Abstract
Matriptase-2 is a type II transmembrane serine protease controlling the expression of hepcidin, the key regulator of iron homeostasis. By cleaving hemojuvelin, matriptase-2 suppresses bone morphogenetic protein/sons of mothers against decapentaplegic signaling. So far, the only known putative substrates of matriptase-2 are hemojuvelin and matriptase-2 itself. In this study, fetuin-A (α2-Heremans-Schmid glycoprotein) was identified in vitro as a substrate of matriptase-2. The protease–substrate interaction was validated by isolating matriptase-2 via the affinity to fetuin-A. Fetuin-A is a liver-derived plasma protein with multiple functions, which is proteolytically processed to yield a disulfide-linked two-chain form. In co-transfected cells, a matriptase-2-dependent conversion of unprocessed fetuin-A into a two-chain form was detected. Conversely, downregulation of endogenously expressed matriptase-2 stabilized fetuin-A. Arg and Lys residues located within the 40 residue spanning connecting peptide of fetuin-A were identified as cleavage sites for matriptase-2. Analysis of hepcidin expression revealed an inductive effect of fetuin-A, which was abolished by matriptase-2. Fetuin-A deficiency in mice resulted in decreased hepcidin mRNA levels. These findings implicate a role of fetuin-A in iron homeostasis and provide new insights into the mechanism of how matriptase-2 might modulate hepcidin expression.
Acknowledgments
M.S. is supported by Deutsche Forschungsgemeinschaft Grant STI 660/1-1. E.M. was supported by a fellowship from Bayer HealthCare Pharmaceuticals, Wuppertal, Germany. We thank Dr Paolo Arosio (Università degli Studi di Brescia, Italy) for providing the HJV antibody.
References
Cayatte, A.J., Kumbla, L., and Subbiah, M.T. (1990). Marked acceleration of exogenous fatty acid incorporation into cellular triglycerides by fetuin. J. Biol. Chem. 265, 5883–5888.10.1016/S0021-9258(19)39445-1Search in Google Scholar
Demetriou, M., Binkert, C., Sukhu, B., Tenenbaum, H.C., and Dennis, J.W. (1996). Fetuin/alpha2-HS glycoprotein is a transforming growth factor-beta type II receptor mimic and cytokine antagonist. J. Biol. Chem. 271, 12755–12761.10.1074/jbc.271.22.12755Search in Google Scholar PubMed
Du, X., She, E., Gelbart, T., Truksa, J., Lee, P., Xia, Y., Khovananth, K., Mudd, S., Mann, N., Moresco, E.M., et al. (2008). The serine protease TMPRSS6 is required to sense iron deficiency. Science 320, 1088–1092.10.1126/science.1157121Search in Google Scholar PubMed PubMed Central
Enns, C.A., Ahmed, R., and Zhang, A.S. (2012). Neogenin interacts with matriptase-2 to facilitate hemojuvelin cleavage. J. Biol. Chem. 287, 35104–35117.10.1074/jbc.M112.363937Search in Google Scholar PubMed PubMed Central
Evan, G.I., Lewis, G.K., Ramsay, G., and Bishop, J.M. (1985). Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol. Cell. Biol. 5, 3610–3616.Search in Google Scholar
Farady, C.J. and Craik, C.S. (2010). Mechanisms of macromolecular protease inhibitors. Chembiochem 11, 2341–2346.10.1002/cbic.201000442Search in Google Scholar PubMed PubMed Central
Finberg, K.E. (2013). Striking the target in iron overload disorders. J. Clin. Invest. 123, 1424–1427.10.1172/JCI68889Search in Google Scholar PubMed PubMed Central
Finberg, K.E., Heeney, M.M., Campagna, D.R., Aydinok, Y., Pearson, H.A., Hartman, K.R., Mayo, M.M., Samuel, S.M., Strouse, J.J., Markianos, K., et al. (2008). Mutations in TMPRSS6 cause iron-refractory iron deficiency anemia (IRIDA). Nat. Genet. 40, 569–571.10.1038/ng.130Search in Google Scholar PubMed PubMed Central
Finberg, K.E., Whittlesey, R.L., Fleming, M.D., and Andrews, N.C. (2010). Down-regulation of Bmp/Smad signaling by Tmprss6 is required for maintenance of systemic iron homeostasis. Blood 115, 3817–3826.10.1182/blood-2009-05-224808Search in Google Scholar PubMed PubMed Central
Finberg, K.E., Whittlesey, R.L., and Andrews, N.C. (2011). Tmprss6 is a genetic modifier of the Hfe-hemochromatosis phenotype in mice. Blood 117, 4590–4599.10.1182/blood-2010-10-315507Search in Google Scholar PubMed PubMed Central
Folgueras, A.R., de Lara, F.M., Pendas, A.M., Garabaya, C., Rodriguez, F., Astudillo, A., Bernal, T., Cabanillas, R., Lopez-Otin, C., and Velasco, G. (2008). Membrane-bound serine protease matriptase-2 (Tmprss6) is an essential regulator of iron homeostasis. Blood 112, 2539–2545.10.1182/blood-2008-04-149773Search in Google Scholar PubMed
Gejyo, F., Chang, J.L., Bürgi, W., Schmid, K., Offner, G.D., Troxler, R.F., Van Halbeek, H., Dorland, L., Gerwig, G.J., and Vliegenthart, J.F. (1983). Characterization of the B-chain of human plasma alpha 2HS-glycoprotein. The complete amino acid sequence and primary structure of its heteroglycan. J. Biol. Chem. 258, 4966–4971.10.1016/S0021-9258(18)32522-5Search in Google Scholar
Goustin, A.S. and Abou-Samra, A.B. (2011). The ‘thrifty’ gene encoding Ahsg/Fetuin-A meets the insulin receptor: insights into the mechanism of insulin resistance. Cell. Signal. 23, 980–990.10.1016/j.cellsig.2010.11.003Search in Google Scholar
Graham, F.L., Smiley, J., Russell, W.C., and Nairn, R. (1977). Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J. Gen. Virol. 36, 59–74.10.1099/0022-1317-36-1-59Search in Google Scholar
Haglund, A.C., Ek, B., and Ek, P. (2001). Phosphorylation of human plasma alpha2-Heremans-Schmid glycoprotein (human fetuin) in vivo. Biochem. J. 357, 437–445.10.1042/bj3570437Search in Google Scholar
Heiss, A., DuChesne, A., Denecke, B., Grotzinger, J., Yamamoto, K., Renne, T., and Jahnen-Dechent, W. (2003). Structural basis of calcification inhibition by alpha 2-HS glycoprotein/fetuin-A. Formation of colloidal calciprotein particles. J. Biol. Chem. 278, 13333–13341.10.1074/jbc.M210868200Search in Google Scholar
Jahnen-Dechent, W., Trindl, A., Godovac-Zimmermann, J., and Müller-Esterl, W. (1994). Posttranslational processing of human α2-HS glycoprotein (human fetuin). Evidence for the production of a phosphorylated single-chain form by hepatoma cells. Eur. J. Biochem. 226, 59–69.10.1111/j.1432-1033.1994.tb20026.xSearch in Google Scholar
Jahnen-Dechent, W., Schinke, T., Trindl, A., Müller-Esterl, W., Sablitzky, F., Kaiser, S., and Blessing, M. (1997). Cloning and targeted deletion of the mouse fetuin gene. J. Biol. Chem. 272, 31496–31503.10.1074/jbc.272.50.31496Search in Google Scholar
Jahnen-Dechent, W., Heiss, A., Schäfer, C., and Ketteler, M. (2011). Fetuin-A regulation of calcified matrix metabolism. Circ. Res. 108, 1494–1509.10.1161/CIRCRESAHA.110.234260Search in Google Scholar
Jefferson, T., Auf dem Keller, U., Bellac, C., Metz, V.V., Broder, C., Hedrich, J., Ohler, A., Maier, W., Magdolen, V., Sterchi, E., et al. (2013). The substrate degradome of meprin metalloproteases reveals an unexpected proteolytic link between meprin beta and ADAM10. Cell. Mol. Life Sci. 70, 309–333.10.1007/s00018-012-1106-2Search in Google Scholar
Kellermann, J., Haupt, H., Auerswald, E.A., and Müller-Esterl, W. (1989). The arrangement of disulfide loops in human α2-HS glycoprotein. Similarity to the disulfide bridge structures of cystatins and kininogens. J. Biol. Chem. 264, 14121–14128.10.1016/S0021-9258(18)71651-7Search in Google Scholar
Kübler, D., Gosenca, D., Wind, M., Heid, H., Friedberg, I., Jahnen-Dechent, W., and Lehmann, W.D. (2007). Proteolytic processing by matrix metalloproteinases and phosphorylation by protein kinase CK2 of fetuin-A, the major globulin of fetal calf serum. Biochimie 89, 410–418.10.1016/j.biochi.2006.10.012Search in Google Scholar PubMed
Kumbla, L., Cayatte, A.J., and Subbiah, M.T. (1989). Association of a lipoprotein-like particle with bovine fetuin. FASEB J. 3, 2075–2080.10.1096/fasebj.3.9.2472993Search in Google Scholar PubMed
Kumbla, L., Bhadra, S., and Subbiah, M.T. (1991). Multifunctional role for fetuin (fetal protein) in lipid transport. FASEB J. 5, 2971–2975.10.1096/fasebj.5.14.1721594Search in Google Scholar PubMed
Lee, C.C., Bowman, B.H., and Yang. F.M. (1987). Human alpha 2-HS-glycoprotein: the A and B chains with a connecting sequence are encoded by a single mRNA transcript. Proc. Natl. Acad. Sci. USA 84, 4403–4407.10.1073/pnas.84.13.4403Search in Google Scholar PubMed PubMed Central
Lee, C., Bongcam-Rudloff, E., Söllner, C., Jahnen-Dechent, W., and Claesson-Welsh, L. (2009). Type 3 cystatins; fetuins, kininogen and histidine-rich glycoprotein. Front. Biosci. 14, 2911–2922.10.2741/3422Search in Google Scholar PubMed
Li, W., Zhu, S., Li, J., Huang, Y., Zhou, R., Fan, X., Yang, H., Gong, X., Eissa, N.T., Jahnen-Dechent, W., et al. (2011). A hepatic protein, fetuin-A, occupies a protective role in lethal systemic inflammation. PLoS One 6, e16945.10.1371/journal.pone.0016945Search in Google Scholar PubMed PubMed Central
Mathews, S.T., Singh, G.P., Ranalletta, M., Cintron, V.J., Qiang, X., Goustin, A.S., Jen, K.L., Charron, M.J., Jahnen-Dechent, W., and Grünberger, G. (2002). Improved insulin sensitivity and resistance to weight gain in mice null for the Ahsg gene. Diabetes 51, 2450–2458.10.2337/diabetes.51.8.2450Search in Google Scholar PubMed
Maurer, E., Gütschow, M., and Stirnberg, M. (2013). Hepatocyte growth factor activator inhibitor type 2 (HAI-2) modulates hepcidin expression by inhibiting the cell surface protease matriptase-2. Biochem. J. 450, 583–593.10.1042/BJ20121518Search in Google Scholar PubMed
Maxson, J.E., Chen, J., Enns, C.A., and Zhang, A.S. (2010). Matriptase-2- and proprotein convertase-cleaved forms of hemojuvelin have different roles in the down-regulation of hepcidin expression. J. Biol. Chem. 285, 39021–39028.10.1074/jbc.M110.183160Search in Google Scholar PubMed PubMed Central
Merx, M.W., Schäfer, C., Westenfeld, R., Brandenburg, V., Hidajat, S., Weber, C., Ketteler, M., and Jahnen-Dechent, W. (2005). Myocardial stiffness, cardiac remodeling, and diastolic dysfunction in calcification-prone fetuin-A-deficient mice. J. Am. Soc. Nephrol. 16, 3357–3364.10.1681/ASN.2005040365Search in Google Scholar PubMed
Muckenthaler, M.U. (2008). Fine tuning of hepcidin expression by positive and negative regulators. Cell. Metab. 8, 1–3.10.1016/j.cmet.2008.06.009Search in Google Scholar PubMed
Nai, A., Pagani, A., Mandelli, G., Lidonnici, M.R., Silvestri, L., Ferrari, G., and Camaschella, C. (2012). Deletion of TMPRSS6 attenuates the phenotype in a mouse model of β-thalassemia. Blood 119, 5021–5029.10.1182/blood-2012-01-401885Search in Google Scholar PubMed PubMed Central
Nawratil, P., Lenzen, S., Kellermann, J., Haupt, H., Schinke, T., Müller-Esterl, W., and Jahnen-Dechent, W. (1996). Limited proteolysis of human α2-HS glycoprotein/fetuin. Evidence that a chymotryptic activity can release the connecting peptide. J. Biol. Chem. 271, 31735–31741.10.1074/jbc.271.49.31735Search in Google Scholar PubMed
Ochieng, J., Warfield, P., and Green, B. (1995). Interactions of gelatinases with soluble and immobilized fetuin and asialofetuin. Arch. Biochem. Biophys. 322, 250–255.10.1006/abbi.1995.1459Search in Google Scholar PubMed
Pal, D., Dasgupta, S., Kundu, R., Maitra, S., Das, G., Mukhopadhyay, S., Ray, S., Majumdar, S.S., and Bhattacharya, S. (2012). Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance. Nat. Med. 18, 1279–1285.10.1038/nm.2851Search in Google Scholar PubMed
Pederson, K.O. (1944). Fetuin, a new globulin isolated from serum. Nature 154: 575–575.Search in Google Scholar
Reynolds, J.L., Skepper, J.N., McNair, R., Kasama, T., Gupta, K., Weissberg, P.L., Jahnen-Dechent, W., and Shanahan, C.M. (2005). Multifunctional roles for serum protein fetuin-A in inhibition of human vascular smooth muscle cell calcification. J. Am. Soc. Nephrol. 16, 2920–2930.10.1681/ASN.2004100895Search in Google Scholar PubMed
Schäfer, C., Heiss, A., Schwarz, A., Westenfeld, R., Ketteler, M., Floege, J., Müller-Esterl, W., Schinke, T., and Jahnen-Dechent, W. (2003). The serum protein α2-Heremans-Schmid glycoprotein/fetuin-A is a systemically acting inhibitor of ectopic calcification. J. Clin. Invest. 112, 357–366.10.1172/JCI17202Search in Google Scholar PubMed PubMed Central
Schinke, T., Amendt, C., Trindl, A., Poschke, O., Müller-Esterl, W., and Jahnen-Dechent, W. (1996). The serum protein α2-HS glycoprotein/fetuin inhibits apatite formation in vitro and in mineralizing calvaria cells. A possible role in mineralization and calcium homeostasis. J. Biol. Chem. 271, 20789–20796.10.1074/jbc.271.34.20789Search in Google Scholar PubMed
Silvestri, L. (2013). Inhibiting the hepcidin inhibitor for treatment of iron overload. Blood 121, 1068–1069.10.1182/blood-2012-12-472597Search in Google Scholar PubMed
Silvestri, L., Pagani, A., Fazi, C., Gerardi, G., Levi, S., Arosio, P., and Camaschella, C. (2007). Defective targeting of hemojuvelin to plasma membrane is a common pathogenetic mechanism in juvenile hemochromatosis. Blood 109, 4503–4510.10.1182/blood-2006-08-041004Search in Google Scholar PubMed
Silvestri, L., Pagani, A., Nai, A., De Domenico, I., Kaplan, J., and Camaschella, C. (2008). The serine protease matriptase-2 (TMPRSS6) inhibits hepcidin activation by cleaving membrane hemojuvelin. Cell. Metab. 8, 502–511.10.1016/j.cmet.2008.09.012Search in Google Scholar
Stirnberg, M. and Gütschow, M. (2013). Matriptase-2, a regulatory protease of iron homeostasis: possible substrates, cleavage sites and inhibitors. Curr. Pharm. Des. 19, 1052–1061.Search in Google Scholar
Stirnberg, M., Maurer, E., Horstmeyer, A., Kolp, S., Frank, S., Bald, T., Arenz, K., Janzer, A., Prager, K., Wunderlich, P., et al. (2010). Proteolytic processing of the serine protease matriptase-2: identification of the cleavage sites required for its autocatalytic release from the cell surface. Biochem. J. 430, 87–95.10.1042/BJ20091565Search in Google Scholar
Szweras, M., Liu, D., Partridge, E.A., Pawling, J., Sukhu, B., Clokie, C., Jahnen-Dechent, W., Tenenbaum, H.C., Swallow, C.J., Grynpas, M.D., et al. (2002). alpha 2-HS glycoprotein/fetuin, a transforming growth factor-β/bone morphogenetic protein antagonist, regulates postnatal bone growth and remodeling. J. Biol. Chem. 277, 19991–19997.10.1074/jbc.M112234200Search in Google Scholar
Velasco, G., Cal, S., Quesada, V., Sanchez, L.M., and Lopez-Otin, C. (2002). Matriptase-2, a membrane-bound mosaic serine proteinase predominantly expressed in human liver and showing degrading activity against extracellular matrix proteins. J. Biol. Chem. 277, 37637–37646.10.1074/jbc.M203007200Search in Google Scholar
Yamamoto, K. and Sinohara, H. (1993). Isolation and characterization of mouse countertrypin, a new trypsin inhibitor belonging to the mammalian fetuin family. J. Biol. Chem. 268, 17750–17753.10.1016/S0021-9258(17)46768-8Search in Google Scholar
Yoshida, K., Suzuki, Y., Yamamoto, K., and Sinohara, H. (1996). Cystatin-like domain of mouse countertrypin, a member of mammalian fetuin family, is responsible for the inhibition of trypsin. Evidence from site-directed mutagenesis. Biochem. Mol. Biol. Int. 39, 1023–1028.10.1080/15216549600201182Search in Google Scholar
Yoshioka, Y., Gejyo, F., Marti, T., Rickli, E.E., Bürgi, W., Offner, G.D., Troxler, R.F., and Schmid, K. (1986). The complete amino acid sequence of the A-chain of human plasma α2HS-glycoprotein. J. Biol. Chem. 261, 1665–1676.10.1016/S0021-9258(17)35992-6Search in Google Scholar
Zhang, A.S. (2010). Control of systemic iron homeostasis by the hemojuvelin-hepcidin axis. Adv. Nutr. 1, 38–45.10.3945/an.110.1009Search in Google Scholar PubMed PubMed Central
Zhao, N., Zhang, A.S., and Enns, C.A. (2013). Iron regulation by hepcidin. J. Clin. Invest. 123, 2337–2343.10.1172/JCI67225Search in Google Scholar PubMed PubMed Central
Supplemental Material
The online version of this article (DOI: 10.1515/hsz-2014-0120) offers supplementary material, available to authorized users.
©2014 by De Gruyter
Articles in the same Issue
- Frontmatter
- Reviews
- Cholesterol lowering: role in cancer prevention and treatment
- The role of the Mpv17 protein mutations of which cause mitochondrial DNA depletion syndrome (MDDS): lessons from homologs in different species
- Research Articles/Short Communications
- Genes and Nucleic Acids
- Identification of a novel PHEX mutation in a Chinese family with X-linked hypophosphatemic rickets using exome sequencing
- Protein Structure and Function
- Complement activation by salivary agglutinin is secretor status dependent
- Synthesis, biological evaluation, and docking studies of PAR2-AP-derived pseudopeptides as inhibitors of kallikrein 5 and 6
- Membranes, Lipids, Glycobiology
- Recombinant HDL (Milano) protects endotoxin-challenged rats from multiple organ injury and dysfunction
- Cell Biology and Signaling
- miR-126 regulates platelet-derived growth factor receptor-α expression and migration of primary human osteoblasts
- Legumain expression, activity and secretion are increased during monocyte-to-macrophage differentiation and inhibited by atorvastatin
- Proteolysis
- Cell surface serine protease matriptase-2 suppresses fetuin-A/AHSG-mediated induction of hepcidin
Articles in the same Issue
- Frontmatter
- Reviews
- Cholesterol lowering: role in cancer prevention and treatment
- The role of the Mpv17 protein mutations of which cause mitochondrial DNA depletion syndrome (MDDS): lessons from homologs in different species
- Research Articles/Short Communications
- Genes and Nucleic Acids
- Identification of a novel PHEX mutation in a Chinese family with X-linked hypophosphatemic rickets using exome sequencing
- Protein Structure and Function
- Complement activation by salivary agglutinin is secretor status dependent
- Synthesis, biological evaluation, and docking studies of PAR2-AP-derived pseudopeptides as inhibitors of kallikrein 5 and 6
- Membranes, Lipids, Glycobiology
- Recombinant HDL (Milano) protects endotoxin-challenged rats from multiple organ injury and dysfunction
- Cell Biology and Signaling
- miR-126 regulates platelet-derived growth factor receptor-α expression and migration of primary human osteoblasts
- Legumain expression, activity and secretion are increased during monocyte-to-macrophage differentiation and inhibited by atorvastatin
- Proteolysis
- Cell surface serine protease matriptase-2 suppresses fetuin-A/AHSG-mediated induction of hepcidin