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Abstract: Biological membranes consist of fluid bilayers
with many lipid and protein components. This fluidity
implies a high flexibility that allows the membranes to
attain a large variety of different shapes. One important
shape parameter is the spontaneous curvature, which
describes the asymmetry between the two leaflets of a
bilayer and can be changed by adsorption of ‘particles’ such
as ions or proteins from the aqueous phases. Membrane
fluidity also implies that the membranes can change their
local composition via lateral diffusion and form intramem-
brane compartments. Two mechanisms for the formation
of such compartments can be distinguished: membrane
segmentation arising from structured environments and
domain formation as a result of phase separation within the
membranes. The interplay between these two mechanisms
provides a simple and generic explanation for the difficulty
to observe phase domains in vivo. Intramembrane domains
can form new membrane compartments via budding and
tubulation processes. Which of these two processes actu-
ally occurs depends on the fluid-elastic properties of the
domains, on the adsorption kinetics, and on external con-
straints arising, e.g., from the osmotic conditions. Vesicles
are predicted to unbind from adhesive surfaces via tubula-
tion when the spontaneous curvature of their membranes
exceeds a certain threshold value.
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Introduction

The primary function of biological membranes is to
partition space into different compartments. Thus, all

eukaryotic cells contain many membrane-bound orga-
nelles and vesicles in addition to their outer cell mem-
branes. The corresponding membrane architecture is
dynamic and continuously remodeled by budding and
fission processes that create new vesicles from donor
membranes and by adhesion and fusion processes that
incorporate vesicles into acceptor membranes.

These remodeling processes directly reflect the mem-
branes’ molecular design, which is based on fIuid bilayers
that are formed by a complex mixture of lipids and ‘deco-
rated’ by many proteins. Lipid bilayers are very thin, with
a thickness of a few nanometers, but their lateral exten-
sion can vary from tens of nanometers to many hundreds
of microns or even macroscopic dimensions. If we labeled
any two neighboring lipids or proteins in such a bilayer,
we would observe these molecules to move apart relatively
fast, covering a few nanometers within a few nanoseconds.

Lipid/protein bilayers form closed surfaces in order to
avoid hydrophobic edges. In this way, each bilayer mem-
brane defines two compartments, an interior and an exte-
rior one. In vivo, these two compartments usually have
a complex spatial organization, which implies that any
given membrane is typically exposed to different aqueous
or macromolecular environments. The membrane mole-
cules can adapt to these different environments by lateral
diffusion along the fluid membranes and, in this manner,
form distinct membrane segments that differ in their lipid/
protein composition. In addition, such compartments
can also arise from lateral phase separation and domain
formation within the membranes. Whereas ambience-
induced segmentation of membranes is governed by the
molecular interactions between the membranes and their
environments, intramembrane domains arise from the
interactions between the different membrane molecules.

The fluidity of the bilayer membranes is also respon-
sible for their remarkable flexibility, which allows them to
attain a large variety of different shapes and to undergo
a multitude of morphological transformations between
these shapes. Thus, whenever we observe such trans-
formations in the optical microscope, i.e., on the micron
scale, we obtain direct evidence for the membranes’ fluid-
ity on the molecular scale.
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About 20 years ago, a systematic comparison between
theory and experiment has shown that the polymor-
phism of lipid bilayers in their fluid state can be under-
stood in terms of a few elastic properties (Berndl et al.,
1990; Lipowsky, 1991; Seifert et al., 1991; Miao et al., 1994;
Débereiner et al., 1997). Because the lipids prefer to stay
in a state of optimal molecular packing, the membrane
area is essentially constant during all shape transforma-
tions that do not lead to membrane rupture. These trans-
formations are then governed by bending deformations,
which change the membrane curvature and depend pri-
marily on two fluid-elastic parameters (Helfrich, 1973):
the membrane’s spontaneous curvature, which represents
the preferred curvature of the membrane and reflects the
asymmetry between the two leaflets of the bilayer, and
its bending rigidity, which describes the resistance of the
membrane to bend away from its preferred curvature.

So far, the polymorphism of reconstituted membranes
consisting of many lipids and proteins has not been inves-
tigated by systematic experimental studies, but from a
theoretical point of view, these membranes can again be
characterized by their spontaneous curvature and their
bending rigidity as long as they remain in a fluid state. In
vivo, these fluid lipid/protein membranes are often exposed
to solid-like structures such as polymerized protein cages
or cytoskeletal filaments that exert localized forces onto
the membranes. Such forces may also be coupled to active
processes involving nucleotide hydrolysis. One example
is provided by the concentric patterns of intramembrane
domains as observed in the immunological synapse, a
pattern that requires active cytoskeletal transport (Weikl
and Lipowsky, 2004; Choudhuri and Dustin, 2010). Another
example is provided by molecular motors that generate
membrane nanotubes from large membranes as observed
in vitro (Koster et al., 2003; Leduc et al., 2004).

In this paper, I will focus on some simple and generic
consequences of membrane fluidity for the remodeling
of membrane compartments. The paper is organized as
follows. The second section emphasizes the coopera-
tive nature of membrane curvature, explains the precise
meaning of this curvature, and introduces the basic fluid-
elastic parameters, spontaneous curvature and bending
rigidity. The third section describes the generation of spon-
taneous curvature by asymmetric binding of molecules
from the surrounding aqueous compartments. At the end
of this section, I consider the binding of BAR-mimetic
nanoparticles in order to clarify the distinction between
curvature generation and curvature sensing. In the fourth
section, another consequence of membrane fluidity is con-
sidered: the formation of intramembrane compartments
by ambience-induced segmentation and phase separation
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within the membranes. It is explained that intramembrane
domain formation via phase separation should always
be confined to single ambience-induced membrane seg-
ments. The fifth and sixth sections address the forma-
tion of membrane compartments via domain-induced
budding and tubulation. For these processes, the size of
the new compartments is controlled locally by the fluid-
elastic properties and the lateral size of the membrane
domains. Which of the two processes, budding or tubula-
tion, actually occurs depends on the elastic properties of
the domain, on the line tension of the domain boundary,
on the adsorption kinetics, and on the presence or absence
of external constraints arising, e.g., from the osmotic con-
ditions and adhesive environments. It is also argued that
adhering vesicles undergo tubulation when the sponta-
neous curvature induced by asymmetric adsorption from
the two aqueous compartments exceeds a certain thresh-
old value. Experimental methods to actually measure the
spontaneous curvature are briefly reviewed in the seventh
section, where the recently introduced method based on
aqueous two-phase systems is emphasized. The paper con-
cludes with a short summary and outlook.

Qualitative and quantitative
aspects of curvature

The cooperative nature of membrane
curvature

Curvature is a geometric concept, originally developed by
mathematicians to characterize the shape of smooth sur-
faces. Membranes appear to be rather smooth when viewed
in the optical microscope, but this smoothness does not
persist to molecular scales. Indeed, because membranes are
immersed in liquid water, each lipid and protein molecule
within the membrane undergoes Brownian motion, which
involves displacements both parallel and perpendicular to
the membrane. The perpendicular displacements repre-
sent molecular protrusions that roughen the two interfaces
bounding the membrane (see Figure 1). Therefore, in order
to characterize a lipid/protein bilayer by its curvature, one
has to consider small membrane patches and average over
the molecular conformations within these patches. The
minimal lateral size of these patches can be determined
from the analysis of molecular dynamics simulations and
was found to be about 1.5 times the membrane thickness
(see Figure 1) (Goetz et al., 1999). For a lipid bilayer with a
thickness of 4 nm, this minimal size is about 6 nm.
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Figure1 Typical conformation of a lipid bilayer as observed in
molecular dynamics simulations. The bilayer has a thickness of
about 4 nm and is bounded by two interfaces that are roughened
by molecular protrusions, which displace the head groups (open
squares) perpendicular to the membrane. In order to character-
ize such a membrane by its curvature, one has to average over
membrane patches with a lateral size that exceeds about 1.5 times
the bilayer thickness, as follows from the spectral analysis of the
membrane’s shape fluctuations (Goetz et al., 1999).

A lipid bilayer patch with a lateral size of 6 nm con-
tains about 80-100 lipid molecules. Therefore, membrane
curvature should be viewed as a supramolecular feature
arising from the collective behavior of a large number of
lipid molecules. The same conclusion applies to the spon-
taneous curvature of membranes as discussed in the fol-
lowing sections.

Symmetric and asymmetric membranes

The lipid bilayer displayed in Figure 1 is symmetric in the
sense that it consists of two leaflets that have the same
molecular composition and are exposed to the same
aqueous solutions on both sides of the membrane. In
real systems, such symmetric membranes are somewhat
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exceptional, but they provide a useful reference system
because their elastic properties are governed by a single
elastic parameter, the bending rigidity « that provides the
basic energy scale. For phospholipid bilayers, the latter
scale is of the order of 10" ], which is about 20 kT at room
temperature.

Real membranes are typically asymmetric. This asym-
metry may arise from a different lipid composition of
the two leaflets as found in all biomembranes. Likewise,
membrane proteins in biological membranes have a pre-
ferred orientation, which also contributes to the bilayer
asymmetry. In addition, membranes can acquire such an
asymmetry from their environment as provided by the
exterior and interior aqueous compartments. Indeed, the
membranes become asymmetric when these two compart-
ments contain different concentrations of ions, small mol-
ecules, and/or proteins.

On length scales that exceed the membrane thick-
ness, the asymmetry of the membranes can be described
in terms of another elastic parameter, the spontaneous
curvature m. It is important to note that this curvature can
be positive or negative. In order to define the sign of m in
an unambiguous manner, we use the convention that the
spontaneous curvature is positive if the membrane prefers
to bulge toward the exterior compartment (see Figure 2A),
whereas a membrane with negative spontaneous cur-
vature prefers to bulge toward the interior compartment
(see Figure 2C). The intuitive notion of curvature prefer-
ence was originally discussed in the context of surfactant
monolayers by Bancroft and Tucker (1927), included in the
curvature elasticity of liquid crystals by Frank (1958), and
introduced for lipid bilayers by Helfrich (1973). In order
to describe this curvature preference in a quantitative
manner, we need to define the membrane curvature in a
more precise way, which requires a short excursion into
differential geometry.
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Figure 2 Asymmetric binding of small particles such as ions or small molecules to a membrane generates a spontaneous curvature min
this membrane. The membrane prefers to bulge toward the compartment, that leads to a larger number of adsorbed particles per unit area
(Lipowsky and Dobereiner, 1998). It is important to note that the spontaneous curvature m can be positive or negative. In order to define
this sign in an unambiguous manner, we use the convention that the spontaneous curvature is positive if the membrane prefers to bulge
toward the exterior compartment as in (A) but negative if it prefers to bulge toward the interior compartment as in (C). If the membrane can
actually adapt to the spontaneous curvature, its mean curvature M satisfies M=m.
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Mathematical excursion: mean curvature M

For each point on a smooth surface, we consider the normal
vector, i.e., the unit vector perpendicular to the membrane
surface, that points toward the exterior compartment.
Now, any plane that contains both the chosen point and
this normal vector defines a so-called normal section of
the membrane surface (see Figure 3A). The intersection
between the surface and such a normal section represents
a cross-sectional curve through the chosen point with a
certain curvature C at this point. We define this curvature
to be positive if the cross-sectional curve bulges toward
the exterior compartment as in Figure 3A. Now, let us
rotate the normal section around the normal vector. As a
result of this rotation, the cross-sectional curve through
the chosen point changes and so does the curvature C.
As we change the rotation angle between 0 and 360°, the
latter curvature varies over a certain range as given by
C...<C<C_ .Thetwo extremal values C_, and C___define
the so-called principal curvatures at the chosen point.
The two principal curvatures may again be positive
and negative, depending on whether the cross-sectional
curve bulges toward the exterior or interior compartment
(compare Figure 2). Furthermore, any saddle point is char-
acterized by opposite signs of the two principal curvatures.
For fluid membranes as considered here, the mole-
cules diffuse laterally along the membrane, which implies
that the membrane surface should be described in terms
of geometric quantities that do not depend on the choice
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of the surface coordinates. Only two such quantities exist,
the mean curvature

M%(c ) 1)

min max

and the Gaussian curvature as given by C , C . In the
following, I will focus on shape transformations that do
not change the topology of the membranes, which implies
that we can ignore the Gaussian curvature (because the
area integral over the Gaussian curvature is shape-inde-
pendent according to the Gauss-Bonnet theorem).

The sign of the mean curvature M depends on the sign
of the two principal curvatures C__and C__ . If both C_
and C__ are positive, i.e., if all cross-sectional curves of
the membrane bulge toward the exterior compartment,
the mean curvature is positive as well. Likewise, the mean
curvature M is negative if all cross-sectional curves of the
membrane bulge toward the interior compartment. At a
saddle point of the membrane surface, where both prin-
cipal curvatures have opposite signs, the mean curvature
M can be positive or negative or even vanish, depending
on the relative magnitude of the two principal curvatures.

In general, the principal curvatures and the mean cur-
vature M are local quantities that vary along the membrane
surface. Some particularly simple shapes are, however,
characterized by constant mean curvature, i.e., all points
on the surface have the same mean curvature. Thus, a
planar membrane has vanishing mean curvature, M=0, a
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Figure 3 The mean curvature M of the membrane is defined via normal sections as in (A) and attains a constant value for the shapes dis-

played in (B, C, D): (A) example for a normal section through the membrane surface (blue): consider a small membrane patch represented
by point P and the normal vector (red) at P that points toward the exterior compartment. A normal section is provided by any plane that
contains both the point P and its normal vector. The intersection between the chosen normal section (orange rectangle) and the membrane
surface defines a cross-sectional curve (purple) along the membrane; (B) necklace of spheres with radius RSp and mean curvature M=1/R5p;
(C) unduloid consisting of lemon-like shapes connected by small necks; and (D) cylinder with radius R, and mean curvature M=1/(2Rcy). The
shapes are axially symmetric with respect to the broken lines. The radii have been chosen in such a way that all three shapes in (B, C, D)
have the same mean curvature M.
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sphere with radius R, has mean curvature Mzil/Rsp, and
a cylinder with radius R, has mean curvature M=+1/ (ZRW)
(see Figure 3B and D). An unduloid as shown in Figure 3C
provides a simple example for a constant mean curvature
surface with small necks, which are characterized by two
principal curvatures with opposite signs. Biological mem-
branes exhibit such necks during budding and after fusion
processes.

Elastic bending energy

The preference of a membrane segment to adapt its mean
curvature M locally to the spontaneous curvature m can
be described quantitatively by the elastic bending energy

&,.=[dA2e(M-m)’, @)

which represents an integral over the area A of the mem-
brane segment.

In the absence of spontaneous curvature, i.e., for
m=0, the elastic energy as given by (2) has a long history in
mathematics. The quadratic expression in the mean curva-
ture was first studied at the beginning of the 19th century
by the French mathematician Germain in the context of
vibrating plates (Dalmédico, 1991). About a hundred years
later, this expression played a prominent role in the work
of the German mathematician Blaschke and his students,
who were particularly interested in its symmetry proper-
ties related to conformal invariance. In the 1960s, the
subject was studied in a systematic manner by the British
mathematician Willmore, and the shapes that minimize
the elastic energy with m=0 are now known as Willmore
surfaces (Willmore, 1982). As previously mentioned, the
notion of a spontaneous curvature m was introduced by
Bancroft and Tucker (1927) in the context of surfactant
monolayers, such a curvature was included in the elastic
splay deformations of liquid crystals by Frank (1958), and
the elastic energy for fluid membranes as described by (2)
with m=0 was first considered by Helfrich (1973).

The elastic bending energy as given by (2) attains its
minimal value when the mean curvature M is equal to the
spontaneous curvature m everywhere on the membrane
surface. The expression (2) also implies that the bending
rigidity « represents a ‘spring constant’ for deviations of
the actual mean curvature M from the spontaneous or pre-
ferred curvature m of the membrane.

Real membranes experience a variety of constraints
that necessarily lead to such deviations of M from m. One
important constraint is provided by the size of the mem-
brane. Ifits area is large compared to 4 7/m?, the membrane
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cannot form a single sphere with radius Rsp=1/ m but could
still form a long cylinder with radius RW:I/ (2m). Another
important constraint arises from the osmotic conditions
that determine the vesicle volume and, thus, the volume-
to-area ratio. If the vesicle volume is increased by osmotic
inflation, it will eventually attain a spherical shape with
mean curvature M=1/Rsp that usually differs from the
spontaneous curvature m of the vesicle membrane. In
fact, for a giant spherical vesicle, the actual mean curva-
ture M:1/Rsp can be quite small compared to the sponta-
neous curvature m and the elastic bending energy of the
vesicle membrane is then equal to the membrane area A
times the spontaneous tension (Lipowsky, 2013)

0=2 Kkm>. 3)

Such a tension will be present in any membrane
segment that has an appreciable spontaneous curvature
m but is forced, via external constraints, to assume a
mean curvature M that is much smaller than m. Note that
xm? is the only intrinsic tension scale that can be formed
from the two bending-elastic parameters x and m.

Asymmetric binding of molecules to
membranes

A generic mechanism for the generation of spontaneous
curvature is provided by exterior and interior compartments
that contain different concentrations of ‘particles’ such as
ions, molecules, and nanoparticles. In general, spontaneous
curvature can arise both from depletion and from adsorp-
tion layers at the two water-membrane surfaces (Lipowsky
and Dobereiner, 1998). In order to simplify the discussion,
I will focus here on the case of asymmetric adsorption or
binding of particles from the two aqueous compartments.
To understand the sign and magnitude of the spontane-
ous curvature induced by asymmetric binding, it is impor-
tant to distinguish different size regimes of the particles.
Particles are considered to be small when their linear size is
smaller than the thickness of one bilayer leaflet, i.e., half the
membrane thickness; they are considered to be large when
their linear size exceeds twice the membrane thickness.

Spontaneous curvature induced by ions or
small molecules

Invivo, membranes are exposed to aqueous solutions that
contain a variety of different ions and small molecules.
Likewise, typical in vitro assays contain some ions and
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small molecules such as glucose as well. These ions and
small molecules do not permeate through the bilayers on
typical experimental time scales and, thus, determine the
osmotic pressures acting on the membranes. In addition,
any asymmetry between the concentrations in the exte-
rior and interior compartments generates a spontaneous
curvature of the membranes (Lipowsky and Ddobereiner,
1998; Lipowsky, 2013).

As a particularly simple example, let us first consider
a single molecular species that is adsorbed onto the mem-
brane or, more precisely, onto the head groups of the two
leaflets, corresponding to the two water-membrane inter-
faces bounding the membrane. One example is provided
by small amphipathic peptides as studied, e.g., in Ref.
(Arouni et al., 2011). Each water-membrane interface can
then be characterized by a certain coverage I', which is
defined by the number of adsorbed particles per unit area.
If the peptide concentration in the exterior compartment
exceeds the concentration in the interior compartment,
the coverage I'_ of adsorbed peptides on the exterior
leaflet exceeds the coverage I', on the interior leaflet (see
Figure 2A). As long as the membrane surfaces are not satu-
rated with adsorbed peptides, this asymmetric adsorption
leads to the spontaneous curvature

k,T

m=—"—
4i

fme( r I‘in ) (4)

ex

which depends on the thermal energy k,T, the bending
rigidity «, and the membrane thickness ¢__. Using typical
values for these different parameters, the expression (4)
leads to the prediction that the spontaneous curvature m
induced by the adsorption of small molecules can be quite
large with a maximal value of about 1/(20 nm) (Lipowsky,
2013). The relation (4) between the spontaneous curva-
ture m and the other system parameters has been recently
confirmed by coarse-grained molecular dynamics simula-
tions (B. Rozycki and R. Lipowsky (2013). Spontaneous
curvature of bilayer membranes from particle-based simu-
lations. in preparation).

The derivation of the expression (4) for the adsorption-
induced spontaneous curvature m is based on the Gibbs
adsorption equation, which contributes the thermal energy
k,T to this expression. Therefore, this simple example
nicely illustrates the cooperative nature of the spontane-
ous curvature. On the other hand, one may also interpret
this expression in terms of contributions of single peptides
as defined by m=k,T¢_/ (lucApep) where A, represents the
average surface area per adsorbed peptide. The expression
(4) can be easily generalized to the adsorption of several
molecular species [see (Lipowsky and Dobereiner, 1998)].
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The adsorption of ions onto membranes depends, in
general, both on the surface charges of the membrane-
water interfaces and on the ionic conditions within the
aqueous compartments. The presumably simplest case is
provided by membranes that are electrically neutral in the
absence of ions. If we now add a salt such as KCl to the
aqueous solution, the binding of one ionic species, say
K*, to the membrane-water interface necessarily leads to
the binding of the other ionic species, in this case CI, as
well. Indeed, in such a situation, the second ionic species
provides the counterions that ensure electroneutral-
ity of the membrane. These counterions may be directly
bound to the membrane-water interface or may form a
loosely bound ionic atmosphere in front of this interface.
Because the precise spatial organization of the ions does
not enter the Gibbs adsorption equation, which represents
a thermodynamic relation, the spontaneous curvature m
induced by this type of ion adsorption is again described
by the expression (4) provided we define the coverages I"
and I, in an appropriate manner. For a 1:1 electrolyte as
provided, e.g., by an aqueous solution of KCl and other
alkali metal chlorides (Klasczyk et al., 2010), these cov-
erages are increased by a factor of 2, which reflects the
simultaneous binding of ions and counterions.

Spontaneous curvature induced by large
molecules

Next, consider large molecules with a size that exceeds twice
the membrane thickness, so that it makes sense to charac-
terize the adjacent membrane patches by their curvature.
One example is provided by flexible chain molecules such
as double-stranded DNA that are anchored to the membrane
(see Figure 4A). Another example is given by BAR-domain
proteins that adhere to the membranes (see Figure 4B).

The bending of the membrane segment adjacent to
such a large molecule increases the elastic bending energy
of the membrane. This elastic energy can be balanced by
two different mechanisms. In the case of a flexible chain
molecule, the bending energy of the membrane is bal-
anced by the entropy of the anchored chain (Lipowsky,
1995). In the case of a BAR-domain protein, the bending
energy is balanced by the binding energy between the
membrane and the protein.

The two examples in Figure 4A and B also differ in
the elastic response of the anchored molecules. A flex-
ible molecule can easily adapt its conformations to the
adjacent membrane in order to maximize its configura-
tional entropy. Thus, in this case, both the chain molecule
and the membrane will be deformed (Lipowsky, 1995;
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Figure 4 Asymmetric binding of large molecules to membranes: (A) Molecular view of a flexible DNA chain anchored to the membrane
(Lipowsky, 1995; Nikolov et al., 2007); (B) molecular view of a BAR-domain protein (Peter et al., 2004; McMahon and Gallop, 2005); and (C)
nanoscopic view of a larger membrane segment where the bound ‘particles’ (purple) may represent flexible chains or BAR-domain proteins.
For a spherical segment, the spontaneous curvature m is positive in all three cases. For a spherical segment, the preferred curvature radius

in (C) is given by 1/m.

Breidenich et al., 2000). A BAR-domain protein, on the
other hand, is believed to be rather rigid and can then
impose its own shape onto the membrane. A whole super-
family of BAR domain proteins has now been identified
(Frost et al., 2009); the example in Figure 4B corresponds
to the amphiphysin N-BAR protein (Peter et al., 2004;
McMahon and Gallop, 2005).

It follows from expression (2) for the elastic bending
energy that this energy is small and of the order of a few
k,T for the membrane patches adjacent to the anchored
molecules. Thus, in the case of a bound BAR-domain
protein, the membrane’s bending energy can be easily
overcompensated by a few noncovalent bonds between
the protein and the membrane.

The banana-like shape of the amphiphysin N-BAR
protein shown in Figure 4B has a membrane-binding
surface with an area A, of about 23 nm’ and a curva-
ture radius R,,, of about 11 nm (Peter et al., 2004). Now,
consider a much larger membrane segment of area A that
adsorbs a certain number N, of such proteins from the
exterior compartment as in Figure 4C. The corresponding
protein coverage is given by I',, =N, ./A. If the membrane
patches between the proteins have a negligible asymme-
try, the overall spontaneous curvature of the membrane
can be obtained from a superposition of the local mem-
brane curvatures induced by the binding of single BAR
domain proteins, in close analogy to the case of anchored
chain molecules (Breidenich et al., 2000). Such a superpo-
sition leads to the overall spontaneous curvature

A

— — BAR
m=m, =—=I,  for I, <[,

2R . )

where T, represents a critical value of the protein cov-
erage. If the BAR-domain proteins are adsorbed from
the interior compartment, the spontaneous curva-
ture would be negative and given by m=-m_. Using the

aforementioned values for the area and curvature radius
of the amphiphysin N-BAR protein, expression (5) leads to
the spontaneous curvature m==2.1 nmxI',, .. The maximal
value of ', is about 1/A,, , or 1/(23 nm?). As explained in
the next paragraph, the critical coverage T, is about 1/(43
nm?), i.e., about half the maximal coverage. Thus, if the
exterior leaflet of the bilayer has a coverage I',,, of about
1/(100 nm?), the resulting spontaneous curvature is about
1/(48 nm).

At the critical coverage I',, =TI, the adsorbed pro-
teins are expected to undergo an isotropic-nematic transi-
tion. Indeed, the curvature superposition underlying the
simple expression (5) is only valid as long as the lipid/
protein membrane remains in an isotropic liquid state,
which implies that the adsorbed BAR domain proteins
undergo essentially unrestricted rotational and transla-
tional diffusion within the membrane. As the protein cov-
erage is increased, the proteins start to interact with each
other and to suppress their rotational degrees of freedom.
Because the membrane binding surface of the amphiphy-
sin N-BAR protein has a length of about 14.4 nm and a
width of about 1.6 nm, it is characterized by an aspect ratio
of about 14.4/1.6=9. For hard rods with this aspect ratio,
computer simulations (Bates and Frenkel, 2000) lead to
the estimate I',.=4.8/(14.4 nm)?=1/(43 nm?) for the critical
coverage, which corresponds to about half the maximal
coverage. For I',, >I',, the bound BAR domain proteins
will become orientationally ordered, and the spontaneous
curvature will no longer be isotropic.

Digression: curvature generation vs.
curvature sensing

In the literature on BAR-domain proteins, one often finds the
notions of ‘curvature generation’ and ‘curvature sensing’.
In order to clarify these notions from a physical point of
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view, it is instructive to consider the membrane binding of
convex-concave nanoparticles as shown in Figure 5.

In this figure, two types of convex-concave nano-
particles are distinguished depending on their adhesive
surface domains that can bind to a membrane. The par-
ticle in Figure 5A has a binding domain that extends over
the whole concave part of its surface. In contrast, the par-
ticle in Figure 5B has a binding domain that is limited to
the inner region of the concave surface segment. In both
cases, the rest of the particle surface is nonadhesive. Fur-
thermore, both types of nanoparticles are taken to be rigid
and, thus, to preserve their shape when they bind to a
membrane.

The nanoparticle shown in Figure 5A can bind to a
planar membrane via the edges of the adhesive surface
domain, which correspond to the amphipathic helices of
BAR-domain proteins. After the particle and the planar
membrane have established these local contacts, the
membrane will then spread onto the whole adhesive
domain provided by the concave part of the particle
surface, a process that necessarily generates membrane
curvature. Thus, for a nanoparticle as in Figure 5A, the
membrane can first bind before it curves toward the parti-
cle. The nanoparticle depicted in Figure 5B, on the other
hand, cannot bind to a planar membrane but only to a
membrane that is already sufficiently curved to reach the
adhesive surface domains buried inside the concave part
of the particle surface. Thus, in the latter case, the mem-
brane must first curve before it can bind to the particle.
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In analogy to enzyme-ligand binding, one may con-
sider the curvature generation in Figure 5A as an induced-
fit mechanism and the curvature sensing or stabilization
in Figure 5B as a mechanism of conformational selection.
In this analogy, the nanoparticle (or BAR-domain protein)
corresponds to the ligand, the membrane to the enzyme.

Convex-concave nanoparticles similar to those in
Figure 5A have been studied in (Reynwar et al., 2007)
using simulations of a coarse-grained membrane model
with implicit solvent. It was found that, when adsorbed
onto a membrane, these particles experience an attrac-
tive interaction that can lead to particle aggregation. Even
though membrane-mediated interactions between nano-
particles are not considered here, it is interesting to note
that attractive, membrane-mediated interactions arise
already for spherical nanoparticles that have a chemi-
cally uniform adhesive surface (Bahrami et al., 2012). In
the latter case, the nanoparticles have a tendency to form
linear aggregates enclosed by membrane tubules.

Formation of intramembrane
compartments

The membranes considered in the previous sections
may contain several lipid and protein components but,
so far, have been implicitly assumed to attain a spatially
uniform composition. However, when a multicomponent
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Figure 5 Membrane binding of two types of nanoparticles, which may be considered as BAR-mimetics. The nanoparticles can have the
banana-like shape of BAR-domain proteins or, alternatively, the shape of convex-concave lenses. The two types of particles in (A) and (B)
differ in the adhesive surface domains (red) that bind to the membrane. In both cases, the rest of the particle surface (orange) is non-
adhesive: (A) when the whole concave surface is adhesive, possibly with some reinforcing adhesive structures at the edge, the particle

can initially bind to a planar membrane, which subsequently bends to adapt its shape to the concave binding surface; and (B) when the
adhesive surface domains are located deep inside the concave part of the particle surface, the membrane must first bend before it can bind
to the particle. The process in (A) generates curvature and corresponds to an induced-fit mechanism, whereas the process in (B) stabilizes

curvature and represents a mechanism of conformational selection.
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membrane is in contact with a nanoparticle or macromole-
cule as in Figures 5 or 4, these particles and molecules will
typically have different affinities for the different mem-
brane components, which implies that the adjacent mem-
brane segments differ in their composition from the rest
of the membranes. This ambience-induced enrichment or
depletion of membrane molecules is one mechanism for
the formation of intramembrane compartments. A second
mechanism for the formation of intramembrane compart-
ments is provided by phase separation and domain for-
mation within the membranes. In fact, domain formation
via phase separation is affected by the ambience-induced
membrane segmentation as discussed in the last subsec-
tion below.

Segmentation of membranes by different
environments

Some examples for the segmentation of membranes by
different environments are displayed in Figure 6. Two rela-
tively simple examples are provided by multicomponent
vesicle membranes that adhere to uniform or chemically

1 0
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patterned solid surfaces (see Figure 6A and B). A somewhat
more complex geometry is depicted in Figure 6C: three
vesicles bounded by membranes that differ in their overall
compositions and interact both with the solid support and
with other membranes. Furthermore, Figure 6D displays,
in a rather simplified manner, the outer cell membrane of
a macrophage that moves along a solid surface, contains
some cytoskeletal filaments, and engulfs a small particle.

In all cases, the different environments attract the
membrane components with different affinities and,
thus, have a tendency to recruit certain components to
the adjacent membrane segments. In this way, the affinity
contrasts between the environments lead to an ambience-
induced segmentation of the membranes as illustrated in
Figure 6. The examples in Figure 6A, B, and D correspond
to single membranes with two, three, and five different
membrane segments. The example in Figure 6C depicts
three membranes, which are partitioned into three, four,
and three segments, respectively. Because of the affinity
contrasts between the different environments, each mem-
brane segment will, in general, have a different molecular
composition (Lipowsky et al., 2013; Rouhiparkouhi et al.,
2013).
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Figure 6 Segmentation of membranes exposed to different environments: (A) vesicle adhering to a uniform surface; (B) vesicle adhering to
a chemically patterned surface; (C) cluster of three vesicles adhering to a uniform surface and to each other; and (D) cartoon of a mac-
rophage that moves along a solid surface and engulfs a small particle. The colors of the membranes represent their overall compositions.
For each membrane, the numbers [x]=[1], [2], etc., indicate the different ambience-induced membrane segments. Because of the affinity
contrasts between the membrane components and the different environments, each membrane segment will, in general, have a molecular

composition that differs from the overall composition.
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Intramembrane domains arising from phase
separation

Because membranes are essentially two-dimensional
systems, they can undergo phase separation into different
membrane phases. From a biological perspective, the most
interesting case corresponds to phase separation into two
distinct fluid phases, in which the membrane molecules can
undergo fast lateral diffusion within all membrane domains
(Lipowsky, 1992; Lipowsky and Dimova, 2003). Thus, in
the following, we will consider a multicomponent mem-
brane with two types of fluid domains, which differ in their
composition. The two intramembrane domains or the cor-
responding membrane phases will be denoted by a and b.

The simplest examples for fluid-fluid coexistence in
membranes are presumably found in binary mixtures of
cholesterol and a single phospholipid. Indeed, spectros-
copy methods applied to cholesterol/DMPC (Recktenwald
and McConnell, 1981) and cholesterol/DPPC (Vist, 1984;
Ipsen et al., 1987; Sankaram and Thompson, 1990; Vist
and David, 1990; David et al., 2009) mixtures revealed the
formation of two different fluid domains (Marsh, 2010).
The interpretation of these domains has been somewhat
controversial, however, because it has not been possi-
ble, so far, to directly visualize these domains by optical
microscopy.

In contrast, direct imaging of domains has been
achieved for ternary mixtures consisting of an unsaturated
phospholipid, sphingomyelin, and cholesterol, as origi-
nally studied in the context of sphingolipid-cholesterol
rafts (Simons and Ikonen, 1997). Using fluorescence micros-
copy, phase separation of ternary mixtures into liquid-
ordered and liquid-disordered domains has been studied
for a variety of membrane systems including giant vesicles
(Dietrich et al., 2001; Baumgart et al., 2003; Veatch and
Keller, 2003; Bacia et al., 2005; Dimova et al., 2007; Semrau
et al., 2008), solid-supported membranes (Garg et al., 2007,
Jensen et al., 2007; Kiessling et al., 2009), hole-spanning (or
black lipid) membranes (Collins and Keller, 2008), as well
as pore-spanning membranes (Orth et al., 2012). Further-
more, phase separation into liquid-ordered and liquid-dis-
ordered domains has also been observed in giant plasma
membrane vesicles that contain a wide assortment of lipids
and proteins (Baumgart et al., 2007; Veatch et al., 2008).

Domain formation within ambience-induced
membrane segments

In contrast to the large intramembrane domains as
observed in reconstituted membranes, it has been difficult
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to directly visualize such domains in biological mem-
branes. This difficulty can be understood if one takes into
account that, in vivo, these membranes are exposed to
rather heterogeneous environments.

Thus, let us again consider membranes that are par-
titioned into several segments as in Figure 6. As shown
in (Lipowsky et al., 2013; Rouhiparkouhi et al., 2013), the
affinity contrasts between the different local environments
strongly affect the phase behavior of the membranes. First,
the affinity contrasts confine the domain formation spa-
tially to single membrane segments. Thus, domain forma-
tion cannot occur simultaneously in more than one segment.
Second, for N=2, 3, ... different membrane segments, the
system exhibits N_distinct coexistence regions within the
composition-temperature plane, e.g., the single coexist-
ence region for the free vesicle membrane is partitioned into
N_nonoverlapping regions. Third, the range of membrane
compositions, for which one can observe domain formation
in one of the membrane segments, is always reduced com-
pared to the composition range of the free membrane. In
fact, this reduction becomes more and more pronounced as
one increases the number of different environments. Some-
what surprisingly, this confinement of domain formation
both in real space and in the phase diagram is predicted
to occur even for very small values of the affinity contrasts.

The spatial confinement of domain formation by
ambience-induced segmentation is illustrated in Figure 7
for the relatively simple case of vesicles that adhere to
a uniform solid surface. In the upper row of this figure,
we see freely suspended vesicles with different composi-
tions. The membranes of these vesicles are exposed to a
single, uniform environment, corresponding to the two
aqueous solutions on both sides of the membranes. In the
lower row of Figure 7, we see the same vesicles but now
in contact with an adhesive substrate surface that could
be provided by a solid substrate or another membrane.
For such an adhesion geometry, the membrane consists
of two segments that are exposed to two different environ-
ments. The unbound membrane segment far away from
the surface experiences the same environment and, thus,
the same molecular interactions as the free membrane in
the absence of the surface. In contrast, the bound mem-
brane segment in close contact with the adhesive surface
experiences additional molecular interactions arising
from this surface. In the adhering state, phase separation
and domain formation can occur either in the bound or in
the unbound segment but not in both segments simultane-
ously (Lipowsky et al., 2013; Rouhiparkoubhi et al., 2013).

In eukaryotic cells, membranes are typically exposed
to a large number of different local environments as pro-
vided by other membranes or membrane-bound organelles
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Figure 7 Multicomponent vesicles with three different compositions corresponding to (A) the liquid-disordered phase (white), (B) the two-
phase coexistence region, and (C) the liquid-ordered phase (blue). The top row displays the free vesicles, the bottom row the same vesicles
now adhering to a rigid surface or solid support. In the adhering state, phase separation and domain formation can occur either in the
bound or in the unbound segment but not in both segments simultaneously (Lipowsky et al., 2013; Rouhiparkouhi et al., 2013).

as well as by filaments and protein scaffolds (compare
Figure 6D). All of these environments will exhibit differ-
ent molecular affinities for the different membrane com-
ponents and will, thus, act to suppress domain formation.

Formation of membrane compart-
ments by budding

Intramembrane domains represent two-dimensional com-
partments, which are connected by lateral diffusion across
the domain boundaries. Furthermore, these domains have a
tendency to create three-dimensional compartments as well
via budding processes as depicted in Figure 8. In fact, a suf-
ficiently large membrane domain consisting of fluid phase
b embedded in another fluid phase a must always undergo

m>0

1
1
: out-bud
1
1

1T

a b

I

A B

such a budding process unless the membrane experiences
some external constraints that induce a sufficiently large
tension (Lipowsky, 1992; Jiilicher and Lipowsky, 1993;
Kumar et al., 2001; Lipowsky and Dimova, 2003). The dif-
ferent membrane phases a and b are usually characterized
by different elastic properties, i.e., by different spontane-
ous curvatures, m_and m,, and different bending rigidities,
«, and «,. In addition, the budding process also depends on
the line tension A of the domain boundaries between the
two membrane domains (Lipowsky, 1992).

A b-domain with spontaneous curvature m, wants to
form a spherical cap with radius R, ;=1/m, as indicated in
Figure 8A. The direction of budding depends on the sign
of the spontaneous curvature m, of the b-domain: if m,
is positive, the domain forms an out-bud as in Figure 8B;
if m, is negative, it forms an in-bud as in Figure 8C.
These b-buds are connected by narrow necks to the large

Exterior compartment

in-bud
mb<0

Cc

Figure 8 Budding of intramembrane b-domain (blue) within a large, weakly curved a-membrane (red): (A) Starting from the flat state I, the
domain forms an incomplete bud, state I, that eventually becomes a complete bud, state Ill; (B) A positive spontaneous curvature of the
b-domain leads to out-buds; and (C) A negative spontaneous curvature of this domain leads to in-buds. The different states in (A) are axially
symmetric with respect to the broken vertical line. Furthermore, the intermediate state Il in (A) is a short-lived transient state when the
budding process is induced by the line tension of the domain boundary but a long-lived metastable state when this process is driven by an

increasing spontaneous curvature.
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a-membranes. At first sight, the narrow necks in Figure 8
seem to be highly curved and, thus, to make a large con-
tribution to the elastic energy of the membrane. However,
these necks can also adapt their mean curvature M to the
spontaneous curvature m. As a consequence, stable mem-
brane necks contribute very little to the elastic energy.

The bud necks provide connections both between
the two-dimensional membrane domains and between
the three-dimensional water compartments. First, the
b- and a-domains can exchange molecules by lateral dif-
fusion across the membrane segment within the neck.
Second, the neck provides a narrow water channel for the
exchange of volume between the different water compart-
ments. Thus, the interior compartment of out-buds is con-
nected, via the necks, to the interior compartment of the
large mother membrane, whereas the interior compart-
ment of in-buds is connected to the exterior compartment
of the large membrane.

Curvature of necks and size of buds

The limit of very narrow (or ideal) membrane necks
implies a simple relation between the mean curvatures
M_ and M, of the a- and b-segments adjacent to this neck.
This relation has the form

k (M, —m )+, (M,—-m,)=t—21 (6)

1
2

where the plus and minus signs correspond to out-
(Jiilicher and Lipowsky, 1996) and in-buds (Lipowsky, R.
unpublished.), respectively. The relation (6) holds if possi-
ble differences in the Gaussian curvature moduli of the two
domains can be neglected (Jiilicher and Lipowsky, 1996).
It is instructive to consider some special cases of the
neck condition (6). The simplest case corresponds to a
uniform membrane, for which the a- and b-domains are
indistinguishable. In this case, the line tension A vanishes,
and both domains have the same spontaneous curvature
m=m_ =m, as well as the same bending rigidity k=« =«,.
The neck condition (6) now simplifies and becomes
M +M,=2m as obtained in (Seifert et al., 1991; Fourcade
et al., 1994). For a weakly curved a-segment as in Figure 8,
the limit shape of a spherical b-bud then has the radius

- zﬂ (uniformmembrane withweakly curved a-segment ).
m

@)

Another simple case is provided by a weakly curved
a-membrane characterized by a small spontaneous
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curvature |m |<|m,|. In this case, the b-domain forms the
limit shape of a spherical bud with radius

1

R ~———— (weaklycurved a-membranewithsmall|m |).
o™ [+ 2K, ( y Im_[)

8)

Thus, depending on the relative size of the spontane-
ous curvature [m,| and the reduced line tension /(2«,), the
bud size may be dominated by spontaneous curvature or
by line tension. For ternary lipid mixtures, the line tension
has been measured and was found to be of the order of
10" N (Baumgart et al., 2005; Semrau et al., 2008). The
latter value is about one order of magnitude smaller than
simple theoretical estimates because these lipid mixtures
are close to a critical demixing point (Lipowsky, 1992).
The bending rigidity «, has a typical value of the order
of 10" J. Thus, in these systems, the reduced line tension
A/(zlcb):l/(zoo nm), which implies that the bud size is
dominated by line tension with R, ~2,/A for |m,|<1/
(200 nm) and governed by spontaneous curvature with
R, ~1/Im,| for [m,|>1/(200 nm).

Dynamics of domain-induced budding

Now, let us address the dynamics of domain-induced
budding and consider a circular b-domain with area A,
that defines the lateral domain size L, via Ab:nLi. Let us
further assume that the absolute value Imbl of the sponta-
neous curvature is initially small compared to 1/(2,). In
such a situation, the flat or weakly curved state is glob-
ally stable if the lateral size L, is smaller than 4/cb//1 and
remains metastable for 4«,/A<L,<8«,/A (Lipowsky, 1992).
This metastable state is long-lived because it has to over-
come a large energy barrier until the size L, becomes close
to 81cb//1. Such a metastable domain can be destabilized by
two different dynamical processes: (I) an increase in the
domain size for small and constant spontaneous curva-
ture and (II) an increase in the spontaneous curvature for
constant domain size.

First, consider process (I), which corresponds to
domain growth by lateral phase separation, i.e., by lateral
diffusion and segregation of the lipids and proteins within
the membrane. Such a growing domain becomes unsta-
ble and undergoes domain-induced budding when its
lateral size exceeds the value L,=8«,/A (Lipowsky, 1992).
In this case, the weakly curved and strongly curved state
of the membrane domain are initially separated by a large
energy barrier, which decreases with increasing domain
size and disappears at the critical value L =8k,/A. The
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corresponding budding process represents an abrupt or
discontinuous morphological transition from the weakly
to the strongly curved state.

On the other hand, for process (II), i.e., when the spon-
taneous curvature of the domain is increased, e.g., by
asymmetric adsorption, for constant domain size L, the
domain forms a complete bud when the absolute value [m,|
of the spontaneous curvature becomes comparable to 2/L,.
In the latter case, the energy barrier between the weakly and
strongly curved state is small, and domain-induced budding
corresponds to a smooth and essentially continuous process.

Suppression of domain-induced budding

Domain-induced budding can be suppressed by external
constraints. For vesicles, one such constraint arises from
the osmotic conditions that determine the vesicle volume.
The possibility of budding then depends on the volume-
to-area ratio. Osmotic inflation leads to a spherical vesicle
with the largest possible volume-to-area ratio. In this case,
domain-induced budding is completely suppressed. Like-
wise, strong adhesion of the vesicles also acts to suppress
the budding process. In the latter case, the vesicle forms
a spherical cap in order to maximize its contact area with
the solid support. It is important to note that, in the pres-
ence of such constraints, the b-domains remain weakly
curved even if they have acquired (i) a large lateral size L,
that may be comparable to the vesicle size and/or (ii) an
appreciable spontaneous curvature m,.

Now, consider such a multidomain vesicle with a
b-domain that is only weakly curved because of external
constraints and let us remove these constraints, e.g., by
osmotic deflation. The morphological response of the
vesicle now depends on the relative magnitude of the
lateral domain size L, and the inverse spontaneous cutr-
vature, 1/m,. If L, is smaller than or comparable to 2/|m,|,
the b-domain undergoes domain-induced budding and
forms a partial or complete spherical bud. On the other
hand, what happens after the removal of the constraints
when the absolute value of the spontaneous curvature is
much larger than the inverse domain size and satisfies
Im,[>>2/L,? In such a situation, the large b-domain could
form several spherical buds with radius R, ,~1/(2|m,|) or
mean curvature M, ~2m, as required by the neck condi-
tion (7). Each of these buds would have the elastic bending
energy 2mk,, which is identical to the elastic bending
energy of the weakly curved membrane segments, from
which the buds originated. Therefore, because the mean
curvature of the buds is now twice the spontaneous cur-
vature, the b-domain cannot reduce its elastic bending
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energy by forming buds of radius R _,=1/(2/m,|). In con-
trast, such a reduction is possible if the b-domain forms a
long nanotube or tubule, the main body of which is char-
acterized by mean curvature M, ,=m, and, thus, by vanish-
ing bending energy, as described in the following section.
Therefore, if the spontaneous curvature is much larger
than the inverse domain size, the domain will form a long
nanotube after the removal of the external constraints.

Another mechanism for the suppression of budding is
provided by fast adsorption kinetics. Indeed, it has been
implicitly assumed so far that the adsorption-induced
increase in the spontaneous curvature is sufficiently slow
compared to the budding process, so that the budding
domain can always adapt relatively fast to the changing
spontaneous curvature. However, if the adsorption is
strong and/or if the concentration of the adsorbing parti-
cles is high, the adsorption-induced increase in the spon-
taneous curvature may increase on a time scale that is
short compared to the time that the domain needs to form
the bud. We then end up with a domain that has typically
a large size L, and, in addition, a large spontaneous cur-
vature mb>>2/Lb, i.e., we end up in the same situation that
we encountered after the removal of external constraints.
Therefore, for fast adsorption kinetics, the b-domains will
again form long nanotubes.

Spontaneous tubulation of
membranes

As discussed in the previous subsection, an intramem-
brane domain consisting of a lipid or lipid/protein phase
b can form a long nanotube or tubule if the absolute value
of its spontaneous curvature, Imbl, is large compared to its
inverse domain size 1/Lb. Now, let us consider this tubular
morphology in more detail and let us distinguish cylindri-
cal from necklace-like nanotubes as shown in Figure 9.

Cylindrical nanotubes

The simplest tubular morphology is provided by a long
cylindrical tube as displayed in Figure 9A. When such a b-
tube protrudes from a larger a-membrane, it has the mean
curvature (Lipowsky, R. unpublished)

s
M, =m, -%Mﬂ {ﬂ+a—b} for small M, ©)
b

g, o

corresponding to a weakly curved a-membrane with
the spontaneous tensions o,=2x,m’ and o,=2k,m;,
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Figure 9 Membrane domains of b-phase (blue) within a large membrane segment of phase a (red) can form (A) cylindrical nanotubes or (B)
necklace-like tubes consisting of a string of small spheres. Both tubes have the same surface area and the same mean curvature M, equal
to the domain’s spontaneous curvature m,. The two tubules can be continuously transformed into one another via intermediate unduloids
with M=m, (see Figure 3B); (C) b-domains with large positive spontaneous curvature m,>>M_ form out-tubes, typically with a necklace-like
morphology; and (D) b-domains with large negative spontaneous curvature m,<-M_ form in-tubes, which are more likely to have a cylindri-
cal shape. The precise shape of the membrane segment close to the ab domain boundary depends on the relative size of the fluid-elastic

parameters and may differ from the schematic shape shown here.

compare the definition (3). The correction term in (9)
depends on the difference of the mechanical tensions X
and X, that act to stretch or compress the a and b domains.
For a two-domain vesicle with volume V, these tensions
follow from

(10)

Zi:-[%Ebe] with i=a,b and j=#i,
1 V,A

where E  represents the bending energy of the vesicle’s
equilibrium shape as a function of vesicle volume V and
the two domain areas A and A,. The derivative with respect
to A, is taken for constant vesicle volume V and constant
domain area A, The vesicle volume depends on the osmotic
pressure difference acting across the membrane. Itis implic-
itly assumed here that, apart from the osmotic conditions,
the vesicle membrane is not subject to other mechanical
forces or constraints. In addition, it is also assumed that the
mechanical tensions . are small compared to the tension of
rupture, which is typically of the order of a few mN/m.

If the a and b domains are indistinguishable, they are
characterized by identical mean curvatures m,=m =m,
identical bending rigidities « =«,=«, and vanishing line
tension =0, which implies both 0, =0, and X =%,. In the
latter situation, the expression (9) simplifies and becomes

1 . . . .
szmb-ZMa as derived previously in (Li et al., 2011;

Lipowsky, 2013).
The mechanical tensions X, as given by (10) depend
on the vesicle shape, on the elastic properties of the two

membrane domains, and on the line tension. As men-
tioned, these tensions need to be small compared to the
tension of rupture. Furthermore, for lipid membranes, the
rupture tensions are, themselves, much smaller than the
area compressibility moduli. This separation of tension
scales implies that the domain areas A, are essentially
constant during all shape transformations that do not
lead to membrane rupture. It is then convenient to con-
sider the domain areas A, as the basic control parameters
and regard the mechanical tensions as Lagrange multi-
pliers (Jiilicher and Lipowsky, 1993, 1996). Theoretically,
one may also treat the mechanical tensions X, them-
selves, as independent control parameters as in (G6zdz
and Gompper, 2001; Harden et al., 2005), but the latter
approach does not distinguish between different sources
of mechanical tension and ignores that the mechani-
cal tensions as given by (10) are determined by the other
membrane parameters.

Necklace-like nanotubes

A cylindrical membrane tube may be transformed, for
fixed membrane area of the b-domain, into a necklace-like
tube consisting of a string of small spheres as in Figure 9B.
In fact, if the main body of the cylindrical tube has con-
stant mean curvature Mb=1/(2RCy)=mb, the necklace-like
nanotube has the same constant mean curvature M,=m,,
if the small spheres have the radius Rsszl/ m, as required
by the neck condition (6) for two identical membrane
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segments. Thus, both the cylindrical and the necklace-
like nanotube can adapt their mean curvature to the spon-
taneous curvature m, of the b-membrane, which implies
that the elastic bending energy vanishes for the main
body of both tubes. In fact, the transformation from the
cylindrical to the necklace-like tube can proceed in a con-
tinuous manner via unduloids (see Figure 3C), which are
also constant mean curvature surfaces with M,=m, and,
thus, characterized by vanishing elastic bending energy
(apart from the two ends of the tubes).

In this way, one is led to consider a continuous trans-
formation from the cylindrical to the necklace-like tube.
This transformation is characterized by constant mem-
brane area, constant mean curvature M=m,, and van-
ishing elastic energy of the main tube body but involves
a reduction in the tube length by a factor 1/2 and an
increase in the tube volume by a factor 4/3 (Lipowsky,
2013). Therefore, this transformation leads to positive or
negative volume work depending on the osmotic pres-
sure difference experienced by the tube membrane. As a
result, one finds that necklace-like out-tubes as in Figure
9C have a lower free energy than cylindrical out-tubes,
whereas cylindrical in-tubes as in Figure 9D have a lower
free energy than necklace-like in-tubes.

For a cylindrical tubule of length L connected to a
weakly curved a-membrane with small mean curvature
M, the free energy difference between the cylindrical
and the necklace-like tube is given by :F(n/B)cU/chCyMa
with ¢ =(0 +Z -Z,)/0,, where the minus and plus sign
corresponds to out- and in-tubes, respectively. This free
energy difference is of the order of few k,T or smaller if
the vesicle size 1/M, is large compared to the tube length
Lcy, and the dimensionless coefficient c¢_ is of the order of
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1. One then expects to see peristaltic shape fluctuations
or ‘soft modes’ between the cylindrical and the neck-
lace-like tube. For long tubes with L, comparable to the
vesicle size 1/Ma, on the other hand, the free energy dif-
ference is of the order of the bending rigidity « and, thus,
about 20 kT for ¢ =1. In the latter case, one expects to see
only small peristaltic fluctuations around the tube with
the lower free energy.

Competition between tubulation and
adhesion

In the previous subsections, we considered a membrane
segment with two domains, a and b, and explored the
possibility that the b-domain forms a cylindrical or neck-
lace-like nanotube without paying attention to external
constraints acting on the whole vesicle. If this membrane
segment belongs to a large vesicle, tubulation is only pos-
sible if the whole vesicle can change its morphology in
an appropriate manner. A simple example for an external
constraint that acts to suppress tubulation is provided by
a vesicle adhering strongly to another surface as depicted
in Figure 10A.

If the adhesive strength |W| of this surface, which
represent the adhesion energy per unit area, exceeds the
energy density «/(0.5 um?) corresponding to a value of
about 10 mN/m for lipid bilayers, the contact curvature
of the adhering membrane is below optical resolution,
and the vesicle appears to have the shape of a spherical
cap (Seifert and Lipowsky, 1990). The effective contact
angle of this cap reflects the volume-to-area ratio of the
vesicle. Thus, let us consider such a strongly adhering

SN AN

Figure 10 Vesicles adhering to a solid surface: (A) If the vesicle membrane has a small spontaneous curvature, the strongly adhering
vesicle forms a spherical cap, the geometry of which reflects its volume-to-area ratio; (B, C) Membrane binding of proteins or nanoparticles
that generate a large positive or negative spontaneous curvature m: if the absolute value |m| exceeds a certain threshold value, the vesicle
starts to reduce its contact area with the solid surface and store the resulting excess area in necklace-like out-tubes for m>0 as in (B) and

in cylindrical in-tubes for m<0 as in (C). In both cases, the tubulation process will continue until the contact area disappears and the vesicle
unbinds from the solid surface. In addition to the straight tube conformations shown here, the nanotubes can attain many curved and undu-
lating conformations as a result of thermally excited shape fluctuations. Furthermore, peristaltic shape fluctuations of the cylindrical tubes

lead to necklace-like morphologies.
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vesicle and assume that it is initially characterized by a
relatively small spontaneous curvature as in Figure 10A.
More precisely, we consider a membrane with a uniform
composition and with a spontaneous curvature m that
is initially small compared to the mean curvature of the
spherical cap.

Now, let us assume that the exterior or the interior
compartment contains some proteins or nanoparticles
that adsorb onto the vesicle membrane and act to increase
the spontaneous curvature m of the membrane. For the
molecules and nanoparticles previously depicted in
Figures 4 and 5, the spontaneous curvature is positive and
negative if these particles adsorb from the exterior and
interior compartment, respectively. In addition, it is not
difficult to envisage other types of particles that induce
the opposite spontaneous curvature. One example is pro-
vided by small spherical Janus particles that adhere to the
membrane only via their ‘south poles’.

As the spontaneous curvature grows via asymmet-
ric adsorption, the membrane would prefer to curve
more strongly and to form necklace-like out-tubes as in
Figure 10B or cylindrical in-tubes as in Figure 10C. Inspec-
tion of these morphologies reveals, however, that these
tubes can only form if the contact area between the solid
surface and the membrane shrinks, which implies that the
membrane loses adhesion energy. Thus, the vesicle mor-
phology now depends on the competition between tubu-
lation and adhesion.

If the particles are adsorbed from the interior com-
partment of the vesicle, tubulation is energetically favora-
ble if the absolute value of the spontaneous curvature,
|m|, exceeds a certain threshold, m,, and satisfies

Iml>m =\|W|/(2x) (11)

as follows from the balance between bending and adhe-
sion energy for a small membrane segment within the
contact area of the vesicle membrane. Note that the
threshold value m, for the spontaneous tension is equiv-
alent to the threshold value o,=|W] for the spontaneous
tension ¢ as defined in (3). The same threshold values
apply to particle adsorption onto solid-supported bilayers
from aqueous bulk phases (Lipowsky, 2013).

Likewise, for the adhering vesicle, the same threshold
value m,=+/|W|/(2«) is also found for particle adsorption
from the exterior compartment of the vesicle provided the
particles are sufficiently small and can enter the water
gap within the contact area. If the particles are large and
cannot enter this gap, tubulation is only favorable if the
initial vesicle has a sufficiently small contact angle and,
thus, a sufficiently small volume-to-area ratio.
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In order to start from a spherical cap shape as in Figure
10A, the adhesion energy density | W] has to be larger than
10 mN/m. Using the latter value for |W| together with the
value k=10"] for lipid bilayers, we find that the threshold
value m, is about 1/(um). When we compare this threshold
value with the spontaneous curvatures m as generated by
asymmetric adsorption of small or large molecules, see
relations (4) and (5) above, we conclude that such an
adsorption-induced spontaneous curvature can certainly
exceed the threshold value m,=1/(um).

Once the spontaneous curvature exceeds its thresh-
old value m,, the vesicle can reduce its combined elastic
and adhesive energy by forming nanotubes with a mean
curvature M, , =m. After one or a few nanotubes have been
nucleated as in Figure 10B and C, they will continue to
grow until the contact area of the vesicle disappears com-
pletely and the vesicle unbinds from the solid surface.
In this way, the generation of a sufficiently large sponta-
neous curvature m>m, should lead to the unbinding of
adhering vesicles.

Spontaneous vs. force-induced tubulation

It has been known for some time that membrane tubules
or nanotubes, often denoted as ‘tethers’, can be pulled
from large vesicles by applying external forces to the mem-
branes (Bo and Waugh, 1989; Hochmuth et al., 1996; Sorre
et al., 2012; Zhu et al., 2012). It is less obvious that such
tubules may also form spontaneously, i.e., in the absence
of external forces. Nevertheless, spontaneous tubula-
tion has been observed for a variety of systems. Indeed,
many different proteins have been identified that adsorb
onto liposomes and lead to extended membrane tubules.
These proteins include N-BAR proteins such as amphiphy-
sin (Takei et al., 1999; Peter et al., 2004) and endophilin
(Farsad et al., 2001), F-BAR proteins such as syndapins
(Wang et al., 2009), and other proteins involved in endo-
cytosis such as epsin (Ford et al., 2002).

Very recently, two different unilamellar systems have
been observed to undergo spontaneous tubulation. One
of these systems is provided by supported lipid bilay-
ers that were exposed to a variety of antimicrobial pep-
tides (Domanov and Kinnunen, 2006; Mally et al., 2007;
Domingues et al., 2010; Arouni et al., 2011). It has been
argued in (Lipowsky, 2013) that these supported bilayers
provide an example for the competition between adhe-
sion and tubulation via spontaneous curvature. The other
system consists of giant vesicles in contact with aqueous
solutions of PEG and dextran, which undergo phase sepa-
ration into PEG-rich and dextran-rich droplets (Li et al.,



DE GRUYTER

2011; Dimova and Lipowsky, 2012). The latter system turns
out to provide a novel method to measure the spontane-
ous curvature as explained in the following section.

Measuring the spontaneous
curvature

In all previous sections, the spontaneous curvature of
membranes played a prominent role. This curvature has
been estimated theoretically for a variety of systems. Up to
recently, these estimates have been hardly scrutinized by
experiment, however, because the available experimental
methods have been rather limited.

Limitations of previous experimental
methods

Presumably the first attempts to measure the spontaneous
curvature of lipid bilayers was based on ‘flicker spectros-
copy’, i.e., the spectral analysis of shape fluctuations of
quasi-spherical vesicles as observed in the optical micro-
scope. One example is provided by lipid bilayers exposed
to a mixture of two sugar molecules, the monosaccharide
glucose and the trisaccharide raffinose [see (Dobereiner
et al., 1999)]. Using flicker spectroscopy, the spontaneous
curvature was found to vary from about 0.01/um-0.1/um,
comparable to or somewhat larger than the mean curva-
ture of the vesicle membranes. These experimental values
agreed with theoretical estimates based on two depletion
layers in front of the two membrane surfaces (Lipowsky
and Dobereiner, 1998). Much larger values of the spon-
taneous curvature m are hardly accessible to the experi-
mental method of flicker spectroscopy because the vesicle
membrane then tries to form highly curved segments in
the form of nanotubes, whereas the weakly curved seg-
ments experience a large spontaneous tension o=2xm?
that acts to suppress the flickering (Lipowsky, 2013).
Indeed, the largest m-values that have been determined
by this method are about five times the inverse vesicle
radius (D6bereiner et al., 2003).

Another experimental approach that can be used to
determine the spontaneous curvature of membranes is
based on the budding of vesicles. When the bud is con-
nected to the mother vesicle by a narrow neck, the mean
curvatures M_and M, of the membrane segments adjacent
to the neck satisfy the neck condition M _+M,<2m for an
out-bud. This method has been applied to biotinylated
DNA bound to membrane-anchored avidin (Nikolov et al.,
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2007). For the latter system, the spontaneous curvature
deduced from vesicle budding was found to lie between
0.1/um and 1/um. The method involves a large statistical
error, however, because it is often difficult to determine
the precise values of the mean curvatures M_and M, for a
sufficiently large sample of vesicles.

Spontaneous curvature from contact angles

It has been recently shown that the spontaneous curva-
ture of membranes can be measured using large vesicles
that enclose two liquid droplets consisting of two differ-
ent aqueous phases (Li et al., 2011; Dimova and Lipowsky,
2012; Lipowsky, 2013). The aqueous two-phase systems
studied, so far, consisted of solutions of PEG and dextran.
These solutions form a uniform aqueous phase at suffi-
ciently low polymer concentrations and undergo phase
separation into two aqueous phases, a PEG-rich and a
dextran-rich phase, when one increases these concentra-
tions above a few weight percent.

The vesicles are initially prepared in such a way that
their interior compartments contain a uniform polymer
solution. The volume of the vesicle is then reduced by
increasing the osmolarity of the aqueous solution in
the exterior compartment. As a result of this osmotic
deflation, the polymer concentration within the interior
compartment of the vesicle increases, and the solution
then undergoes phase separation into two liquid drop-
lets. The resulting vesicle morphology is displayed in
Figure 11A where the PEG-rich phase is denoted by « and
the dextran-rich phase by 3. The composition of the exte-
rior aqueous compartment, which is, in general, different
from the composition of the ¢ and 8 phases, is denoted
by y.

The morphology shown in Figure 11A involves three
different surfaces. First, the two liquid droplets & and 5 are
separated by a liquid-liquid interface. Second, because the
membrane is in contact with different aqueous phases, it
is partitioned into two segments, an ay segment between
the PEG-rich droplet and the exterior solution and a Sy
segment between the dextran-rich droplet and the exterior
medium. Both membrane segments are observed to form
spherical caps, which implies that they experience appre-
ciable tensions. The af interface and the two membrane
segments meet along the contact line, where they define
the three effective contact angles 6 , Oﬁ, and Gy as shown in
Figure 11A and B. These angles can be directly measured
in the optical microscope and are related to the tensions
of the interface and the two membrane segments. The
effective contact angles depend on the vesicle geometry



270 =—— R.Lipowsky: Remodeling processes based on membrane fluidity

A B

DE GRUYTER

C

Figure 11 Geometry of a large vesicle enclosing two droplets of distinct aqueous phases: (A) The vesicle membrane separates the two inte-
rior aqueous phases « and 8 from the exterior aqueous phase y. This membrane consists of two spherical segments, one segment (blue)

in contact with the « phase and another segment (red) in contact with the 8 phase. The ¢ interface (broken line) and the two membrane
segments meet along the contact line, which defines the three effective contact angles Ga,f)/;, and Oy; (B) mechanical equilibrium at the

contact line implies that the interfacial tension Z, balances the two membrane tensions z, and X

tensionsX , £ , and 3.
aff ay By

and, in particular, on the volumes of the two liquid drop-
lets. Because the membranes must be smoothly curved on
nanoscopic scales, the system also involves an intrinsic
contact angle 6, that represents a material parameter and
can be expressed in terms of the effective contact angles
(Kusumaatmaja et al., 2009).

The off interface is characterized by the interfacial
tension Zp whereas the two meAmbrane sAegments expe-
rience the membrane tensions Zay and = o (see Figure
11B), which can be decomposed according to (Li et al.,
2011; Lipowsky, 2013)

A

2 =3 40 =3 42k m’ (12)
ay ay ay ay a - ay

and

S _ 2
2/37 _2/37 t0y, _Zﬂy +2Kﬁy mg,

(13)
where the first and the second terms represent the
mechanical and the spontaneous tensions, respectively.
In general, the two mechanical tensions Zay and Zﬁy may
have different values [see online ‘Additions and Correc-
tions’ to (Lipowsky, 2013)]. Furthermore, the spontaneous
tensions g, and 0, can dominate the membrane tensions
if the spontaneous curvatures m_, and m, are sufficiently
large.

The latter situation applies to lipid membranes in
contact with PEG-dextran mixtures. For this system, the
ay membrane segments are found to form both highly
curved nanotubes and weakly curved spherical mem-
brane caps, which implies (i) that the spontaneous cur-
vaturem,_, is large compared to the mean curvature M, of

s and (C) triangle formed by the three

the large spherical o Caps and (ii) that the spontaneous
tension g, is large compared to the mechanical tension
. As a consequence, the spontaneous curvature m,, can
be obtained from

~ 1/2 . 1/2
_ ZW z{ Eaﬂ smBﬂ]

m =
@ 2K 2/cay smey

(14)

ay

where the negative sign follows from the observation that
the nanotubes always point toward the vesicle interior.
Using the relation (14), one finds that the spontaneous cur-
vature m,, is about -1/(240 nm) for a certain concentration
of PEG and dextran. The relation (14) has recently been
confirmed by directly measuring the diameter of the tubes
(Liu, Y., Kusumaatmaja, H., Dimova, R., and Lipowsky, R.
(2013). Lipid membranes exposed to asymmetric environ-
ments acquire spontaneous tensions. in preparation).

The three tensions must balance along the contact
line (see Figure 11B and C). The corresponding force
balance equation has the general form
sinBa-sinGﬁ A

S +3 cos6. (15)
ay af in

iﬁ =3 +2ﬁ -
oo sm@y

For lipid vesicles in contact with the PEG-dextran
mixture, the formation of the nanotubes implies that the
membrane tension iay is dominated by the spontaneous
tension o, . The force balance equation then simplifies
and becomes

2 =0 +3 cosf. =2k m> +Z cosf. .
ay af in ay’ ay ap in

By (16)
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It it interesting to note that all parameters that appear on
the right-hand side of this equation are material param-
eters that do not depend on the vesicle geometry.

Summary and outlook

In this paper, a few simple and generic consequences of
membrane fluidity have been discussed. First, fluidity
implies unusual elastic properties that involve primarily
two fluid-elastic parameters, the spontaneous curvature m
and the bending rigidity «. In order to define these param-
eters, one has to smoothen the molecular roughness of the
bilayers (see Figure 1) and average over bilayer patches
with a lateral size that is somewhat larger than the bilayer
thickness. These bilayer patches contain between 80 and
100 lipid molecules, which directly reveals the coopera-
tive nature of membrane curvature.

One generic mechanism for the generation of sponta-
neous curvature is provided by the asymmetric adsorption
of ‘particles’ such as ions, small molecules, proteins, or
nanoparticles from the surrounding aqueous compart-
ments. Even ions can lead to an appreciable spontane-
ous curvature m as predicted by the expression (4), which
depends on the particle coverage on the two leaflets of
the bilayer and leads to a maximal spontaneous curva-
ture value of about 1/(20 nm) (Lipowsky and Dobereiner,
1998; Lipowsky, 2013). Interestingly, the latter value is
comparable to the maximal spontaneous curvature (5)
that adsorbed BAR-domains can generate in their iso-
tropic fluid state. Such a fluid state should apply up to
the critical coverage I',=1/(43 nm?) as estimated from the
isotropic-nematic transition for hard rods.

In the subsection on Curvature generation versus
curvation sensing, the asymmetric binding of convex-
concave nanoparticles has been discussed, which mimic
the binding of BAR-domain proteins (see Figure 5). Two
different types of such BAR-mimetics were considered.
For the nanoparticle displayed in Figure 5A, membrane
and particle can bind before the membrane curves toward
the particle. In analogy to enzyme-ligand binding, this
process of curvature generation can be regarded as an
induced-fit mechanism. For the particle in Figure 5B, on
the other hand, the membrane must first curve before it
can bind to the particle. This latter process of curvature
sensing or stabilization corresponds to a conformational
selection mechanism.

Another interesting consequence of membrane fluid-
ity is the formation of intramembrane compartments that
may arise via ambience-induced membrane segmentation
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(see Figure 6) or via phase separation within the mem-
branes. Theoretical studies predict (Lipowsky et al., 2013;
Rouhiparkouhi et al., 2013) that intramembrane domains
arising from phase separation are always confined to a
singleambience-inducedmembranesegment(seeFigure7).
This interplay between ambience-induced segmentation
and domain formation via phase separation provides
a simple and generic explanation for the difficulty to
observe phase domains in vivo (see Figure 6D).

New compartments can be formed by domain-induced
budding and tubulation (see Figures 8 and 9). For these
processes, the size of the new compartments is controlled
locally by the elastic properties and the lateral size of the
domains. In general, three fluid-elastic parameters deter-
mine the size of the new compartments: the spontaneous
curvature m, and the bending rigidity «, of the domain as
well as the line tension A of the domain boundary. In order
to disentangle the influence of these different param-
eters, two different types of dynamical processes have
been explicitly discussed. In process (I), the domain size
grows via lateral diffusion within the membranes, while
its spontaneous curvature remains small during the whole
process. In process (II), the domain has a constant lateral
size, but its spontaneous curvature increases with time,
e.g., by adsorption of proteins from the exterior or interior
aqueous compartments.

If we ignore possible external constraints, process
(I) leads to an abrupt and discontinuous budding trans-
formation of the domain as soon as the domain size
L, has reached the critical size 8«,/ (Lipowsky, 1992).
Using typical values for the fluid-elastic parameters of
lipid bilayers, this critical size is of the order of 1 um. For
such an unconstrained membrane, process (II) leads to a
smooth and essentially continuous budding process pro-
vided the adsorption kinetics is sufficiently slow. External
constraints as well as fast adsorption kinetics can lead to
b-domains that have an initial domain size L,>>2/|m,|. In
the latter case, each b-domain could form many spherical
buds, but these buds would have a mean curvature that is
twice the spontaneous curvature m,, which implies that
the formation of these buds does not reduce the bending
energy of the domain. Therefore, the large b-domain will
form long nanotubes or tubules as shown in Figure 9.

An interesting example for the interplay between an
external constraint acting on the membrane and tubulation
is provided by adhering vesicles as depicted in Figure 10.
If such a vesicle is exposed to asymmetric adsorption
leading to an increasing spontaneous curvature, the
vesicle is predicted to unbind from the adhesive surface
via spontaneous tubulation as soon as the spontaneous
curvature has reached a certain threshold value m,, which
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Figure 12 Possible mechanism for shape transformations during autophagocytosis: initially, the vesicle membrane (orange-purple line)
has the shape of a double-membrane disk state (A) that closes up via the cup-shape morphology in state (B) to form a double-membrane
vesicle as in state (D). The curvature is generated by the elastic bending energy of the strongly curved membrane segment (purple) that acts
as an effective rim tension for the double-membrane disk. In state (C), the two spherical membranes are still connected by a small mem-
brane neck, which then undergoes fission to form state (D) (Knorr et al., 2012).

depends only on the bending rigidity and on the adhesive
strength of the surface [see equation (11)].

Finally, it was pointed out that the theoretical esti-
mates for the spontaneous curvature as described in the
section on Asymmetric binding of molecules to membranes
have been hardly scrutinized by experiment because
the available experimental methods to actually measure
the spontaneous curvature were quite limited for a long
time. This situation has changed recently with the advent
of a novel method based on aqueous two-phase systems
(see Figure 11). This method can be further improved by
developing suitable reference systems, which allow us to
measure changes in spontaneous curvature as induced by
single molecular species.

As a short outlook, let me briefly mention another
shape transformation of biological membranes that can
again be understood in terms of the membranes’ fluid
elasticity. Many organelles are enclosed by double mem-
branes, i.e., by two lipid/protein membranes that are
separated by a thin water layer. The initial morphology of
these double-membrane organelles often corresponds to
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