residues deter-
mining the binding specificity of steroid receptors. Further
applications are studies related to the longevity of muta-
tions, the contribution of gene duplications to enzyme
functionalization, and the evolution of protein complexes.
For these applications of ASR, we discuss recent examples;
moreover, we introduce the basic principles of the underly-
ing algorithms and present state-of-the-art protocols.

Keywords: ancestral sequence reconstruction; phylo-

genetic analysis; protein evolution; vertical analysis of
protein function.

Introduction

Starting from ancestral precursors, gene duplication and
diversification events have yielded families of homologous
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proteins with highly variable amino acid sequences.
Multiple sequence alignments of such proteins allow
for the identification of conserved key amino acids, for
example active site residues, that are characteristic of the
entire protein family (Brown and Babbitt, 2014). However,
such an analysis will rarely uncover the set of residues
that are responsible for the functional diversity observed
in large protein families (Gerlt and Babbitt, 2009). The
reason for this is that many neutral as well as epistatic
mutations may have accumulated during the evolution
of the proteins under comparison. Neutral mutations
produce sequence noise that impedes the identification
of the crucial mutations, leading to altered functions.
Epistatic mutations, i.e. mutations that have different
consequences depending on the genetic background, can
be divided into permissive and restrictive mutations. Per-
missive mutations, for example stabilizing ones, are often
the prerequisite for a change in function, when the causa-
tive key mutation is destabilizing. In contrast, restrictive
mutations will prevent a key mutation from becoming
effective, for example by introducing steric clashes. Thus,
the exchange of putative key residues by site-directed
mutagenesis in the framework of a functional analysis can
lead to non-functional proteins, when permissive muta-
tions are missing or restrictive mutations are present in
the alternative background. As a consequence, the resi-
dues that historically led to a new function can often not
be identified by comparing extant sequences (Harms and
Thornton, 2010).

From an evolutionary point of view, extant homologs
are the leaves of a phylogenetic tree and represent varia-
tions observed for one specific point in time. Therefore,
a comparison of extant sequences was termed “horizon-
tal approach” (Figure 1). It is easy to accept that a “ver-
tical approach”, which additionally takes into account
the evolutionary history of the proteins under study, is
a more straightforward strategy to identify crucial but
subtle amino acid differences (Harms and Thornton,
2010). Instead of exclusively comparing the leaves, such
an approach includes the internal nodes of the tree and
thus considers the chronology of mutations (Figure 1).
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Figure 1: An example of a phylogeny.

Leaves representing extant sequences are labeled 1-5, internal
nodes representing reconstructed ancestral sequences are labeled
6-8; 0 represents the root. The exclusive comparison of the leaf
sequences is termed a “horizontal” approach; a “vertical” approach
additionally takes into account the sequences of the internal nodes.
The values v,—v, represent the length of the vertices; example
according to Felsenstein (1981).

Moreover, the comparison of the more similar sequences
that are related to adjacent nodes reduces the number
of neutral mutations and could help to identify epistatic
mutations. However, internal nodes represent extinct
proteins, whose properties cannot easily be determined,
due to the lack of macromolecular fossils. Fortunately,
novel computational techniques allow us to reconstruct
the sequences of such proteins and to travel back in time
(Thornton, 2004; Hanson-Smith et al., 2010). The outcome
of these in silico approaches, termed ancestral sequence
reconstruction (ASR), is a value in itself. Furthermore,
in combination with modern gene synthesis technology,
these proteins can be produced in recombinant form and
characterized by means of all biochemical and biophysi-
cal methods at hand.

Sorting out neutral and epistatic mutations is an
important but by no means the only application of ASR.
Driven to extremes, the most ancient sequences that can
be reconstructed are related to the era of the last universal
common ancestor (LUCA), which preceded the diversifica-
tion of life and existed in the Paleoarchean era, i.e. at least
3.8 billion years (Gyr) and presumably 4.5 Gyr ago (Nishet
and Sleep, 2001). Thus, due to the enormous number of
known sequences, ASR makes it possible to follow changes
in properties like substrate specificity and to reproduce
the advent of novel or more specialized functions over this
long evolutionary time span. Moreover, certain features of
reconstructed macromolecules like stability are correlated
with important characteristics of the corresponding habi-
tats. Thus, ASR can implicitly reproduce the adaptation of
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extinct life to climatic, ecological and physiological alter-
ations (see, for example, Boussau et al., 2008).

ASR was also utilized to characterize the promiscu-
ity of ancestral enzymes (Perez-Jimenez et al., 2011) and
to determine the longevity of mutations (Risso et al.,
2015). Moreover, the contribution of gene duplications
to the evolution of modern enzymes (Voordeckers et al.,
2012) and the sophistication of enzyme complexes were
studied by means of ASR (Bridgham et al., 2006; Perica
et al., 2014).

In the following sections, we will first review in silico
techniques that have been developed for ASR. Then we
will discuss how ASR was used to address the applications
mentioned above.

Ancestral sequence reconstruction:
history, theoretical background,
current protocols

In the following paragraphs, we will survey pioneering
experiments, give an introduction to the theory of phylo-
genetic algorithms, and present state-of-the-art protocols
that have been used for ASR.

Pioneering methods of ASR

The idea of reconstructing ancestral amino acid sequences
based on a comparison of extant sequences was put
forward by E. Zuckerkandl and L. Pauling in 1963 (Pauling
and Zuckerkandl, 1963). However, the technology needed
for ASR is borrowed from phylogenetic analyses and the
first algorithm was not developed until 1971 (Fitch, 1971).
Fitch used the principles of maximum parsimony (MP),
which is a non-parametric statistical method, to deduce
a phylogenetic tree for a given set of extant sequences.
Parsimony aims at constructing a tree that minimizes
the number of mutations needed to explain the observed
data. Thus, the optimality criterion (Swofford et al., 1996)
is total tree length len(tree), which is given by

len( tree):iiwjdiff(xk,j, xk,,}.)

k=1 j=1

@

B is the number of branches, N the number of sites
(nucleotide or amino acid positions), k" and k” are the
two nodes connected by branch k, and x,, x,, are the cor-
responding nucleotides or amino acids observed in the
leaves or inferred for internal nodes. The function diff(y, z)
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specifies the cost of a mutation from y to z and w; assigns
a weight to each site. This concept was attractive, because
the tree provided the minimal number of mutations
required to explain the variations observed in the given
extant sequences. The corresponding implementation,
named PAUP (Swofford, 1984), has proved popular and
the algorithm proposed by Sankoff (Sankoff, 1975) further
improved this principle by adding costs to mutations.

This parsimonious principle has been the basis for
pioneering work on ribonucleases (RNases) that hydro-
lyze single- and double-stranded RNA (Stackhouse et al.,
1990). The reconstruction required to infer from five extant
homologs the protein sequence of a highly conserved
RNase of a ruminant that lived 5-10 million years ago.
In a follow-up study, 13 artiodactyl RNases were recon-
structed and characterized. Among them was the RNase
of the founding ancestor of this lineage, i.e. the ancestor of
pig, camel, deer, sheep, and ox. The ancestor lived about
40 million years ago, i.e. in a period where ruminant
digestion arose. This finding suggests that recent digestive
RNases evolved from a non-digestive ancestor; the activity
of the reconstructed RNase was fivefold increased against
double-stranded RNA (Jermann et al., 1995).

Meanwhile, the drastic increase of computing power
allowed for the implementation of considerably more
complex algorithms and the limitations of the Fitch
approach became evident (see, for example, Frumhoff
and Reeve, 1994; Cunningham, 1999). For instance, MP
approaches overestimate the number of common to rare
changes (Eyre-Walker, 1998). Concurrently, maximum
likelihood (ML) approaches have been developed (Yang
et al., 1995; Koshi and Goldstein, 1996; Pupko et al.,
2000), as well as Bayesian algorithms (Schultz et al.,
1996; Huelsenbeck and Bollback, 2001). An ML approach
searches for the tree with highest probability (likelihood)
given the extant sequences and the parameters of the
phylogenetic model used for computation. A Bayesian
approach searches for trees with the highest posterior
probability. This value results from the prior probabilities
of the trees and the likelihood of the data under the given
evolutionary model. The current ASR protocols, which
are based on these ideas, model the evolution of proteins
more precisely than MP. For a detailed history of ASR, see
Liberles (2007).

State-of-the-art methods of ASR

In the following section, we briefly introduce some of the
stochastic concepts and phylogenetic models that are
required to understand modern ASR methods. We give a
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short description of evolutionary models and trees, which
summarizes two recent publications (Lid0 and Bishop,
2008; Whelan, 2008); for a more detailed presentation,
see Liberles (2007). The reader who is familiar with or is
not interested in the theoretical background can skip the
next six paragraphs.

Assessing mutations by means of Markov
models

Phylogenetic trees can be built by means of parametric ML
and non-parametric MP, which are cladistic approaches,
but also with phenetic methods, which construct a tree
based on a matrix of pairwise distances for the sequences
under study. Among the latter is the neighbor-joining
algorithm (Saitou and Nei, 1987), which is frequently used
to illustrate phylogenetic relationships, because it is a fast
and robust method. However, phenetic approaches lack
an evolutionary model and therefore these trees can only
serve as an approximation, when more complex methods
are too computationally expensive. In contrast, protocols
for ASR require a precise model of evolutionary processes,
which we introduce now.

For the sake of simplicity, we will concentrate on a
stochastic model of DNA, which however can easily be
extended to codons and proteins. Additionally, we assume
independency for the different sites (sequence positions)
and therefore, the probability of a set of sequences for a
given tree is the product of the probabilities of each site in
the sequences.

For each site, pi}.(t) is the probability that nucleo-
tide ie{A, C, G, T} will mutate to nucleotide j during
the time interval t. Thus, a Markov chain with the state
space S, ,={A, C, G, T} and a random variable X(f)eS,,
describe the substitution process. The homogeneous
Markov process, which is used for modeling, assumes that
p(X(s+t)=j|X(s)=i) holds, which states that the probability
for a replacement of nucleotide i with j within the time
interval t is independent of the actual time point s>0. We
presume now i) a constant rate u of mutations per unit
time (e.g. generation) and ii) a constant prior probability
m; for a mutation leading to nucleotide j. Consequently,
the probability that we observe no mutations at the con-
sidered site after t generations is (1-u)’. Thus, the probabil-
ity for a mutation is

Py =110 =1e™ @

and the probability that we observe a change from nucleo-
tide i to nucleotide j within the time interval t is then



4 =—— R.Merkland R. Sterner: Ancestral sequence reconstruction

©)

i

(t)= (l-pMut)+pMutnj l=]
Pu™; i#j

Instead of utilizing discrete generations, the probabil-
ity can also be determined in continuous time. It follows
for the set of all mutations in analogy to equation (3):

p(t+dt)=p(t)+p(t)Qdt=p(t)(1+Qdt) (4)
Here, Iis the unit matrix and Q is a rate matrix of tran-
sition probabilities and we get

p(t)=e* (5)

Substitution models

For DNA, 16 7; values are needed to assess all possible
mutations and several matrices Q have been proposed.
A first model was introduced by Jukes and Cantor (1969);
more frequently used are the models introduced later by
M. Kimura (1981) and J. Felsenstein (Felsenstein, 1981).

For a more precise assessment of protein evolution, a
codon-based model has been designed by Z. Yang (Yang
and Nielsen, 2000). Here, the elements of Q describe the
rate of change of codon i=ijij, to j=j j,j, depending on
rates for transitions and transversions. This approach has
been improved (Yang et al., 2000) and some of the models
MO to M13 are popular choices for evolutionary analyses
based on codons.

Alternatively, mutational events can also be studied
on the level of amino acid sequences. Early amino acid
substitution models are related to the PAM-matrices of
M. Dayhoff (Dayhoff et al., 1978). However, due to the
small numbers of sequences available at that time, several
of these substitution frequencies are crude approxima-
tions. The more recent JTT-matrix (Jones et al., 1992)
and the WAG-matrix (Whelan and Goldman, 2001) have
been deduced from much larger data sets and are thus
more realistic models. It is known that not all domains or
regions of a protein evolve under the same evolutionary
constraints. Thus, specific matrices Q have been deduced
for transmembrane and non-transmembrane regions, for
o-helices, B-strands, or for buried and exposed residues
(Koshi and Goldstein, 1996). However, these matrices are
seldom used for ASR.

Meanwhile, homogeneous substitution models have
been replaced with more complex ones. A continuous
distribution, which provides every site with a specific
rate, seems most plausible. Often, a gamma distribution
was used (Lio and Bishop, 2008), which represents a full
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family of probability distributions, whose shape depend
on parameters « and . However, it has been shown that
a discrete “gamma model” performs well and is compu-
tationally efficient (Yang, 1994). It consists of only four,
equally probable categories of rates, which were chosen
to approximate a gamma distribution. The density of the
gamma distribution G(«, f8) is

ﬂ(l
I'la)

(6)

g(r;a,p)= exp(-Br)r“!, 0<r<eo

In this context, « is a given or estimated shape param-
eter and the scale parameter § is redundant and can be
set equal to «, so that the mean of the distribution is 1.
The range of r (0, oo) is divided into k=4 categories by
means of cutting points, and each category is character-
ized by a rate r, that indicates the mean of the portion of
the gamma distribution falling in the category; see Yang
(1994). Consequently, the unconditional probability p(x)
for observing symbol x at a site is related to the rate-spe-
cific conditional probabilities through

PU)=]p(xIN)g(ndr=3. 2 p(xir=r) @)

i=1

Here, g(r) is the gamma density with parameter «,
which is chosen so that r,, ..., r, give the largest approxi-
mate likelihood [[, p(x)) and p (xr) is the conditional prob-
ability of x given the rate r at a site (Susko et al., 2003).

The likelihood of a phylogenetic tree

Using the above model of evolution, the likelihood of a
tree can be computed. Likelihood is the probability for
observing the data (sequences) given the parameters of
the chosen evolutionary model and the topology of the
tree under study. If all sites mutate independently, then
this likelihood is the product of all site-specific values.
Thus, to explain the principle, it is sufficient to consider
one site S(j) of a sequence S and to compute the likelihood
for the nucleotides at S(j) at each node of the tree. If the
length of all edges, which corresponds to a certain time
interval, is v, and if all nucleotides e, are known for all
nodes i, which implies a certain ancestral labeling, then
the likelihood of the tree shown in Figure 1 is:

L(tree)=x, p, , (v,)p, . (v)D, , (v,)D, , (V,)

pegeg(v3)pege7(v7)pe7ea(v4)pe795(vs) (8)

However, the states (nucleotides) of the internal
nodes are not known and therefore it is necessary to sum
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over all possible parameter values (nucleotides at internal
nodes) which results in

L(tree)=2222”eopeoe6(

€ € € ¢

vop, . (v)p,, (v,)p, , (v)

pesez (V3)pese7(v7 )peﬁ.’“(Vlé)p<e7e5 (VS)
)

As introduced above, 7 is the prior probability of
nucleotide e,. The value L(tree) can be computed quite
efficiently after a rearrangement of terms, which considers
the topology of the tree; compare the pattern of brackets
{03 {0100]} in equation 10 and the tree topology shown
in Figure 1

L(tree)= zn {zpee(v v, vllp,, (v, )1}
{zpee (v )p,, (v, )][zp” v)(p,, (v))p,, (v ))}}

(10)

This arrangement of terms suggests a bottom-up
computation based on the likelihood values Lk of all
states e, at node k. The calculation starts in the first
iteration with the known likelihood values of the leaves,
which are 1 for the observed nucleotide and 0 for all
others. The Lk values of internal nodes are computed
in a bottom- up fashion by considering the tree topol-
ogy and by summarizing likelihood values of two chil-
dren r, s, which were calculated in one of the preceding
iterations:

Ll;( :(zpeker ( vr )L:ar )(Zpekes ( Vs )LseS ) (11)

Finally L(tree) is
L(tree)=Y m, L.

€

(12)

It follows that the likelihood of a tree can be com-
puted iteratively, if we know all transition probabilities
Py The missing length of the edges can be determined
by means of expectation maximization (Dempster et al.,
1977); for details see Felsenstein (1981). However, in order
to find the tree with the maximal likelihood, the topology
— which was taken as given so far — has to be optimized as
well, which requires the creation and the assessment of
alternative topologies. Due to its complexity, the problem
of determining the ML tree is an NP-hard problem for the
computer scientist (Chor and Tuller, 2005), which means
that in practice only an approximation can be found in an
acceptable time interval.
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For a comparison of alternative trees, ML approaches
maximize the likelihood value given in equation 12; for
Bayesian inference, trees have to be sampled based on
a score deduced from their likelihood and prior expec-
tations. However, the number of tree topologies grows
exponentially with the number of sequences, which
necessitates heuristic approaches to sample tree space.
Commonly, these approaches progressively optimize the
tree by examining the score of similar trees, choose the
highest scoring one as the next estimate, and finally stop,
if no further improvement can be found.

Popular traversal schemes of tree space propose candi-
date trees by making small rearrangements on the current
tree, examine each internal branch of the tree in turn, and
vary the way they alter the topology. New topologies are
created by means of quartet puzzling (QP) (Strimmer and
Von Haeseler, 1996), nearest neighbor interchange (NNI),
subtree pruning and regrafting (SPR) and tree bisection
and reconnection (TBR) (see Whelan, 2008). QP and NNI
break an internal edge, which gives four subtrees. These
can then be combined in three different ways, which give
novel candidate trees. SPR is more general than NNI and
QP by adding subtrees to any edge of the other subtrees.
TBR removes one edge to create two subtrees and all pos-
sible combinations of the two subtrees give new candidate
trees (for details see Whelan, 2008). As expected, the time
complexity of the algorithms is high: For QP, algorithms of
0O(n*) have been reported (Ranwez and Gascuel, 2001), a
Markov chain Monte Carlo (MCMC) approach (see below)
of NNI is of O(pnl), where p is the number of refinement
steps and n is the number of taxa, i.e. sequences of length [
(Guindon et al., 2005). In contrast, the phenetic neighbor-
joining algorithm is of O(n®), which means that execution
time increases roughly with the third power of the number
of input sequences.

This outline of these heuristic algorithms makes clear
that there is no guarantee for finding the optimal tree
that has the ML. However, the rearrangements of the tree
topology under study expand the area of searched tree
space, which increases the probability of finding a nearly
optimal solution. Searching a wider range is additionally
supported by starting the refinement from different points
in tree space; thus, these computations are often executed
in parallel on a multi-processor computer with varied
starting conditions.

Bayesian inference of topologies

For Bayesian inference, the topology of the tree and the
parameters of the evolutionary model are estimated
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simultaneously, while providing a measure of confidence
in those estimates. Bayesian inference uses the same
models of evolution as ML methods, however, it addresses
anumber of complex questions of phylogeny; see Huelsen-
beck et al. (2001). For ASR, it is important that the tree
with the maximum posterior probability can be deduced
from a large number of sampled trees. To do so, Bayes’s
theorem is used favorably to combine the prior probabil-
ity of a tree p(tree) with the likelihood L(tree)=p(dataltree)
to compute a posterior probability distribution of trees
p(treeldata) according to

p(data|tree) - p(tree)

ti data)=
p(tree|data) (data)

(13)

The posterior probability of a tree gives the prob-
ability that the tree is correct and often the tree with the
maximum a posterior probability (MAP) is chosen as the
best estimate. In contrast to ML, Bayesian approaches
generally include a prior expectation about the problem
under study. For phylogeny, uninformative priors are fre-
quently used, which means that all trees are equally likely
and the likelihood L(tree) can be calculated analogously
as described above.

Unfortunately, a comprehensive analysis of the poste-
rior distribution is not feasible as it requires a summation
over all possible tree topologies. However, an approxima-
tion of the posterior distribution can be determined by
means of MCMC methods, which generate a series (chain)
of pseudo-random samples. MCMC approaches can cor-
rectly sample from the posterior probability, because
newly proposed trees are accepted based on a probability
function. The probability of being accepted depends pri-
marily on the difference in likelihood scores of the current
and the new tree. Thus, the chain will contain many trees
that offer an improvement over initial trees and few trees
with poor scores. If the parameters are sampled correctly,
the amount of time a chain spends in different regions of
tree space corresponds to the posterior distribution, which
allows a straightforward approximation of the MAP tree.

For a more detailed description of an MCMC approach,
which is taken from Larget and Simon (1999), we define
a tree y=(r, B) by its topology 7 and associated branch
lengths 3. Additionally we need a likelihood model L(x|w)
for observed data x that contains several parameters,
where w=(y, ¢) represents a specific choice of a tree topo-
logy, branch lengths, and model parameters ¢. The cor-
responding parameter space Q=(¥, ®) contains the set of
all possible trees ¥ and all possible values of the model
parameters ®. As MCMCs utilize the Metropolis-Hastings
criterion (Metropolis et al., 1953) to accept new solutions,
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the chains create a dependent series of points in Q, v©,
oW, @, ..., such that after some time all subsequently
sampled points are distributed approximately accord-
ing to their posterior distribution. As a consequence, the
long-run frequencies are arbitrarily close to their posterior
probabilities. In order to scan Q=(¥, ®), a combination
of two update mechanisms has been proposed (Larget
and Simon, 1999), to sample tree topologies and model
parameters. The algorithm starts with an initial tree (e.g.
a neighbor-joining tree) and model parameters w©@=(y©,
¢'9), which are randomly chosen. Subsequently, each indi-
vidual cycle i+1 of the algorithm consists of two steps that
utilize the parameters of the current state w@=(y®, p®).
In the first step — while keeping the current tree y® fixed
— the algorithm can choose new model parameters ¢* from
®, which are — according to the Metropolis-Hastings algo-
rithm — either accepted ¢ =¢" or rejected p*V=¢p®., The
second step modifies the current tree @, while holding
the parameters ¢ fixed. For more details of the update
algorithms see, for example, Larget and Simon (1999).

When applying MCMC methods, the adequate sam-
pling of the posterior distribution is related to two factors
named convergence and mixing. Convergence means that
the chain accurately samples from the posterior distribu-
tion, which is the case after the pre-convergence phase
(named also burn-in phase). Thus, trees computed in the
burn-in phase are ignored. A chain mixes well, if all trees
can be reached from all other ones. In contrast, if a chain is
mixing poorly, the sampling of the posterior probability is
compromised. In order to assess the quality of a computa-
tion, i.e. convergence and mixing, each implementation of
an MCMC algorithm offers a series of diagnostic tools that
compute specific indicators. One can assume convergence,
if several chains that were started in parallel with differ-
ent initial parameter sets concentrate their sampling in
the same region of tree space. Comparing trees taken from
converged chains allows for the analysis of mixing: If these
trees are clearly different, the chains are mixing poorly.
Additionally, model parameters or likelihood values can be
plotted vs. the sample number; more details can be found
in the documentation of the respective programs. For ASR,
a high posteriori probability and a short length are of spe-
cific relevance for all edges, as both are prerequisites for
the reliability of the reconstructed sequences.

More complex models of evolutionary
processes

The above-described methods reconstruct a phylogeny for
one sequence per species — or few concatenated ones — and
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aim at representing the history of the considered genes
(gene products). Consequently, the resulting trees were
named gene trees; however, in many cases the evolution-
ary history of a gene differs substantially from the history
of the species from which the genes originate (Maddison,
1997; Sz61l6si and Daubin, 2012). Duplication, horizontal
gene transfer and gene loss cause drastic differences in
the size and composition of genomes and thus produce
phylogenetic discord. Moreover, horizontally transferred
genes are frequently acquired from species that are extinct
or do not belong to the dataset under study (Sz6ll6si et al.,
2013). This is why a gene phylogeny does often not provide
enough information to distinguish between statistically
equivalent relationships, a fact that is indicated by poor
posteriori probabilities of individual edges.

One reason for horizontal gene transfer is the recom-
bination of genetic material. A statistical model that consi-
ders recombination in ancestral sequences may give rise to
a graph that is no longer a tree but a network. It is feasible
to estimate the number of recombination events in a given
sample of sequences, however the algorithm is very com-
putationally intensive (see Griffiths and Marjoram, 1996).

An alternative approach, which can more easily
be integrated into an ASR protocol, is based on the rec-
onciliation of a gene tree and a second one that reflects
the phylogeny of the considered species. The topology of
this tree is also affected by the extra processes that con-
tribute to the evolution of species, which are speciation
and lineage sorting, gene duplication and loss, and gene
transfer. If these additional evolutionary events, which
are ignored for gene tree computation, are considered, all
models of gene family evolution can be seen as generating
atree inside a tree, that is, a gene tree inside a species tree
(Szo6116si et al., 2015).

In pioneering work, an MP tree was determined that
minimizes the number of nucleotide substitutions, gene
duplications and gene losses (Goodman et al., 1979).
Meanwhile, more complex models for species evolution
were beneficially integrated in gene tree inference (Mad-
dison, 1997; Akerborg et al., 2009; Groussin et al., 2015)
and species tree can be deduced from the shared history
of several gene families; see, for example, De Oliveira
Martins et al. (2014); Mirarab et al. (2014); Mirarab and
Warnow (2015).

Deducing ancestral sequences
For a phylogenetic analysis, two types of trees, unrooted

and rooted ones, can be computed. In contrast to rooted
trees, unrooted trees do not specify the location of the
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common ancestor. For rooting, which is required for the
ASR of this ancestor, an outgroup can be used or, alterna-
tively, the position of the root is approximated based on
additional phylogenetic knowledge. For time-reversible
models, which are commonly used for computation, the
position of the root does not affect the likelihood score
(Felsenstein, 1981), which allows for subsequent rooting.
Using the set of extant sequences and the corresponding
phylogenetic tree, the most plausible ancestral sequences
can be deduced by a ML reconstruction following the prin-
ciples introduced above. Applying the Bayesian approach,
a reconstruction maximizes the probability for the set of
ancient sequences given the extant ones (Pupko et al.,
2000). Two variants of ancestral ML reconstructions exist
(Yang et al., 1995), originating from different optimization
criteria, which are the joint ML or the marginal ML, respec-
tively. For ASR of proteins, joint reconstruction determines
the most likely set of amino acids for all internal nodes at
a site, which yields the maximum joint likelihood of the
tree. In contrast, marginal reconstruction compares the
probabilities of different amino acids at an internal node
at a site and selects the one amino acid that yields the
ML for the tree at that site (Cai et al., 2004). The result-
ing sequences may differ, and marginal reconstruction is
considered to be an approximation of the joint approach
(Pupko et al., 2000).

The basic idea of a ML ancestral reconstruction can
be illustrated by concentrating on the internal nodes of a
tree whose topology and branch lengths are assumed to
be known. The tree given in Figure 1 has five operational
taxonomic units (the leaves, labeled 1-5) and four hypo-
thetical taxonomic units (HTU) labeled 0, 6, 7, 8. For each
site of these four internal nodes there are 20* combina-
tions of amino acids e. It is the aim of joint ML to iden-
tify for these four nodes a quartet v with the largest value
p(v|data), which is in a Bayesian approach the quartet that
maximizes

dat .
p(data|v)-p(v) (1)
p(data)

As p(data) is identical for all candidate quartets, it is
sufficient to maximize p(datalv)-p(v). More specifically,
for this tree and the given four nodes the quartet is found
by solving

max ['77:120 lgeue6 (V6 )peeel ( vl )lgeseZ (VZ )peﬂe8
(vp, . (v)p,, (v)p,, (v)p,, (V)] (15)

The solution computed for equation 15 is the maximum
over all possible 20* quartets. For larger trees with h HTUs,
it is necessary to maximize overall h ancestral states,
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which results in 20" combinations. To solve this problem of
joint ML reconstruction, an algorithm, which is based on
dynamic programming, has been implemented that scales
linearly with the number of sequences; see Pupko et al.
(2000) for details. If all joint probabilities are known, the
marginal distribution can by computed by marginalizing
over joint probabilities; for an example see Pupko et al.
(2007).

Current software protocols for ASR

In the previous section, we have introduced basic prin-
ciples of phylogenetic methods, which are required for
ASR. Now, we describe in more detail the software pro-
tocols that were used in those ASR experiments we will
review in the following paragraphs. Generally, each pro-
tocol for ASR requires four steps (A-D) that are depicted
in Figure 2.

(A) Select extant sequences: Commonly, homologous
sequences were retrieved from databases like GenBank
of the NCBI or UniProtKB of the EBI (see, for example,
Boussau et al., 2008; Gaucher et al., 2008; Finnigan et al.,
2012; Voordeckers et al., 2012; Bar-Rogovsky et al., 2013;
Risso et al., 2013; Perica et al., 2014), most often with the
help of BLAST (Altschul et al., 1990). If the number of hits
was very large, highly similar sequences were eliminated
by using CD-HIT (Li and Godzik, 2006) to create a set of
sequences with 30-90% identical residues (Bar-Rogovsky
et al., 2013). Alternatively, highly similar sequences,

A Select extant sequences '
B Create a multiple alignment '
C Compute a phylogenetic tree '

D Reconstruct ancestral sequences

Figure 2: Protocol for ASR.

Each ASR requires four steps to deduce ancestral sequences from
a set of extant homologs. (A) A set of extant sequences is retrieved
from a database. (B) The selected sequences are aligned in a
multiple sequence alignment, which allows for the identification
of mutational events separating the sequences. (C) A phylogeny is
determined; the extant sequences form the leaves. (D) Based on
this phylogenetic tree and the input data, ancestral sequences are
computed for each internal node of the tree.
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e.g. those with more that 92% pairwise sequence identity,
were removed (Voordeckers et al., 2012). The number of
extant sequences required for an ASR depends on protein-
specific mutation rates and the time span of interest. Thus,
the size of the resulting sequence sets varied between 11
(Yokoyama et al., 2008), 32 (Bar-Rogovsky et al., 2013) and
up to 200 or more sequences (Perez-Jimenez et al., 2011;
Harms et al., 2013). In some cases, protein sequences
have been concatenated, like those of the HisF and
HisH enzymes that constitute a heterodimeric complex
(Reisinger et al., 2014) or 56 nearly universally distributed
proteins (Boussau et al., 2008). Moreover, the protein
sequences and the corresponding DNA sequences were in
some cases compiled and analyzed in parallel to eliminate
ambiguities (Ugalde et al., 2004; Field and Matz, 2010;
Hobbs et al., 2012; Voordeckers et al., 2012).

(B) Create a multiple alignment: Due to the complex-
ity of the algorithmic problem, heuristic approaches are
the only way of computing a multiple sequence alignment
(MSA), which is required to map residues to protein posi-
tions. During recent years, several algorithms have been
introduced that show comparable alignment quality.
Therefore, it is not surprising that different methods were
used for MSA creation. Among them were Clustal X and
Clustal W (Larkin et al., 2007) used in Bridgham et al.
(2006) and Hobbs et al. (2012) as well as MUSCLE (Edgar,
2004), which was used frequently (Boussau et al., 2008;
Richter et al., 2010; Perez-Jimenez et al., 2011; Eick et al.,
2012; Perica et al., 2014). The algorithm PRANK (Loytynoja
and Goldman, 2008) considers insertions and deletions
as distinct evolutionary events and has been shown to
prevent systematic errors related to the gap placement
of more traditional MSA methods. PRANK was utilized in
more recent ASR experiments (Bar-Rogovsky et al., 2013;
Reisinger et al., 2014). In some cases, regions of ambigu-
ous alignment were removed from the MSA by applying
GBLOCKS (Castresana, 2000) prior to the subsequent com-
putation of a phylogeny (see Reisinger et al., 2014).

(C) Compute a phylogenetic tree: It is state of the art
to deduce a phylogeny by means of an ML or a Bayesian
approach. Among ML approaches, PAUP (Swofford, 1984)
has been chosen (Gaucher et al., 2003; Perez-Jimenez
et al., 2011) as well as GARLI (Bazinet et al., 2014), which
was used in Hobbs et al. (2012), and PAML (Yang et al.,
1995) was used in Akanuma et al. (2013) and Finnigan
et al. (2012). Frequently used implementations of Bayes-
ian approaches are MrBayes (Ronquist and Huelsenbeck,
2003; see Ugalde et al., 2004; Bridgham et al., 2006;
Gaucher et al., 2008; Field and Matz, 2010; Voordeckers
et al., 2012; Risso et al., 2013; Perica et al., 2014), PhyML
(Guindon and Gascuel, 2003; see Eick et al., 2012;



DE GRUYTER

Bar-Rogovsky et al., 2013; Harms et al., 2013), and Phy-
loBayes (Lartillot et al., 2009; see Reisinger et al., 2014).
nhPhyloBayes (Blanquart and Lartillot, 2008) is a non-
homogeneous Bayesian approach that was also utilized,
see Akanuma et al. (2013).

Alternatively, phylogenetic relationship between the
species was deduced from the literature (Yokoyama and
Radlwimmer, 2001) or a user-defined time-calibrated
mammalian phylogeny was assembled via Mesquite
(Maddison and Maddison, 2015; see Mirceta et al., 2013).
Moreover, node age estimates were made (Hobbs et al.,
2012) using the ML branch lengths and two calibration
points taken from the literature (Battistuzzi et al., 2004).

A large set of supplementary programs support phy-
logenetic studies and ASR. To select the best fitting model
for the data set at hand, ProtTest (Abascal et al., 2005) was
used (Bar-Rogovsky et al., 2013), which aims at identify-
ing the best generating evolutionary model. In one case,
the resulting parameters were fed into GARLI (Bazinet
et al., 2014) to find the best ML tree (Hobbs et al., 2012).
The validity of the phylogeny was confirmed with differ-
ent approaches. The quality of the PhyML tree (Guindon
and Gascuel, 2003) was assessed by means of a bootstrap
resampling test (Bar-Rogovsky et al., 2013). These boot-
strap values were calculated with RAXML (Stamatakis,
2006) and the topology was evaluated by means of a Shi-
modaira-Hasegawa test (Shimodaira and Hasegawa, 2001;
Anisimova et al., 2011), which was used similarly in Finni-
gan et al. (2012). Often, MCMC convergence was checked,
e.g. by using the AWTY program (Nylander et al., 2008)
as in (Voordeckers et al., 2012) or by determining other
parameters indicating convergence and well mixing of
the chains. For example, the maximum difference of pos-
terior probabilities of tree bipartitions and the posterior
number of biochemical profile categories was estimated
(Richter et al., 2010). Additional tests were performed to
exclude long-branch attraction artifacts (see, for example,
Voordeckers et al., 2012).

(D) Reconstruct ancestral sequences: The extant
sequences chosen in step (A) and the phylogenetic tree
determined in step (C) combined with a substitution
model form the basis for the computation of the ancestral
sequences. Most often, the one sequence with the highest
likelihood has been considered for each internal node, see,
for example, Perica et al. (2014). These ancestral sequences
were deduced by means of MrBayes (Ronquist and Huelsen-
beck, 2003) and a simple F81-like model (Felsenstein, 1981).
Frequently, the functions CODEML and ML of PAML (Yang,
1997) were utilized (Yokoyama and Radlwimmer, 2001;
Bridgham et al., 2006; Gaucher et al., 2008; Yokoyama
et al., 2008; Perez-Jimenez et al., 2011; Hobbs et al., 2012;
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Akanuma et al., 2013; Ingles-Prieto et al., 2013) in com-
bination with gamma distributions modeling variable
replacement rates across sites. However, different substi-
tution matrices were chosen: in some cases the JTT model
(Jones et al., 1992) was the basis for a marginal reconstruc-
tion and the synthesis of ancestral enzymes (Voordeckers
et al., 2012), the same model was used in (Eick et al., 2012)
in combination with the Lazarus software (Hanson-Smith
et al., 2010). Alternatively, the WAG (Whelan and Goldman,
2001) substitution model was utilized (Risso et al., 2013).
In Field and Matz (2010) and Ugalde et al. (2004) PAML
was combined with three alternative ML models. Those
were the amino acid based JTIT (Jones et al., 1992), the
codon-based M5 (Yang et al., 2000), and the nucleotide
based GTR+G3 (Tavaré, 1986) model. In this case, the pos-
terior probability of the marginal reconstruction at each
site served as a measure of accuracy. Alternatively, the
ML approach of FastML (Pupko et al., 2000) was applied
(Bar-Rogovsky et al., 2013). In Mirceta et al. (2013), only the
most probable amino acid sequence was considered, which
was determined utilizing the ML approach implemented
in MEGA5 (Tamura et al., 2011) in combination with the
Dayhoff+G (Dayhoff et al., 1978) model. Moreover, the non-
homogeneous models nhPhyML (Boussau and Gouy, 2006)
and nhPhyloBayes (Blanquart and Lartillot, 2008) were
also integrated into sequence reconstruction (see Boussau
et al., 2008; Richter et al., 2010).

Open issues and problems to be solved in ASR

Is ASR applicable to any protein of interest? Presumably
not. A phylogeny can be computed if a sufficiently large
set of sequences is at hand. However, it is the quality of
the resulting tree that decides on the meaningfulness of a
reconstruction: if the length of any edge indicates that a
rate of more than one mutation per site separates the adja-
cent nodes, the corresponding sequences cannot be recon-
structed reliably. Additionally, the topology of the tree has
to be unambiguous — which demands for high a posteriori
probabilities or bootstrap values — although this property is
not extremely crucial for ASR (Hanson-Smith et al., 2010).
Moreover, one has to keep in mind that phylogenetic
models make implicit assumptions about the data. For
example, it is assumed that the proteins under study share a
common ancestor and that all sequences have evolved inde-
pendently. The first assumption is violated, for example if
multi-domain proteins are examined that possess only one
common domain. The second one is violated, if sequences
were exchanged via horizontal gene transfer. For the recon-
struction of sequences related to the LUCA, i.e. the most
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ancestral node, midpoint rooting is frequently applied as
no outgroup exists. However, this method is not generally
accepted (Perez-Jimenez et al., 2011).

The major concern with respect to the reliability
of ASR is whether the resurrected proteins display the
same characteristics as the authentic ancestral proteins
(Gaucher et al., 2008). A reconstructed sequence is some
kind of consensus sequence and it has been argued, for
example, that the higher thermostability observed in
many ASR projects is due to selecting the most probable
residue at each site (Williams et al., 2006). Higher equi-
librium frequencies of hydrophobic residues in the amino
acid substitution matrices may strengthen this effect,
especially if the underlying tree contains long branches.
Moreover, these matrices have been deduced from extant
proteins and their use for ASR has been questioned
(Brooks and Gaucher, 2007). Thus, if thermostability is a
major issue, special care has been taken to exclude these
effects in some applications of ASR (see, for example,
Gaucher et al., 2008).

For the practitioner, two further problems complicate
the application of ASR: These are (i) the selection of a rep-
resentative sample, if a large number of sequences is at
hand and (ii) the correct modeling of larger insertions and
deletions.

To tackle the first problem, tools that choose
sequences leading to an unambiguous phylogeny would
be helpful. Alternatively, reconciliation methods like the
recently introduced TERA approach (Scornavacca et al.,
2015) incorporate species trees into gene tree reconstruc-
tion and promise drastic improvements in accuracy. Thus,
it seems reasonable to integrate these concepts into ASR
protocols in order to simplify sequence selection. A first
application of a species tree-aware ASR, namely the resur-
rection of the LeuB enzyme for the ancestor of Firmicutes
was successful (Groussin et al., 2015).

The correct modeling of loops, which underlies the
second problem, is still in its infancies. It has to be shown
whether algorithms like PRANK (Loytynoja and Goldman,
2008) in combination with an adapted reconstruction proto-
col (Perica et al., 2014) contribute to the correct phenotype.

Applications of ASR

Deducing environmental conditions of
the Precambrian era

An important application of ASR is to “replay the molec-
ular tape of life” (Gaucher, 2007). Along these lines,
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billions-of-years old Precambrian proteins have been
resurrected (Gaucher et al., 2008; Perez-Jimenez et al.,
2011; Akanuma et al., 2013; Ingles-Prieto et al., 2013; Risso
et al., 2013; Reisinger et al., 2014; Risso et al., 2014). As a
side-effect, these studies allow one to obtain information
about environmental conditions surrounding Precam-
brian life.

For example, G.E. Gaucher and colleagues determined
the thermal melting temperature (T, ) of resurrected trans-
lation elongation factors from organisms living from 3.5
to 0.5 Gyr ago (Gaucher et al., 2008). The results suggest
that ancient life cooled progressively by 30°C during this
period. In accordance with this finding, an almost identi-
cal cooling trend for the ancient ocean was inferred from
the deposition of silicon isotopes (Robert and Chaussidon,
2006).

An analogous cooling trend has been deduced from
the analysis of ancestral thioredoxins (Perez-Jimenez et al.,
2011). Seven Precambrian thioredoxin enzymes dating
back between about 4 Gyr and 1.4 Gyr were resurrected,
which are related to the last bacterial common ancestor
(LBCA), the last archaeal common ancestor (LACA), and
the archaeal-eucaryotic common ancestor (AECA). These
organisms are thought to have inhabited Earth 4.2-3.5 Gyr
ago diverging from the LUCA, which could not be recon-
structed due to technical difficulties. DSC measurements
showed that these enzymes are up to 32°C more stable
than modern enzymes, and a plot of the T vs. geologi-
cal time revealed a linear decrease with a slope of about
6°C/Gyr (Figure 3). An activity assay based on single mol-
ecule spectroscopy and an artificial substrate showed that
ancient thioredoxins used a similar reaction mechanism
as modern thioredoxins.

The crystal structures of the resurrected thioredox-
ins possess the canonical thioredoxin fold (Ingles-Prieto
et al., 2013), meaning that the chemistry and three-dimen-
sional structure of thioredoxin were already established
around 4 Gyr ago. This observation suggests that the step
from simple reducing compounds to well-structured and
functional enzymes occurred early in molecular evolution
(Nisbet and Sleep, 2001). Remarkably, ancient thioredox-
ins are significantly more active at pH 5 than extant ones,
which fits to the proposed acidity of the ancient oceans
(Walker, 1983). Taken together the natural habitat in
which LBCA, LACA, and AECA lived was likely acidic as
well as hot in accordance with the plausible hypothesis
that early life thrived in seawater.

The assumption of a hot environment for early life is
further supported by an analysis of nucleotide kinases
(NDKs) (Akanuma et al., 2013). Ancestral NDK sequences
were computed based on two different resurrection
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Figure 3: Denaturation temperatures (T ) versus geological time for
ancestral thioredoxin (Trx) enzymes.

Modern Escherichia coli and human Trx enzymes are also indicated.
The dashed line represents a linear fit to the data. Inset, experi-
mental DSC thermograms for E. coli Trx and LBCA Trx. For ancestral
thioredoxins, the following abbreviations were used: LBCA, last
bacterial common ancestor; LACA, last archaeal common ancestor;
AECA, archaeal-eukaryotic common ancestor; LECA, last eukaryotic
common ancestor; LPBCA, last common ancestor of the cyanobac-
terial and deinococcus and thermus groups; LGPCA, last common
ancestor of y-proteobacteria; LAFCA, last common ancestor of
animals and fungi. Figure taken from Perez-Jimenez et al. (2011).

strategies. At pH 6, the reconstructed archaeal NDKs have
T values of around 110°C, and the bacterial ones have T
values of 109°C and 102°C. These values are higher than
those for the thermophilic archaeon Archaeoglobus fulgi-
dus and the thermophilic bacterium Thermus thermophi-
lus, respectively.

However, not all enzymes followed this general
cooling trend in their evolution. An interesting case of
a more recent thermal adaptation to the local habitat is
the metabolic enzyme 3-isopropylmalate dehydrogenase
(LeuB) reconstructed for Bacilli (Hobbs et al., 2012). Four
ancestral sequences (ANC1-ANC4) of LeuB were deter-
mined. Each was positioned progressively deeper in the
phylogeny and further back in time. ANC1, 2, 3, and 4
are approximately 679, 820, 850, and 950 million years
old, respectively. All four ANC enzymes exhibited kinetic
parameters comparable to their homologs from contem-
porary Bacillus species. The thermoactivity profiles and
the thermal melting temperatures of ANCI-ANC4 were
compared and showed a sharp decline in thermophily
from ANC1 to ANC2, followed by a gradual increase in
thermophily from ANC2, through ANC3 to ANC4. A more
detailed sequence analysis demonstrated that the mecha-
nisms of thermal stability differ between ANC1 and ANC4,
i.e. thermophily within Bacillus LeuB evolved twice. As
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there is a good correlation between the growth tempera-
ture of an organism and the thermostability of its pro-
teins (Gromiha et al., 1999), the authors hypothesize that
the observed fluctuations in thermophily reflect changes
in the microenvironment encountered by the evolving
Bacillus species.

In the previous examples, environmental properties
were estimated by characterizing resurrected proteins
with the help of biophysical methods. A pure in silico
analysis was presented by the group of M. Gouy, which
reconstructed rRNA and protein sequences for the LUCA
and the ancestors of the three domains of life (Boussau
et al., 2008). The rRNA sequences consisted of 1043 sites
from the double-stranded regions of the small and the
large ribosomal subunit, and the protein sequences com-
prised 3336 sites from 56 nearly universally distributed
proteins. These ancestral sequences were used to deduce
the ambient temperature from the G+C content of the
rRNA and from the content of the amino acids I, V, Y, W, R,
E, and L in the protein sequences. For both parameters, a
strong correlation with the optimal growth temperature is
known (Galtier and Lobry, 1997; Zeldovich et al., 2007). In
contrast to other findings, these parameters characterize
the LUCA as a non-hyperthermophilic species. Interest-
ingly, the bacterial ancestor and the archeal ancestor as
well as the common ancestor of Archaea and Eukaryotes
were estimated as being thermophilic or hyperthermo-
philic species. In summary, these findings argue for a tem-
perature increase during the era of the LUCA descendants.

Promiscuity of ancestral enzymes

It has been postulated that ancestral enzymes were pro-
miscuous, i.e. processed several different substrates
during the very first steps of their evolution (Khersonsky
and Tawfik, 2010). This hypothesis has been tested for
several protein families using ASR.

J. Sanchez-Ruiz and colleagues have studied four Pre-
cambrian ancestors of B-lactamase (Risso et al., 2013).
These ancient B-lactamases were indeed promiscuous:
activity assays showed that they are able to hydrolyze
various B-lactam antibiotics with catalytic efficiencies
similar to those of an average modern enzyme. In contrast,
the modern B-lactamase TEM-1 is a specialist that can only
hydrolyze penicillin. The comparison of crystal structures
of extant and ancestral B-lactamases revealed the same
topologies and no significant differences of the active
sites. It was concluded that substrate promiscuity of the
ancestral B-lactamases is probably due to altered dyna-
mics, a hypothesis that was substantiated by extensive
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molecular dynamics simulations. The modern TEM-1
B-lactamases showed a relatively rigid active site region,
likely reflecting adaptation for efficient degradation of
a specific substrate (penicillin), whereas the observed
enhanced flexibility in the ancestral B-lactamases might
allow for the binding of antibiotics with different sizes
and geometries (Zou et al., 2015). In spite of their high
flexibility, the ancestral proteins were about 35°C more
thermostable than extant B-lactamases including the one
from the thermophile Bacillus licheniformis.

This ancestral promiscuity can be explained if
ancient bacteria benefitted from producing a variety of
B-lactam antibiotics. Such antibiotics could have served
as a device to achieve nutrients by killing competitors,
and B-lactamases might have arisen as a mechanism of
defense (Risso et al., 2014).

However, promiscuity is not a general feature of
ancient enzymes: A chymase is a serine protease that con-
verts angiotensin I to angiotensin II. An ancestral chymase,
which was deduced from mammalian sequences, had an
efficient and specific angiotensin II-forming activity. Thus,
it was postulated that the less specific serine proteases
evolved later and broadened their substrate spectra,
thereby losing specificity (Chandrasekharan et al., 1996).
Moreover, the reconstructed cyclase subunit of imidazole
glycerol phosphate synthase from LUCA (LUCA-HisF) can
convert only the native HisF substrate into product but not
the related HisA or TrpF substrates (Reisinger et al., 2014).

The LUCA is a construct that may exemplify a single
organism (Woese, 1998) or may represent populations of
organisms capable of sharing large amounts of genetic
information through horizontal gene transfer (Doolittle,
2000). Either way, it is clear now that organisms at the
time of the LUCA possessed many of the fundamental fea-
tures present in modern organisms and likely exhibited a
level of sophistication comparable with modern Bacteria
or Archaea (Becerra et al., 2007). The findings of Reis-
inger et al. (2014) are in full agreement with this notion:
LUCA-HisF forms a high-affinity imidazole glycerol phos-
phate synthase complex with its associated glutaminase
subunit LUCA-HisH.

Long-term persistence of beneficial residues
in proteins

It is an interesting question whether the preferences for
different amino acids at a given site in a protein change
during evolution or remain essentially constant. V. Risso
and colleagues have used resurrected thioredoxins to
address this problem (Risso et al., 2015). To this end, the
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authors have experimentally determined the effects of 21
mutations on the stability of both Escherichia coli thiore-
doxin and the thioredoxin of the LBCA. Fourteen muta-
tions were identical for the extant and ancestral proteins
in terms of the introduced amino acid exchange. For
example, there is valine at position 16 both in the E. coli
and the LBCA thioredoxin. Thus, the Vall6lle exchange
was studied in both cases. In contrast, seven mutations
had to be analyzed in opposite directions for the extant
and ancestral backgrounds. For example, there is an iso-
leucine at position 23 in E. coli thioredoxin but a valine at
the same position in LBCA thioredoxin. Thus, the Ile23Val
mutation was studied in the extant background whereas
the Val23Ile mutation was studied in the ancestral back-
ground. Importantly, the extant and ancestral proteins
substantially differ in the residues present in the molecu-
lar neighborhood of the targeted positions. Nevertheless,
the effect of the mutation (stabilizing or destabilizing)
— when considered in the same direction — was qualita-
tively identical for the extant and the ancestral proteins.
Taken together, this study suggests that site-specific
amino acid preferences in a protein have essentially
remained unchanged over long geological timescales
even when the amino acids themselves changed during
evolution. The evolutionary persistence of a destabilizing
mutation might be explained by the fact that it leads to
an enhanced fitness of the organism caused by functional
advantages.

Following the evolution of receptor-ligand
interactions

Can few mutations induce major shifts in protein func-
tion and if so, what are the underlying mechanisms? To
study this question, the group of J. Thornton analyzed
the structural basis of the different hormone sensitivities
of the estrogen receptors (ERs) and the non-aromatized
steroid receptors (naSRs) (Harms et al., 2013). Previous
investigations had revealed that the ancestor of the entire
steroid receptor family (AncSR1) had ER characteristics
with respect to hormone binding, whereas its immedi-
ate phylogenetic descendant (AncSR2) was sensitive to
androgens, progestogens, mineralocorticoids, and gluco-
corticoids, and thus had naSR characteristics (Figure 4A)
(Eick et al., 2012). The AncSR1 sequence is most similar to
those of the extant ERs, whereas that of AncSR2 is most
similar to the naSRs, and this pattern is most pronounced
at sites in the ligand-contacting pockets (Figure 4B). Alto-
gether, AncSR1 and AncSR2 differ by 171 residues corre-
sponding to a sequence divergence of 70%. Among them



DE GRUYTER R. Merkl and R. Sterner: Ancestral sequence reconstruction =—— 13
0.6
A B m L v
T M LV v
T (Favee Il F [ Vv
Vertebrate ERs (81) AncSR1 . N L v
Human hERo,hERB L L 201 || 219
L N
— Human GR,MR,PR,AR L e 31
AncSR2 L[| F-MM
pet L \
=Sl Protostome ERs (9) 3
PRs (11) L
—@ AncSR1 E 1M
nc M
ARs (37) g 75
AncSR2 Q
41 T~
MRs (12) L2 ®
— o /V
GRs (22) R G
— M
R F L I Iof[mff ! a H
—< ERRs (13) R F L M Lo{[Lm| Ml L YFYF
R F [LLLm |ASVV ([ M || M || QLLQ || MMFM 5 F
Other NRs (22 82 F L A M || M| L M 206
22) — | 94 | 79 76 || 117 || 72| 113 110 208

Figure 4: Evolution of steroid receptors and their ligands.

(A) Phylogeny of the SR gene family. Receptors are color-coded by the classes of ligands to which they are most sensitive. These are
estrogens (red), progestagens (blue), androgens (green), and corticosteroids (purple). ERRs are estrogen related receptors and “Other NRs”
are other nuclear receptors. The ancestral steroid receptors (AncSR1 and AncSR2) that were resurrected are marked as circles. The number
of sequences is shown for each clade in parentheses. (B) Maximum likelihood reconstruction of ligand-contacting residues in AncSR1

and AncSR2 and the residues at homologous sites in extant human SRs. A circled R indicates a polar functional group, at which the major
steroid classes differ from each other and arrows indicate residues within hydrogen bonding distance. Residues that differ between AncSR1
and AncSR2 are highlighted in yellow. Modified image adapted from Eick et al. (2012).

are 22 residues that are in AncSR1 identical to the residue
observed in the extant ERs and in AncSR2 identical to
the residue observed in the extant naSRs. Two residues
out of the 22 differences appeared to be involved in dif-
ferential hormone binding according to a comparison of
the structures of AncSR1 and AncSR2. The two AncSR2-
specific residues (GIn41 and Met75) were replaced by the
AncSR1-specific residues (Glu41l and Leu75), and vice
versa. Characterization of the AncSR2 variant showed that
it had AncSR1-like hormone binding characteristics, and
characterization of the AncSR1 variant showed that it had
AncSR2-like hormone binding characteristics. Thus, just
two relatively minor amino acid differences are responsi-
ble for the distinct ligand specificities of these two major
clades of vertebrate hormone receptors.

Understanding the evolution of biological systems
consisting of tightly integrated parts is difficult, due to the
mutual dependency of the interacting partners. J. Thorn-
ton and colleagues used a vertical approach to elucidate
the stepwise adaptation in the functional interaction
between the steroid hormone aldosterone and its binding
partner, the mineralocorticoid receptor (Bridgham et al.,
2006; Ortlund et al., 2007). The authors were interested in
identifying the key residue differences between different
steroid receptors in two related systems, namely the

mineralocortocoid receptor (MR), which is activated by
aldosterone and to a lesser extent by cortisol, and the
glucocorticoid receptor (GR), which is activated by cor-
tisol only (Bridgham et al., 2006; Ortlund et al., 2007).
It was found that the common ancestor of all MRs and
GRs (AncCR) was MR-like. By resurrecting successive
ancestors in the GR lineage, it was shown that cortisol-
specificity evolved between AncGR1 (MR-like phenotype)
and AncGR2 (GR-like phenotype). Within this branch, 37
residue differences occurred but only five have been con-
served in one state in the MRs and in another state in the
GRs. These residues were introduced into AncGR1, singly
and in pairs. None of the single mutations increased cor-
tisol-specificity, but the combination of Ser106Pro and
Leull1GIn did. A strong epistatic effect with respect to
these two mutations was observed: Leul11GIn alone had
little effect on sensitivity to any hormone, but Ser106Pro
dramatically reduced activation by all ligands. Only the
combination switched receptor preference from aldoster-
one to cortisol. Introducing these substitutions into the
human MR vyielded a completely non-functional recep-
tor, as did reversing them in the human GR. These results
emphasize that the functional impacts of historical substi-
tutions can only be evaluated with the ancestral sequence
at hand.



14 —— R.Merkland R. Sterner: Ancestral sequence reconstruction

Elucidating mutational routes leading to
highly specific chromophores

Two other studies, focusing on the absorbance and fluo-
rescence properties of chromophores, also nicely illustrate
how ASR can help to identify key residues distinguishing
highly specific functions of homologs.

In the first study, the sequence determinants that are
relevant for the absorption of opsins in the green or the
red wavelength region were identified (Yokoyama et al.,
2008). Earlier work had shown that the replacement
of three putative key residues in red opsin with the cor-
responding residues in green opsin yielded a pigment
absorbing in the green wavelength region. However, the
reverse procedure did not yield an opsin absorbing in the
red (Asenjo et al., 1994). ASR showed that the common
ancestor of all red and green opsins absorbed maximally
in the red. A sequence comparison identified five posi-
tions that were specifically conserved in red and green
opsins but differed between the two forms. When the five
green-specific residues were introduced in the ancestral
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opsin, it displayed a shift from the red to the green. Then,
each mutation was introduced singly and in sets of two or
three. The results showed that a large fraction of the total
green shift was the result of epistatic mutations rather
than the direct effects of the individual mutations.

In the second study, the sequence determinants
responsible for the different fluorescence properties of
GFP variants from the coral suborder Faviina were char-
acterized (Ugalde et al., 2004; Field and Matz, 2010). ASR
revealed that the ancestral GFP-like protein fluoresced in
the green; subsequent diversification resulted in the emis-
sion of a variety of colors (Figure 5). The authors were
interested to identify residues that lead to a shift from the
green ancestor to the red GFP that is present in a certain
star coral. They first found that these two proteins differed
by 37 residues. As it was impossible to test all possible
combinations of exchanges, they generated a library of
variants that comprised about half of the residues in the
ancestral green state and half in the derived red state.
Then, the fluorescence of a large number of clones from
this library was correlated with the amino acids found

Cc

Extant proteins

400 450 500 550 600 650 700
Wavelength (nm)

Figure 5: ASR of GFP variants.
(A) Fluorescence spectra of the reconstructed ancestral proteins. Multi

0.1 substitutions/site

scubGFP1

Kaede

400 450 500 550 600 650 700
Wavelength (nm)

ple curves correspond to clones bearing variations at degenerate

sites. (B) Phylogeny of GFP-like proteins from the great star coral Montastraea cavernosa and closely related coral species. The red and cyan
proteins from soft corals (dendRFP and clavGFP) represent an outgroup. (C) Fluorescence spectra of extant proteins. (D) Phylogenetic tree of
colors from the great star coral, drawn on a petri dish with bacteria expressing extant and ancestral proteins, under ultraviolet light. Figure

taken from Ugalde et al. (2004).
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at different positions. The statistical analysis of the data
indicated that 12 of the 37 residues were crucial for red flu-
orescence. The introduction of these 12 residues into the
green ancestral protein yielded a protein that emitted in
the red. This work thus illustrates that crucial amino acids
responsible for different properties of proteins can be
identified by a combination of ASR with library selection.

Gene duplications and their contribution to
the evolution of modern enzymes

ASR was also used to study the effect of gene duplication
on evolutionary innovation (Voordeckers et al., 2012). Fol-
lowing gene duplication, three evolutionary scenarios are
feasible that explain the subsequent function of the gene
products: (i) one copy can retain the old function and the

ancIMA5
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| anclIMA1-4

Maltose
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Maltose
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other copy can adopt a new one (neofunctionalization);
(ii) it is also possible that the ancestral gene product has
two different functions, which might be split between the
two copies (subfunctionalization); (iii) finally, the two
copies may preserve the same activity; in such a case, gene
duplication would increase the activity by increasing the
concentration of the encoded protein (gene dosage effect).

In this study, a family of fungal enzymes (MALS) was
analyzed that hydrolyze disaccharides. These enzymes all
originated from the same ancestral gene and underwent
several duplication events. Activity data were obtained
for the very first preduplication enzyme ancMALS, for the
subsequent ancestral enzymes ancMAL-IMA, ancMAL
and ancIMA1-5, and for the seven extant MALS enzymes
from Saccharomyces cerevisiae (Figure 6).

The results show that ancMALS and ancMAL-IMA
were promiscuous, preferring maltose-like substrates

| MAL12
| MAL32

Figure 6: Duplication events and changes in specificity and activity during the evolution of Saccharomyces cerevisiae MALS enzymes.
The hydrolytic activity of seven modern MAL and IMA enzymes and of key ancestral enzymes (prefix anc) is given. The width of the colored

bands corresponds to the k

cat

/K_-value of the enzyme for a specific substrate. For details see Voordeckers et al. (2012).
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such as maltose, maltotriose, maltulose, sucrose, and
turanose, but also displaying trace activity towards iso-
maltose-like sugars such as palatinose and isomaltose. A
clear divergence of both subfunctions only occurred after
duplication of ancMAL-IMA, resulting in the specialized
ancMAL and ancIMA1-4 proteins. This subdivision is also
present in the seven extant enzymes: two enzymes (MAL12
and MAL32) show high activity towards maltose-like sub-
strates, whereas the enzymes of the second class (IMA1-4)
show high activity for isomaltose-like substrates. These
findings illustrate how, after duplication, the different
copies diverged and specialized in one of the functions
present in the preduplication enzyme. Interestingly, it
was found that evolution has taken two different molecu-
lar routes to optimize isomaltose-like activity (the evolu-
tion of ancMAL-IMA to ancIMA1-4 and ancIMAS5 to IMAS5;
Figure 6). Molecular modeling and site-directed mutagen-
esis studies revealed that the observed different substrate
specificities are caused by different evolutionary routes:
when going from ancMAL-IMA to ancIMA1-4 position 279
is crucial, whereas when going from ancMALS to IMA5 the
same shift in substrate specificity is caused by residue 219.

Taken together, the data suggest that the evolution-
ary history of the MALS family exhibits aspects of all
three classical models of gene evolution after duplica-
tion: the preduplication enzyme was multifunctional
and already contained the different activities found in

B
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the postduplication enzymes, which is in agreement
with the idea of subfunctionalization. However, the iso-
maltose-like activity was very weak in the preduplication
ancestor and only fully developed through mutations
after duplication, which resembles neofunctionalization.
Moreover, considerable fitness costs that were observed
when one of two almost identical copies of extant MALS
proteins was deleted suggest that gene dosage effects
may also play an important role in the evolution of this
enzyme group.

Gene duplication and subsequent specialization are
also the basis for the evolution of increased complexity in
a molecular machine (Finnigan et al., 2012). The V ring
of extant V-ATPases from fungi contains three different
subunits, Vma3, Vmall, and Vmal6, which are arranged
in a specific orientation (Figure 7A). Phylogenetic analy-
sis showed that Vma3 and Vmall are sister proteins that
are derived from an ancestral protein (Anc3-11) via a gene
duplication event. Anc3-11 as well as the last common
ancestors of Vma3 (Anc3), Vmall (Ancll), and Vmal6
(Anc16) were reconstructed (Figure 7B). It was found that
Anc16 can complement a AVmal6 strain. Likewise, Anc3—
11 (but not Anc3 or Ancll) could complement a yeast
AVmallAVma3 double deletion strain. These findings
show that an ancestral two-subunit ring can function-
ally replace the extant three-subunit ring of yeast. Sub-
sequent subunit fusion experiments demonstrated that

Anc.1é

0.8 subs/site

Figure 7: Structure and evolution of the V-ATPase complex.

Amoebozoa,
=—— Apicomplexa
Animals,

Subunit
16

Choanoflagellates

Subunit

Fungi 11

Anc.11

(A) In Saccharomyces cerevisiae, the V-ATPase contains two subcomplexes: the octameric V1 domain on the cytosolic side of the organelle
membrane, and the membrane bound hexameric VO ring. Subunits Vma3, Vma1l1, and Vma16 are color-coded. (B) Maximum likelihood
phylogeny of V-ATPase subunits Vma3, Vma1l, and Vma16. The genomes of all eukaryotes contain subunits 3 and 16, but Fungi also contain
subunit 11. Circles show reconstructed ancestral proteins, colors correspond to those of subunits in panel (A); unduplicated orthologs of
Vma3 and Vmall are green. Asterisks show approximate likelihood ratios for major nodes. Figure taken from Finnigan et al. (2012).
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Vma3 and Vmall evolved their specialized roles because
they lost specific asymmetric interactions present in
Anc3-11 that are required for ring assembly. These losses
were complementary, so both copies, Vma3 and Vmall,
became obligate components with restricted spatial roles
in the complex. Site-directed mutagenesis with Anc3-11
was used to recapitulate this asymmetric degeneration:
a single amino acid replacement that occurred on the
branch leading to Anc11 abolished the capacity of Anc3-11
to function as subunit 3. Conversely, a single amino acid
replacement that occurred on the branch leading to Anc3
radically reduced the capacity of Anc3-11 to function as
subunit 11.

Following the evolution of quaternary
complexes

Commonly, the quaternary configuration of homologous
protein complexes is highly conserved. However, in some
protein families, different oligomeric states are observed.
An example is PyrR, which is a pyrimidine operon attenua-
tor in Bacillaceae. Here, the thermophilic ortholog (BcPyrR)
forms a tetramer whereas the mesophilic ortholog (BsPyrR)
is a dimer. In order to dissect the role of the 49 substitu-
tions that distinguish BsPyrR from BcPyrR, S. Teichmann
and colleagues combined ASR with biophysical methods
and structural analysis (Perica et al., 2014). Comparing the
3D structures and residue contact networks of variants, 11
allosteric key mutations were identified that control the
oligomeric state. The results made clear that evolution uti-
lized the intrinsic dynamics of this protein to toggle a con-
formational switch in the same manner as the binding of a
small molecule does, which is related to the function of this
attenuator.

Conclusion

The above examples illustrate that evolutionary analysis
can help to solve biochemical and biological problems,
which are not accessible with other methods. However,
to address these problems, it is not sufficient to simply
reconstruct the protein sequences. Instead, the function-
ally important mutations have to be identified, and the
physical effects mediating them have to be uncovered by
means of a biochemical and biophysical characterization
of the resurrected proteins.

A number of ASR experiments have confirmed that
Precambrian life was thermophilic, which is in accordance
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with several scenarios, including that ancestral oceans
were hot, that ancient life thrived in hot spots such as
hydrothermal systems, or that only robust thermophilic
organism survived bombardment events in the young
Earth (Risso et al., 2014). Moreover, several publications
suggest that essential enzymes had already reached a high
level of functional sophistication in the LUCA era. Further-
more, crystal structure analysis of Precambrian thioredox-
ins (Ingles-Prieto et al., 2013), B-lactamases (Risso et al.,
2013), nucleoside kinases (Akanuma et al., 2013) and the
imidazole glycerol phosphate synthase HisF (Reisinger
et al., 2014) made clear that the three-dimensional struc-
tures of these proteins are similar to those of the corre-
sponding extant proteins, supporting a relatively slow
evolution of protein structure and function as compared
to amino acid sequences.

Although ASR is unavoidably uncertain to some
extent, the presented studies show that ASR is validated
to a significant degree at the phenotypic level by the
fact that the properties of the proteins resurrected in the
laboratory are typically robust. Moreover, their capaci-
ties are consistent with the ancestral properties expected
from physical science and paleogeology. Additionally,
state-of-the-art applications of ASR acknowledge that
reconstructed ancestors are approximations of historical
reality. For example, several studies carefully explored the
robustness of their functional inferences to uncertainty
about the reconstructed ancestors by experimentally
characterizing alternate plausible reconstructions (see,
for example, Thornton, 2004; Ugalde et al., 2004).

We have shown that ASR counts on state-of-the-art
phylogeny. These methods will further improve due the
permanent increase of computing power, which allows for
the implementation of more sophisticated models. Addi-
tionally, a much larger number of extant sequences can
be exploited, which makes plausible that the uncertainty
related to ASR will further decrease.

It has been argued that ASR has a tendency to over-
predict highly stable predecessors (Perica et al., 2014), a
suspicion that cannot be ruled out completely. Conversely,
hyperstability in combination with promiscuity is a
winning combination from the protein-engineering point
of view, because both features contribute to high evolv-
ability (Risso et al., 2013).

What are the limitations of ASR? This technology is
entirely dependent on phylogenetic trees, which conse-
quently hampers the analysis of protein evolution for the
pre-LUCA era. Thus, the experimental simulation of this very
early phase of evolution requires alternative approaches,
which again combine in silico analyses and proteins charac-
terization (see, for example, Farias-Rico et al., 2014).
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What comes next? The next steps are the integration
of ancestral protein complexes into modern organisms —
for first examples see Finnigan et al. (2012) and Reisinger
et al. (2014) — and in the long-run the reconstruction of
a full ancestral microorganism. To do so, the ancestral
genomic content has to be determined at first. This task
is feasible with methods resembling the approaches intro-
duced here (see Tuller et al., 2010; Jones et al., 2012; Yang
et al., 2012), but a more detailed survey is out of the scope
of the current review.

Acknowledgments: Work by the authors was supported
by the Deutsche Forschungsgemeinschaft (ME2259/2-1,
STE891/9-1).

References

Abascal, F., Zardoya, R., and Posada, D. (2005). ProtTest: selec-
tion of best-fit models of protein evolution. Bioinformatics 21,
2104-2105.

Akanuma, S., Nakajima, Y., Yokobori, S., Kimura, M., Nemoto, N.,
Mase, T., Miyazono, K., Tanokura, M., and Yamagishi, A. (2013).
Experimental evidence for the thermophilicity of ancestral life.
Proc. Natl. Acad. Sci. USA 110, 11067-11072.

Akerborg, 0., Sennblad, B., Arvestad, L., and Lagergren, J. (2009).
Simultaneous Bayesian gene tree reconstruction and reconcili-
ation analysis. Proc. Natl. Acad. Sci. USA 106, 5714-5719.

Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J.
(1990). Basic local alignment search tool. J. Mol. Biol. 215,
403-410.

Anisimova, M., Gil, M., Dufayard, J.F., Dessimoz, C., and Gascuel, O.
(2011). Survey of branch support methods demonstrates accu-
racy, power, and robustness of fast likelihood-based approxi-
mation schemes. Syst. Biol. 60, 685-699.

Asenjo, A.B., Rim, J., and Oprian, D.D. (1994). Molecular determi-
nants of human red/green color discrimination. Neuron 12,
1131-1138.

Bar-Rogovsky, H., Hugenmatter, A., and Tawfik, D.S. (2013). The
evolutionary origins of detoxifying enzymes: the mammalian
serum paraoxonases (PONs) relate to bacterial homoserine
lactonases. ). Biol. Chem. 288, 23914-23927.

Battistuzzi, F.U., Feijao, A., and Hedges, S.B. (2004). A genomic
timescale of prokaryote evolution: insights into the origin of
methanogenesis, phototrophy, and the colonization of land.
BMC Evol. Biol. 4, 44.

Bazinet, A.L., Zwickl, D.J., and Cummings, M.P. (2014). A gateway
for phylogenetic analysis powered by grid computing featuring
GARLI 2.0. Syst. Biol. 63, 812-818.

Becerra, A., Delaye, L., Islas, S., and Lazcano, A. (2007). The very
early stages of biological evolution and the nature of the last
common ancestor of the three major cell domains. Annu. Rev.
Ecol. Evol. Syst. 38, 361-379.

Blanquart, S. and Lartillot, N. (2008). A site- and time-heteroge-
neous model of amino acid replacement. Mol. Biol. Evol. 25,
842-858.

DE GRUYTER

Boussau, B. and Gouy, M. (2006). Efficient likelihood computations
with nonreversible models of evolution. Syst. Biol. 55, 756-768.

Boussau, B., Blanquart, S., Necsulea, A., Lartillot, N., and Gouy,

M. (2008). Parallel adaptations to high temperatures in the
Archaean eon. Nature 456, 942-945.

Bridgham, J.T., Carroll, S.M., and Thornton, J.W. (2006). Evolution
of hormone-receptor complexity by molecular exploitation.
Science 312, 97-101.

Brooks, D.). and Gaucher, E.A. (2007). A thermophilic last universal
ancestor inferred from its estimated amino acid composition.
In: Ancestral Sequence Reconstruction, D.A. Liberles, ed.
(Oxford, UK: Oxford University Press), pp. 200-207.

Brown, S.D. and Babbitt, P.C. (2014). New insights about enzyme
evolution from large scale studies of sequence and structure
relationships. ). Biol. Chem. 289, 30221-30228.

Cai, W., Pei, )., and Grishin, N.V. (2004). Reconstruction of ancestral
protein sequences and its applications. BMC Evol. Biol. 4, 33.

Castresana, J. (2000). Selection of conserved blocks from multiple
alignments for their use in phylogenetic analysis. Mol. Biol.
Evol. 17, 540-552.

Chandrasekharan, U.M., Sanker, S., Glynias, M.}., Karnik, S.S., and
Husain, A. (1996). Angiotensin lI-forming activity in a recon-
structed ancestral chymase. Science 271, 502-505.

Chor, B. and Tuller, T. (2005). Maximum likelihood of evolutionary
trees: hardness and approximation. Bioinformatics 21(Suppl 1),
i97-106.

Cunningham, C.W. (1999). Some limitations of ancestral character-
state reconstruction when testing evolutionary hypotheses.
Syst. Biol. 48, 665-674.

Dayhoff, M.0., Schwartz, R.M., and Orcutt, B.C. (1978). A model of
evolutionary change in proteins. In: Atlas of Protein Sequence
and Structure, M. Dayhoff, ed. (Washington, DC, USA: National
Biomedical Research Foundation), pp. 345-352.

De Oliveira Martins, L., Mallo, D., and Posada, D. (2014). A Bayesian
supertree model for genome-wide species tree reconstruction.
Syst. Biol. pii:syu082.

Dempster, A.P., Laird, N.M., and Rubin, D.B. (1977). Maximum likeli-
hood from incomplete data via the EM algorithm. ). R. Stat. Soc.
Ser. B. (Stat. Method.) 39, 1-38.

Doolittle, W.F. (2000). The nature of the universal ancestor and the
evolution of the proteome. Curr. Opin. Struct. Biol. 10, 355-358.

Edgar, R.C. (2004). MUSCLE: multiple sequence alignment with
high accuracy and high throughput. Nucleic Acids Res. 32,
1792-1797.

Eick, G.N., Colucci, J.K., Harms, M.J., Ortlund, E.A., and Thornton,
J.W. (2012). Evolution of minimal specificity and promiscuity in
steroid hormone receptors. PLoS Genet. 8, €1003072.

Eyre-Walker, A. (1998). Problems with parsimony in sequences of
biased base composition. J. Mol. Evol. 47, 686—-690.

Farias-Rico, J.A., Schmidt, S., and Hocker, B. (2014). Evolutionary
relationship of two ancient protein superfolds. Nat. Chem. Biol.
10, 710-715.

Felsenstein, J. (1981). Evolutionary trees from DNA sequences: a
maximum likelihood approach. ). Mol. Evol. 17, 368-376.
Field, S.F. and Matz, M.V. (2010). Retracing evolution of red fluores-
cence in GFP-like proteins from Faviina corals. Mol. Biol. Evol.

27,225-233.

Finnigan, G.C., Hanson-Smith, V., Stevens, T.H., and Thornton, J.W.
(2012). Evolution of increased complexity in a molecular
machine. Nature 481, 360-364.



DE GRUYTER

Fitch, W.M. (1971). Toward defining the course of evolution: minimum
change for a specific tree topology. Syst. Biol. 20, 406-416.

Frumhoff, P.C. and Reeve, H.K. (1994). Using phylogenies to test
hypotheses of adaptation: a critique of some current propos-
als. Evolution 48, 172-180.

Galtier, N. and Lobry, J.R. (1997). Relationships between genomic
G+C content, RNA secondary structures, and optimal growth
temperature in prokaryotes. J. Mol. Evol. 44, 632-636.

Gaucher, E.A. (2007). Ancestral sequence reconstruction as a tool to
understand natural history and guide synthetic biology: real-
izing and extending the vision of Zuckerkandl and Pauling. In:
Ancestral sequence reconstruction, D.A. Liberles, ed. (Oxford,
UK: Oxford University Press), pp. 20-33.

Gaucher, E.A., Thomson, J.M., Burgan, M.F., and Benner, S.A.
(2003). Inferring the palaeoenvironment of ancient bacteria on
the basis of resurrected proteins. Nature 425, 285-288.

Gaucher, E.A., Govindarajan, S., and Ganesh, 0.K. (2008).
Palaeotemperature trend for Precambrian life inferred from
resurrected proteins. Nature 451, 704-707.

Gerlt, J.A. and Babbitt, P.C. (2009). Enzyme (re)design: lessons from
natural evolution and computation. Curr. Opin. Chem. Biol. 13,
10-18.

Goodman, M., Czelusniak, J., Moore, G.W., Romero-Herrera, A.E.,
and Matsuda, G. (1979). Fitting the gene lineage into its spe-
cies lineage, a parsimony strategy illustrated by cladograms
constructed from globin sequences. Syst. Zool. 28, 132-163.

Griffiths, R.C. and Marjoram, P. (1996). Ancestral inference from
samples of DNA sequences with recombination. ). Comput.
Biol. 3, 479-502.

Gromiha, M.M., Oobatake, M., and Sarai, A. (1999). Important amino
acid properties for enhanced thermostability from mesophilic
to thermophilic proteins. Biophys. Chem. 82, 51-67.

Groussin, M., Hobbs, J.K., Sz6llési, G.)., Gribaldo, S., Arcus, V.L.,
and Gouy, M. (2015). Toward more accurate ancestral protein
genotype—phenotype reconstructions with the use of species
tree-aware gene trees. Mol. Biol. Evol. 32, 13-22.

Guindon, S. and Gascuel, 0. (2003). A simple, fast, and accurate
algorithm to estimate large phylogenies by maximum likeli-
hood. Syst. Biol. 52, 696-704.

Guindon, S., Lethiec, F., Duroux, P., and Gascuel, 0. (2005). PHYML
Online—a web server for fast maximum likelihood-based phylo-
genetic inference. Nucleic Acids Res. 33, W557-W559.

Hanson-Smith, V., Kolaczkowski, B., and Thornton, J.W. (2010).
Robustness of ancestral sequence reconstruction to phyloge-
netic uncertainty. Mol. Biol. Evol. 27, 1988-1999.

Harms, M.). and Thornton, J.W. (2010). Analyzing protein structure
and function using ancestral gene reconstruction. Curr. Opin.
Struct. Biol. 20, 360-366.

Harms, M.J., Eick, G.N., Goswami, D., Colucci, J.K., Griffin, P.R.,
Ortlund, E.A., and Thornton, J.W. (2013). Biophysical
mechanisms for large-effect mutations in the evolution of
steroid hormone receptors. Proc. Natl. Acad. Sci. USA 110,
11475-11480.

Hobbs, J.K., Shepherd, C., Saul, D.J., Demetras, N.J., Haaning, S.,
Monk, C.R., Daniel, R.M., and Arcus, V.L. (2012). On the origin
and evolution of thermophily: reconstruction of functional
precambrian enzymes from ancestors of Bacillus. Mol. Biol.
Evol. 29, 825-835.

Huelsenbeck, J.P. and Bollback, J.P. (2001). Empirical and hierarchi-
cal Bayesian estimation of ancestral states. Syst. Biol. 50,
351-366.

R. Merkl and R. Sterner: Ancestral sequence reconstruction =—— 19

Huelsenbeck, J.P., Ronquist, F., Nielsen, R., and Bollback, J.P. (2001).
Bayesian inference of phylogeny and its impact on evolution-
ary biology. Science 294, 2310-2314.

Ingles-Prieto, A., Ibarra-Molero, B., Delgado-Delgado, A., Perez-
Jimenez, R., Fernandez, .M., Gaucher, E.A., Sanchez-Ruiz, J.M.,
and Gavira, J.A. (2013). Conservation of protein structure over
four billion years. Structure 21, 1690-1697.

Jermann, T.M., Opitz, J.G., Stackhouse, J., and Benner, S.A. (1995).
Reconstructing the evolutionary history of the artiodactyl
ribonuclease superfamily. Nature 374, 57-59.

Jones, D.T., Taylor, W.R., and Thornton, J.M. (1992). The rapid
generation of mutation data matrices from protein sequences.
Comput. Appl. Biosci. 8, 275-282.

Jones, B.R., Rajaraman, A., Tannier, E., and Chauve, C. (2012). ANGES:
reconstructing ANcestral GEnomeS maps. Bioinformatics 28,
2388-2390.

Jukes, T.H. and Cantor, C.R. (1969). Evolution of protein molecules.
In: Mammalian protein metabolism, H.N. Munro, ed. (New York,
USA: Academic Press), pp. 21-132.

Khersonsky, O. and Tawfik, D.S. (2010). Enzyme promiscuity:

a mechanistic and evolutionary perspective. Annu. Rev.
Biochem. 79, 471-505.

Kimura, M. (1981). Estimation of evolutionary distances between
homologous nucleotide sequences. Proc. Natl. Acad. Sci. USA
78, 454-458.

Koshi, J.M. and Goldstein, R.A. (1996). Probabilistic reconstruction
of ancestral protein sequences. ). Mol. Evol. 42, 313-320.

Larget, B. and Simon, D.L. (1999). Markov chain Monte Carlo algo-
rithms for the Bayesian analysis of phylogenetic trees. Mol.
Biol. Evol. 16, 750-759.

Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R.,
McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M.,
Wilm, A., Lopez, R., et al. (2007). Clustal W and Clustal X
version 2.0. Bioinformatics 23, 2947-2948.

Lartillot, N., Lepage, T., and Blanquart, S. (2009). PhyloBayes 3:

a Bayesian software package for phylogenetic reconstruction
and molecular dating. Bioinformatics 25, 2286-2288.

Li, W. and Godzik, A. (2006). Cd-hit: a fast program for clustering
and comparing large sets of protein or nucleotide sequences.
Bioinformatics 22, 1658-1659.

Liberles, D.A. (2007). Ancestral sequence reconstruction (Oxford,
UK: Oxford University Press).

Lio, P. and Bishop, M. (2008). Modeling sequence evolution. In:
Bioinformatics, J.M. Keith, ed. (Totowa, NJ, USA: Springer),
pp. 255-285.

Loytynoja, A. and Goldman, N. (2008). Phylogeny-aware gap place-
ment prevents errors in sequence alignment and evolutionary
analysis. Science 320, 1632-1635.

Maddison, W.P. (1997). Gene trees in species trees. Syst. Biol. 46,
523-536.

Maddison, W.P. and Maddison, D.R. (2015). Mesquite: a modular
system for evolutionary analysis. http://mesquiteproject.org.

Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., and
Teller, E. (1953). Equation of state calculations by fast comput-
ing machines. ). Chem. Phys. 21, 1087-1092.

Mirarab, S. and Warnow, T. (2015). ASTRAL-II: coalescent-based
species tree estimation with many hundreds of taxa and thou-
sands of genes. Bioinformatics 31, i44-52.

Mirarab, S., Reaz, R., Bayzid, M.S., Zimmermann, T., Swenson, M.S.,
and Warnow, T. (2014). ASTRAL: genome-scale coalescent-
based species tree estimation. Bioinformatics 30, i541-548.


http://mesquiteproject.org

20 —— R.MerklandR. Sterner: Ancestral sequence reconstruction

Mirceta, S., Signore, A.V., Burns, J.M., Cossins, A.R., Campbell, K.L.,
and Berenbrink, M. (2013). Evolution of mammalian diving
capacity traced by myoglobin net surface charge. Science 340,
1234192.

Nisbet, E.G. and Sleep, N.H. (2001). The habitat and nature of early
life. Nature 409, 1083-1091.

Nylander, J.A., Wilgenbusch, J.C., Warren, D.L., and Swofford, D.L.
(2008). AWTY (are we there yet?): a system for graphical
exploration of MCMC convergence in Bayesian phylogenetics.
Bioinformatics 24, 581-583.

Ortlund, E.A., Bridgham, J.T., Redinbo, M.R., and Thornton, J.W.
(2007). Crystal structure of an ancient protein: evolution by
conformational epistasis. Science 317, 1544-1548.

Pauling, L. and Zuckerkandl, E. (1963). Chemical paleogenetics:
molecular “restoration studies”of extinct forms of life. Acta.
Chem. Scand. 17, 9-16.

Perez-Jimenez, R., Inglés-Prieto, A., Zhao, Z.M., Sanchez-Romero, I.,
Alegre-Cebollada, J., Kosuri, P., Garcia-Manyes, S., Kappock, T.).,
Tanokura, M., Holmgren, A, et al. (2011). Single-molecule
paleoenzymology probes the chemistry of resurrected enzymes.
Nat. Struct. Mol. Biol. 18, 592-596.

Perica, T., Kondo, Y., Tiwari, S.P., McLaughlin, S.H., Kemplen, K.R.,
Zhang, X., Steward, A., Reuter, N., Clarke, J., and Teichmann,
S.A. (2014). Evolution of oligomeric state through allosteric
pathways that mimic ligand binding. Science 346, 1254346.

Pupko, T., Pe’er, I., Shamir, R., and Graur, D. (2000). A fast algorithm
for joint reconstruction of ancestral amino acid sequences.
Mol. Biol. Evol. 17, 890-896.

Pupko, T., Doron-Faigenboim, A., Liberles, D.A., and Cannarozzi, G.M.
(2007). Probabilistic models and their impact on the accuracy
of reconstructed ancestral protein sequences. In: Ancestral
sequence reconstruction, D.A. Liberles, ed. (Oxford, UK: Oxford
University Press).

Ranwez, V. and Gascuel, O. (2001). Quartet-based phylogenetic infer-
ence: improvements and limits. Mol. Biol. Evol. 18, 1103-1116.

Reisinger, B., Sperl, J., Holinski, A., Schmid, V., Rajendran, C.,
Carstensen, L., Schlee, S., Blanquart, S., Merkl, R., and
Sterner, R. (2014). Evidence for the existence of elaborate
enzyme complexes in the Paleoarchean era. ). Am. Chem. Soc.
136, 122-129.

Richter, M., Bosnali, M., Carstensen, L., Seitz, T., Durchschlag, H.,
Blanquart, S., Merkl, R., and Sterner, R. (2010). Computational
and experimental evidence for the evolution of a (Bo),-barrel
protein from an ancestral quarter-barrel stabilised by disulfide
bonds. J. Mol. Biol. 398, 763-773.

Risso, V.A., Gavira, J.A., Mejia-Carmona, D.F., Gaucher, E.A., and
Sanchez-Ruiz, J.M. (2013). Hyperstability and substrate promis-
cuity in laboratory resurrections of Precambrian B-lactamases.
J. Am. Chem. Soc. 135, 2899-2902.

Risso, V.A., Gavira, J.A., and Sanchez-Ruiz, J.M. (2014). Thermosta-
ble and promiscuous Precambrian proteins. Environ. Microbiol.
16, 1485-1489.

Risso, V.A., Manssour-Triedo, F., Delgado-Delgado, A., Arco,

R., Barroso-deljesus, A., Ingles-Prieto, A., Godoy-Ruiz, R.,
Gavira, J.A., Gaucher, E.A., Ibarra-Molero, B., et al. (2015).
Mutational studies on resurrected ancestral proteins reveal
conservation of site-specific amino acid preferences through-
out evolutionary history. Mol. Biol. Evol. 32, 440-455.

Robert, F. and Chaussidon, M. (2006). A palaeotemperature curve
for the Precambrian oceans based on silicon isotopes in
cherts. Nature 443, 969-972.

DE GRUYTER

Ronquist, F. and Huelsenbeck, J.P. (2003). MrBayes 3: Bayesian
phylogenetic inference under mixed models. Bioinformatics 19,
1572-1574.

Saitou, N. and Nei, M. (1987). The neighbor-joining method: A new
method for reconstructing phylogenetic trees. Mol. Biol. Evol.
4, 406-425.

Sankoff, D. (1975). Minimal mutation trees of sequences. SIAM ).
Appl. Math. 28, 35-42.

Schultz, T.R., Cocroft, R.B., and Churchill, G.A. (1996). The recon-
struction of ancestral character states. Evolution 50, 504-511.

Scornavacca, C., Jacox, E., and Sz6ll8si, G.J. (2015). Joint amalgamation
of most parsimonious reconciled gene trees. Bioinformatics 31,
841-848.

Shimodaira, H. and Hasegawa, M. (2001). CONSEL: For assessing
the confidence of phylogenetic tree selection. Bioinformatics
17,1246-1247.

Stackhouse, J., Presnell, S.R., McGeehan, G.M., Nambiar, K.P., and
Benner, S.A. (1990). The ribonuclease from an extinct bovid
ruminant. FEBS Lett. 262, 104-106.

Stamatakis, A. (2006). RAXML-VI-HPC: maximum likelihood-based
phylogenetic analyses with thousands of taxa and mixed mod-
els. Bioinformatics 22, 2688-2690.

Strimmer, K. and Von Haeseler, A. (1996). Quartet puzzling: a
quartet maximum-likelihood method for reconstructing tree
topologies. Mol. Biol. Evol. 13, 964-969.

Susko, E., Field, C., Blouin, C., and Roger, A.). (2003). Estimation of
rates-across-sites distributions in phylogenetic substitution
models. Syst. Biol. 52, 594-603.

Swofford, D.L. (1984). PAUP: Phylogenetic analysis using parsimony
(Champaign: Illinois Natural Historical Survey).

Swofford, D.L., Olsen, G.)., Waddell, P.J., and Hillis, D.M. (1996).
Phylogenetic inference. In: Molecular Systematics, D.M. Hillis,
C. Moritz, and B.K. Mable, eds. (Sunderland, MA, USA: Sinauer
and Associates), pp. 407-514.

Sz6ll8si, G.). and Daubin, V. (2012). Modeling gene family evolution
and reconciling phylogenetic discord. In: Evolutionary Genomics,
A. Anismimova, ed. (New York, USA: Springer), pp. 29-51.

Sz6llési, G.)., Tannier, E., Lartillot, N., and Daubin, V. (2013). Lateral
gene transfer from the dead. Syst. Biol. 62, 386-397.

Sz6ll6si, G.)., Tannier, E., Daubin, V., and Boussau, B. (2015). The infer-
ence of gene trees with species trees. Syst. Biol. 64, e42-62.

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and
Kumar, S. (2011). MEGA5: molecular evolutionary genetics
analysis using maximum likelihood, evolutionary distance, and
maximum parsimony methods. Mol. Biol. Evol. 28, 2731-2739.

Tavaré, S. (1986). Some probabilistic and statistical problems in the
analysis of DNA sequences. Lectures Math. Life Sci. 17, 57-86.

Thornton, J.W. (2004). Resurrecting ancient genes: experimental
analysis of extinct molecules. Nat. Rev. Genet. 5, 366—375.

Tuller, T., Birin, H., Gophna, U., Kupiec, M., and Ruppin, E. (2010).
Reconstructing ancestral gene content by coevolution. Genome
Res. 20, 122-132.

Ugalde, J.A., Chang, B.S., and Matz, M.V. (2004). Evolution of coral
pigments recreated. Science 305, 1433.

Voordeckers, K., Brown, C.A., Vanneste, K., van der Zande, E.,

Voet, A., Maere, S., and Verstrepen, K.J. (2012). Reconstruction
of ancestral metabolic enzymes reveals molecular mechanisms
underlying evolutionary innovation through gene duplication.
PLoS Biol. 10, e1001446.

Walker, J.C.G. (1983). Possible limits on the composition of the
Archaean ocean. Nature 302, 518-520.



DE GRUYTER

Whelan, S. (2008). Inferring trees. In: Bioinformatics, J.M. Keith, ed.
(Totowa, NJ, USA: Springer), pp. 287-309.

Whelan, S. and Goldman, N. (2001). A general empirical model of
protein evolution derived from multiple protein families using
a maximume-likelihood approach. Mol. Biol. Evol. 18, 691-699.

Williams, P.D., Pollock, D.D., Blackburne, B.P., and Goldstein, R.A.
(2006). Assessing the accuracy of ancestral protein reconstruc-
tion methods. PLoS Comp. Biol. 2, e69.

Woese, C. (1998). The universal ancestor. Proc. Natl. Acad. Sci. USA
95, 6854—-6859.

Yang, Z. (1994). Maximum likelihood phylogenetic estimation from
DNA sequences with variable rates over sites: approximate
methods. J. Mol. Evol. 39, 306-314.

Yang, Z. (1997). PAML: a program package for phylogenetic analysis
by maximum likelihood. Comput. Appl. Biosci. 13, 555-556.

Yang, Z. and Nielsen, R. (2000). Estimating synonymous and non-
synonymous substitution rates under realistic evolutionary
models. Mol. Biol. Evol. 17, 32-43.

Yang, Z., Kumar, S., and Nei, M. (1995). A new method of inference
of ancestral nucleotide and amino acid sequences. Genetics
141, 1641-1650.

Yang, Z., Nielsen, R., Goldman, N., and Pedersen, A.M. (2000).
Codon-substitution models for heterogeneous selection pres-
sure at amino acid sites. Genetics 155, 431-449.

Yang, K., Heath, L.S., and Setubal, J.C. (2012). REGEN: Ancestral
Genome Reconstruction for Bacteria. Genes (Basel) 3, 423-443.

Yokoyama, S. and Radlwimmer, F.B. (2001). The molecular genet-
ics and evolution of red and green color vision in vertebrates.
Genetics 158, 1697-1710.

Yokoyama, S., Yang, H., and Starmer, W.T. (2008). Molecular basis
of spectral tuning in the red- and green-sensitive (M/LWS) pig-
ments in vertebrates. Genetics 179, 2037-2043.

Zeldovich, K.B., Berezovsky, I.N., and Shakhnovich, E.I. (2007).
Protein and DNA sequence determinants of thermophilic adap-
tation. PLoS Comp. Biol. 3, e5.

Zou, T., Risso, V.A., Gavira, J.A., Sanchez-Ruiz, .M., and Ozkan, S.B.
(2015). Evolution of conformational dynamics determines
the conversion of a promiscuous generalist into a specialist
enzyme. Mol. Biol. Evol. 32, 132-143.

R. Merkl and R. Sterner: Ancestral sequence reconstruction =—— 21

Bionotes

Rainer Merkl

Institute of Biophysics and Physical
Biochemistry, University of Regensburg,
Universitdtsstrasse 31, D-93053 Regensburg,
Germany,

Rainer.Merkl@ur.de

Rainer Merkl studied biomedical engineering and computer science
and obtained his PhD from the University of Gottingen. He has been
with the University of Regensburg since 2005, where he is now

an adjunct professor of computational biology. His main research
interests are protein evolution and enzyme design.

Reinhard Sterner

Institute of Biophysics and Physical
Biochemistry, University of Regensburg,
Universitdtsstrasse 31, D-93053 Regensburg,
Germany,

Reinhard.Sterner@ur.de

Reinhard Sterner studied biology and obtained his PhD from the
University of Munich. He then worked as a postdoctoral fellow at the
University of Basel, as a junior group leader at the University of Got-
tingen, and as a professor at the University of Cologne. Since 2004,
he has held a chair of Biochemistry at the University of Regensburg.
His main research interests are enzyme evolution and design.



