The activity and localization patterns of cathepsins B and X in cells of the mouse gastrointestinal tract differ along its length
-
Tripti Tamhane
, Maria Arampatzidou , Veneta Gerganova , Marlene Tacke , Rukshala Illukkumbura , Stephanie Dauth , Norbert Schaschke , Christoph Peters , Thomas Reinheckel and Klaudia Brix
Abstract
Cysteine cathepsins are expressed in most tissues, including the gastrointestinal tract. We demonstrated an involvement of mouse intestinal cathepsin B in extracellular matrix remodeling for regeneration from trauma. The present study aimed at elucidating roles of cysteine cathepsins in the non-traumatized gastrointestinal tract of mice. Thus we investigated expression and localization patterns of cathepsin B and its closest relative, cathepsin X, along the length of the gastrointestinal tract, and determined the effects of their absence. Cathepsin B showed the highest protein levels in the anterior segments of the gastrointestinal tract, whereas the highest activity was observed in the jejunum, as revealed by cathepsin B-specific activity-based probe labeling. Cathepsin X was most abundant in the jejunum and protein levels were elevated in duodenum and colon of Ctsb-/- mice. The segmental pattern of cathepsin expression was reflected by a compartmentalized distribution of junction proteins and basal lamina constituents, changes in tissue architecture and altered activities of the brush border enzyme aminopeptidase N. In conclusion, we observed different compensatory effects and activity levels of cysteine peptidases along the length of the small and large intestines in a segment-specific manner suggesting specific in situ functions of these enzymes in particular parts of the gastrointestinal tract.
Acknowledgments
This study was supported by Jacobs University Bremen, project 2140/90140, and by the Deutsche Forschungsgemeinschaft (DFG), grant BR 1308/10-1, both to KBr.
References
Arampatzidou, M., Mayer, K., Iolyeva, M.E., Asrat, S.G., Ravichandran, M., Gunther, T., Schule, R., Reinheckel, T., and Brix, K. (2011a). Studies of intestinal morphology and cathepsin B expression in a transgenic mouse aiming at intestine-specific expression of Cath B-EGFP. Biol. Chem. 392, 983–993.Search in Google Scholar
Arampatzidou, M., Rehders, M., Dauth, S., Yu, D.M.T., Tedelind, S., and Brix, K. (2011b). Imaging of protease functions-current guide to spotting cysteine cathepsins in classical and novel scenes of action in mammalian epithelial cells and tissues. Ital. J. Anat. Embryol. 116, 1–19.Search in Google Scholar
Arampatzidou, M., Schütte, A., Hansson, G.C., Saftig, P., and Brix, K. (2012). Effects of cathepsin K deficiency on intercellular junction proteins, luminal mucus layers, and ECM constituents in mouse colon. Biol. Chem. 393, 1391–1403.Search in Google Scholar
Bankus, J.M. and Bond, J.S. (1996). Expression and distribution of meprin protease subunits in mouse intestine. Arch. Biochem. Biophys. 331, 87–94.Search in Google Scholar
Bengsch, F., Buck, A., Günther, S.C., Seiz, J.R., Tacke, M., Pfeifer, D., von Elverfeldt, L., Sevenich, L., Hillebrand, L.E., Kern, U., et al. (2013). Cell type-dependent pathogenic functions of overexpressed human cathepsin B in murine breast cancer progression. Oncogene. doi: 10.1038/onc.2013.395 [Epub ahead of print].Search in Google Scholar
Bernhardt, A., Kuester, D., Roessner, A., Reinheckel, T., and Krueger, S. (2010). Cathepsin X-deficient gastric epithelial cells in co-culture with macrophages: characterization of cytokine response and migration capability after Helicobacter pylori infection. J. Biol. Chem. 285, 33691–33700.Search in Google Scholar
Bradley, S.G., Antalis, T.M., and Bond, J.S. (2013). Proteases in the mammalian digestive system. In: Proteases: Structure and Function. K. Brix and W. Stöcker, eds. (Wien: Springer-Verlag), pp. 373–393.Search in Google Scholar
Brix, K., Dunkhorst, A., Mayer, K., and Jordans, S. (2008). Cysteine cathepsins: cellular roadmap to different functions. Biochimie 90, 194–207.Search in Google Scholar
Brix, K., Scott, C.J., and Heck, M.M.S. (2013). Chapter 3: Compartmentalization of proteolysis. In: Proteases: Structure and Function. K. Brix and W. Stöcker, eds. (Wien: Springer-Verlag), pp. 85–125.Search in Google Scholar
Buck, M.R., Karustis, D.G., Day, N.A., Honn, K.V., and Sloane, B.F. (1992). Degradation of extracellular-matrix proteins by human cathepsin B from normal and tumour tissues. Biochem. J. 282, 273–278.Search in Google Scholar
Buhling, F., Peitz, U., Kruger, S., Kuster, D., Vieth, M., Gebert, I., Roessner, A., Weber, E., Malfertheiner, P., and Wex, T. (2004). Cathepsins K, L, B, X and W are differentially expressed in normal and chronically inflamed gastric mucosa. Biol. Chem. 385, 439–445.Search in Google Scholar
Buth, H., Wolters, B., Hartwig, B., Meier-Bornheim, R., Veith, H., Hansen, M., Sommerhoff, C.P., Schaschke, N., Machleidt, W., Fusenig, N.E., et al. (2004). HaCaT keratinocytes secrete lysosomal cysteine proteinases during migration. Eur. J. Cell Biol. 83, 781–795.Search in Google Scholar
Dauth, S., Arampatzidou, M., Rehders, M., Yu, D., Führer, D., and Brix, K. (2011). Thyroid cathepsin K – roles in physiology and thyroid disease. Clin. Rev. Bone Miner. Metab. 9, 94–106.Search in Google Scholar
Deaton, D.N. and Tavares, F.X. (2005). Design of cathepsin K inhibitors for osteoporosis. Curr. Top. Med. Chem. 5, 1639–1675.Search in Google Scholar
Friedrichs, B., Tepel, C., Reinheckel, T., Deussing, J., von Figura, K., Herzog, V., Peters, C., Saftig, P., and Brix, K. (2003). Thyroid functions of mouse cathepsins B, K, and L. J. Clin. Invest. 111, 1733–1745.Search in Google Scholar
Gansz, M., Kern, U., Peters, C., and Reinheckel, T. (2013). Chapter 6: Exploring systemic functions of lysosomal proteases: the perspective of genetically modified mouse models. In: Proteases: Structure and Function. K. Brix and W. Stöcker, eds. (Wien: Springer-Verlag), pp. 217–233.Search in Google Scholar
Gocheva, V., Zeng, W., Ke, D., Klimstra, D., Reinheckel, T., Peters, C., Hanahan, D., and Joyce, J.A. (2006). Distinct roles for cysteine cathepsin genes in multistage tumorigenesis. Genes Dev. 20, 543–556.Search in Google Scholar
Gounaris, E., Tung, C.H., Restaino, C., Maehr, R., Kohler, R., Joyce, J.A., Ploegh, H., Barrett, T., Weissleder, R., and Khazaie, K. (2008). Live imaging of cysteine-cathepsin activity reveals dynamics of local inflammation, angiogenesis, and polyp growth. PLoS One. 8, e2916.Search in Google Scholar
Halangk, W., Lerch, M.M., Brandt-Nedelev, B., Roth, W., Ruthenbuerger, M., Reinheckel, T., Domschke, W., Lippert, H., Peters, C., and Deussing, J. (2000). Role of cathepsin B in intracellular trypsinogen activation and the onset of acute pancreatitis. J. Clin. Invest. 106, 773–781.Search in Google Scholar
Johnson, G.D. and Hersh, L.B. (1992). Cloning a rat meprin cDNA reveals the enzyme is a heterodimer. J. Biol. Chem. 267, 13505–13512.Search in Google Scholar
Joyce, J.A. and Jeffrey, P.W. (2009). Microenvironmental regulation of metastasis. Nat. Rev. Cancer 9, 239–252.Search in Google Scholar
Kos, J., Sekirnik, A., Premzl, A., Zavasnik Bergant, V., Langerholc, T., Turk, B., Werle, B., Golouh, R., Repnik, U., Jeras, M., et al. (2005). Carboxypeptidases cathepsins X and B display distinct protein profile in human cells and tissues. Exp. Cell Res. 306, 103–113.Search in Google Scholar
Krueger, S., Bernhardt, A., Kalinski, T., Baldensperger, M., Zeh, M., Teller, A., Adolf, D., Reinheckel, T., Roessner, A., and Kuester, D. (2013). Induction of premalignant host responses by cathepsin x/z-deficiency in Helicobacter pylori-infected mice. PLoS One 7, e70242.Search in Google Scholar
Lechner, A.M., Assfalg-Machleidt, I., Zahler, S., Stoeckelhuber, M., Machleidt, W., Jochum, M., and Nagler, D.K. (2006). RGD-dependent binding of procathepsin X to integrin alphavbeta3 mediates cell-adhesive properties. J. Biol. Chem. 281, 39588–39597.Search in Google Scholar
Mayer, K., Schwartz, S., Lentze, M.J., Kalff, J.C., and Brix, K. (2006). Extracellular localization of intestinal cathepsins: implications of their actions during post-operative ileus. In: XLI Congress of the European Society for Surgical Research, B. Vollmar, ed. (Rostock, Germany: Medimond International Proceedings), pp. 63–66.Search in Google Scholar
Mayer, K., Vreemann, A., Qu, H., and Brix, K. (2009). Release of endo-lysosomal cathepsins B, D, and L from IEC6 cells in a cell culture model mimicking intestinal manipulation. Biol. Chem. 390, 471–480.Search in Google Scholar
Medina, C. and Radomski, M.W. (2006). Role of matrix metalloproteinases in intestinal inflammation. J. Pharmacol. Exp. Ther. 318, 933–938.Search in Google Scholar
Menzel, K., Hausmann, M., Obermeier, F., Schreiter, K., Dunger, N., Bataille, F., Falk, W., Scholmerich, J., Herfarth, H., and Rogler, G. (2006). Cathepsins B, L and D in inflammatory bowel disease macrophages and potential therapeutic effects of cathepsin inhibition in vivo. Clin. Exp. Immunol. 146, 169–180.Search in Google Scholar
Mina-Osorio, P. (2008). The moonlighting enzyme CD13: old and new functions to target. Trends Mol. Med. 14, 361–371.Search in Google Scholar
Mohamed, M.M. and Sloane, B.F. (2006). Cysteine cathepsins: multifunctional enzymes in cancer. Nat. Rev. Cancer 6, 764–775.Search in Google Scholar
Musil, D., Zucic, D., Turk, D., Engh, R.A., Mayr, I., Huber, R., Popovic, T., Turk, V., Towatari, T., Katunuma, N., et al. (1991). The refined 2.15 A X-ray crystal structure of human liver cathepsin B: the structural basis for its specificity. EMBO J. 10, 2321–2330.Search in Google Scholar
Nagler, D.K., Storer, A.C., Portaro, F.C., Carmona, E., Juliano, L., and Menard, R. (1997). Major increase in endopeptidase activity of human cathepsin B upon removal of occluding loop contacts. Biochemistry 36, 12608–12615.Search in Google Scholar
Nagler, D.K., Zhang, R., Tam, W., Sulea, T., Purisima, E.O., and Menard, R. (1999). Human cathepsin X: a cysteine protease with unique carboxypeptidase activity. Biochemistry 38, 12648–12654.Search in Google Scholar
Nagler, D.K., Kruger, S., Kellner, A., Ziomek, E., Menard, R., Buhtz, P., Krams, M., Roessner, A., and Kellner, U. (2004). Up-regulation of cathepsin X in prostate cancer and prostatic intraepithelial neoplasia. Prostate 60, 109–119.Search in Google Scholar
Neuhoff, V., Philipp, K., Zimmer, H.G., and Mesecke, S. (1979). A simple, versatile, sensitive and volume-independent method for quantitative protein determination which is independent of other external influences. Hoppe Seylers Z. Physiol. Chem. 360, 1657–1670.Search in Google Scholar
Öbrink, B. (1986). Epithelial cell adhesion molecules. Exp. Cell Res. 163, 1–21.Search in Google Scholar
Oppert, B., Morgan, T.D., Hartzer, K., Lenarcic, B., Galesa, K., Brzin, J., Turk, V., Yoza, K., Ohtsubo, K., and Kramer, K.J. (2003). Effects of proteinase inhibitors on digestive proteinases and growth of the red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Comp. Biochem. Physiol. C. Toxicol. Pharmacol. 4, 481–490.Search in Google Scholar
Podgorski, I. (2009). Future of anticathepsin K drugs: dual therapy for skeletal disease and atherosclerosis? Future Med. Chem. 1, 21–34.Search in Google Scholar
Puzer, L., Cotrin, S.S., Cezari, M.H., Hirata, I.Y., Juliano, M.A., Stefe, I., Turk, D., Turk, B., Juliano, L., and Carmona, A.K. (2005). Recombinant human cathepsin X is a carboxymonopeptidase only: a comparison with cathepsins B and L. Biol. Chem. 386, 1191–1195.Search in Google Scholar
Rachner, T.D., Khosla, S., and Hofbauer, L.C. (2011). Osteoporosis: now and the future. Lancet 377, 1276–1287.Search in Google Scholar
Rao Malla, R., Gopinath, S., Alapati, K., Gorantla, B., Gondi, C.S., and Rao, J.S. (2013). Knockdown of cathepsin B and uPAR inhibits CD151 and α3β1 integrin-mediated cell adhesion and invasion in glioma. Mol. Carcinog. 10, 777–790.Search in Google Scholar
Reiser, J., Adair, B., and Reinheckel, T. (2010). Specialized roles for cysteine cathepsins in health and disease. J. Clin. Invest. 120, 3421–3431.Search in Google Scholar
Riese, R.J. and Chapman, H.A. (2000). Cathepsins and compartmentalization in antigen presentation. Curr. Opin. Immunol. 12, 107–113.Search in Google Scholar
Santamaria, I., Velasco, G., Pendas, A.M., Fueyo, A., and Lopez-Otin, C. (1998). Cathepsin Z, a novel human cysteine proteinase with a short propeptide domain and a unique chromosomal location. J. Biol. Chem. 273, 16816–16823.Search in Google Scholar
Schaschke, N., Assfalg-Machleidt, I., Lassleben, T., Sommerhoff, C.P., Moroder, L., and Machleidt, W. (2000). Epoxysuccinyl peptide-derived affinity labels for cathepsin B. FEBS Lett. 482, 91–96.Search in Google Scholar
Sevenich, L., Schurigt, U., Sachse, K., Gajda, M., Werner, F., Muller, S., Vasiljeva, O., Schwinde, A., Klemm, N., Deussing, J., et al. (2010). Synergistic antitumor effects of combined cathepsin B and cathepsin Z deficiencies on breast cancer progression and metastasis in mice. Proc. Natl. Acad. Sci. USA 107, 2497–2502.Search in Google Scholar
Sina, C., Lipinski, S., Gavrilova, O., Aden, K., Rehman, A., Till, A., Rittger, A., Podschun, R., Meyer-Hoffert, U., Haesler, R., et al. (2012). Extracellular cathepsin K exerts antimicrobial activity and is protective against chronic intestinal inflammation in mice. Gut 62, 520–530.Search in Google Scholar
Shimoyama, Y., Yoshida, T., Terada, M., Shimosato, Y., Abe, O., and Hirohashi, S. (1989). Molecular cloning of a human Ca2+-dependent cell-cell adhesion molecule homologous to mouse placental cadherin: its low expression in humann placental tissues. J. Cell Biol. 109, 1787–1794.Search in Google Scholar
Skvarc, M., Stubljar, D., Kopitar, A.N., Jeverica, S., Tepes, B., Kos, J., and Ihan, A. (2013). Inhibition of cathepsin X enzyme influences the immune response of THP-1 cells and dendritic cells infected with Helicobacter pylori. Radiol. Oncol. 47, 258–265.Search in Google Scholar
Sterchi, E.E., Naim, N.Y., Lentze, M.J., Hauri, H.P., and Fransen, J.A. (1988). N-benzoyl-L-tyrosyl-p-aminobenzoic acid hydrolase: a metalloendopeptidase of the human intes-tinal microvillus membrane which degrades biologically active peptides. Arch. Biochem. Biophys. 265, 105–118.Search in Google Scholar
Takeichi, M. (1988). The cadherins: cell-cell adhesion molecules controlling animal morphogenesis. Development 102, 639–655.Search in Google Scholar
Tedelind, S., Jordans, S., Resemann, H., Blum, G., Bogyo, M., Führer, D., and Brix, K. (2011). Cathepsin B trafficking in thyroid carcinoma cells. Thyroid Res. 4, Suppl. 1, S2.Search in Google Scholar
Tribolium Genome Sequencing Consortium, Richards, S., Gibbs, R.A., Weinstock, G.M., Brown, S.J., Denell, R., Beeman, R.W., Gibbs, R., Brown, S.J., Friedrich, M., et al. (2008). The genome of the model beetle and pest Tribolium castaneum. Nature452, 949–955.Search in Google Scholar
Turk, B. (2006). Targeting proteases: successes, failures and prospects. Nat. Rev. Drug Discov. 5, 785–799.Search in Google Scholar
Turk, V., Turk, B., and Turk, D. (2001). Lysosomal cysteine proteases: facts and opportunities. EMBO J. 20, 4629–4633.Search in Google Scholar
Vasiljeva, O., Papazoglou, A., Kruger, A., Brodoefel, H., Korovin, M., Deussing, J., Augustin, N., Nielsen, B.S., Almholt, K., Bogyo, M., et al. (2006). Tumor cell-derived and macrophage-derived cathepsin B promotes progression and lung metastasis of mammary cancer. Cancer Res. 66, 5242–5250.Search in Google Scholar
Vasiljeva, O., Reinheckel, T., Peters, C., Turk, D., Turk, V., and Turk, B. (2007). Emerging roles of cysteine cathepsins in disease and their potential as drug targets. Curr. Pharm. Des. 13, 387–403.Search in Google Scholar
Vreemann, A., Qu, H., Mayer, K., Andersen, L.B., Stefana, M.I., Wehner, S., Lysson, M., Farcas, A.M., Peters, C., Reinheckel, T., et al. (2009). Cathepsin B release from rodent intestine mucosa due to mechanical injury results in extracellular matrix damage in early post-traumatic phases. Biol. Chem. 390, 481–492.Search in Google Scholar
Yano, M., Hirai, K., Naito, Z., Yokoyama, M., Ishiwata, T., Shiraki, Y., Inokuchi, M., and Asano, G. (2001). Expression of cathepsin B and cystatin C in human breast cancer. Surg. Today. 31, 385–389.Search in Google Scholar
©2014 by De Gruyter
Articles in the same Issue
- Frontmatter
- Guest Editorial
- Highlight: The protease web
- Angiotensin-I converting enzyme (ACE): structure, biological roles, and molecular basis for chloride ion dependence
- Non-B HIV-1 subtypes in sub-Saharan Africa: impact of subtype on protease inhibitor efficacy
- Inflammatory outcomes of apoptosis, necrosis and necroptosis
- Angiotensin-converting enzyme overexpression in myelocytes enhances the immune response
- The leader proteinase of foot-and-mouth disease virus: structure-function relationships in a proteolytic virulence factor
- Immune-modulating effects of alpha-1 antitrypsin
- Mammalian gamete fusion depends on the inhibition of ovastacin by fetuin-B
- The activity and localization patterns of cathepsins B and X in cells of the mouse gastrointestinal tract differ along its length
- Membrane-type I matrix metalloproteinase-dependent ectodomain shedding of mucin16/ CA-125 on ovarian cancer cells modulates adhesion and invasion of peritoneal mesothelium
- Homology model of human prothrombinase based on the crystal structure of Pseutarin C
- Specific targeting of human caspases using designed ankyrin repeat proteins
- Analysis of the evolution of granule associated serine proteases of immune defence (GASPIDs) suggests a revised nomenclature
Articles in the same Issue
- Frontmatter
- Guest Editorial
- Highlight: The protease web
- Angiotensin-I converting enzyme (ACE): structure, biological roles, and molecular basis for chloride ion dependence
- Non-B HIV-1 subtypes in sub-Saharan Africa: impact of subtype on protease inhibitor efficacy
- Inflammatory outcomes of apoptosis, necrosis and necroptosis
- Angiotensin-converting enzyme overexpression in myelocytes enhances the immune response
- The leader proteinase of foot-and-mouth disease virus: structure-function relationships in a proteolytic virulence factor
- Immune-modulating effects of alpha-1 antitrypsin
- Mammalian gamete fusion depends on the inhibition of ovastacin by fetuin-B
- The activity and localization patterns of cathepsins B and X in cells of the mouse gastrointestinal tract differ along its length
- Membrane-type I matrix metalloproteinase-dependent ectodomain shedding of mucin16/ CA-125 on ovarian cancer cells modulates adhesion and invasion of peritoneal mesothelium
- Homology model of human prothrombinase based on the crystal structure of Pseutarin C
- Specific targeting of human caspases using designed ankyrin repeat proteins
- Analysis of the evolution of granule associated serine proteases of immune defence (GASPIDs) suggests a revised nomenclature