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Genetic polymorphisms in the human tissue
kallikrein (KLK) locus and their implication in
various malignant and non-malignant diseases

Abstract: The Kallikrein (KLK) gene locus encodes a family
of serine proteases and is the largest contiguous cluster of
protease-encoding genes attributed an evolutionary age
of 330 million years. The KLK locus has been implicated as
a high susceptibility risk loci in numerous cancer studies
through the last decade. The KLK3 gene already has estab-
lished clinical relevance as a biomarker in prostate cancer
prognosis through its encoded protein, prostate-specific
antigen. Data mined through genome-wide association
studies (GWAS) and next-generation sequencing point
to many important candidate single nucleotide polymor-
phisms (SNPs) in KLK3 and other KLK genes. SNPs in the
KLK locus have been found to be associated with several
diseases including cancer, hypertension, cardiovascu-
lar disease and atopic dermatitis. Moreover, introducing
a model incorporating SNPs to improve the efficiency of
prostate-specific antigen in detecting malignant states of
prostate cancer has been recently suggested. Establish-
ing the functional relevance of these newly-discovered
SNPs, and their interactions with each other, through in
silico investigations followed by experimental validation,
can accelerate the discovery of diagnostic and prognostic
biomarkers. In this review, we discuss the various genetic
association studies on the KLK loci identified either
through candidate gene association studies or at the
GWAS and post-GWAS front to aid researchers in stream-
lining their search for the most significant, relevant and
therapeutically promising candidate KLK gene and/or
SNP for future investigations.
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Introduction

Human genomic DNA is interspersed with many inter-
individual differences. These approximately 3 million
variations, also called polymorphisms, are estimated to
span around 0.1% of the human genome (The Interna-
tional HapMap Consortium, 2007). The single nucleotide
polymorphisms (SNPs) representing approximately 90%
of all sequence variations is the most common type of
variation in the human genome (Collins et al., 1998) with
a frequency of >1% in a given population. However, some
researchers distinguish between ‘polymorphic SNPs’ and
‘common SNPs’ with a minor allele frequency of at least
5% in the population (Brookes, 1999; Kruglyak and Nick-
erson, 2001; Ladiges et al., 2004).

Recent times have witnessed numerous candidate gene
studies, which are restricted in the genes considered and
the number of study subjects, and then whole-genome
association studies (GWAS), making use of SNP arrays and
elucidating various previously unknown disease-associ-
ated genes because of their unbiased advantage (Marian,
2012; Kote-Jarai et al., 2011b). The GWAS technique is con-
stantly evolving, with efforts being made towards overcom-
ing previous drawbacks, such as population stratification,
false positives and negatives, and replication difficulties.
Moreover, recent access to next-generation sequencing
platforms has revolutionized investigation in the field of
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genetic biomarkers by sharply reducing the cost of whole
human-genome sequencing (Mardis, 2008a,b; Schuster,
2008; Metzker, 2010; Davey et al., 2011). The ultimate goals
of these studies are to get a better understanding of the
molecular mechanisms underlying a disease and to provide
the foundation for the development of sensitive and readily
applicable lab-based screening tools. Such tools will be
useful for clinical diagnosis and monitoring of treatment
and prognosis, and will thus assist clinicians to obtain
a more accurate and reliable assessment of metastatic
disease and hopefully support clinical decision-making.

The past few years have also seen an expansion in
resources available to researchers, providing them with open
access information and online data mining from the exten-
sive data accumulated through various international collab-
orative efforts. For example, the HapMap project provides a
comprehensive SNP database, containing information on
linked genomic regions (Olivier, 2003). The 1000 Genomes
Project (Siva, 2008; Pennisi, 2010) is an international collab-
oration to sequence the genomes of a substantial number of
individuals to provide a comprehensive resource on human
genetic variation and their haplotype blocks. The 1000
Genomes project (http://www.1000genomes.org), which
is nearing completion, has already exceeded by half the
number of novel SNPs observed by the HapMap project, i.e.,
with an estimate of more than 5.9 million variant nucleotide
positions in the human genome. A total of 68 300 non-syn-
onymous SNPs were identified through the 1000 Genomes
pilot project, 34 161 of which were found to be novel. A frac-
tion of these variations had been associated with various
diseases and assigned a biological role, which is one step
closer to establishing clinical relevance (Pennisi, 2010). For
example, a particular 7 SNP risk profile may aid in the man-
agement of BRCA2 mutation carriers in breast cancer (Anto-
niou et al., 2010), and a combination of several validated
‘low-risk’ SNP markers has been proposed to be useful in
breast cancer and prostate cancer risk prediction (Pharoah
et al., 2008; Zheng et al., 2008).

The protein-based indicator prostate-specific antigen
(PSA), encoded by the KLK3 gene at the kallikrein (KLK)
locus, is a well known and widely used oncogenic bio-
marker to diagnose and monitor prostate cancer progres-
sion after metastasis and treatment (Tan Olivia et al., 2006;
Lawrence et al., 2010). It has accrued many critics since its
use, however, mostly due to its non specificity and accu-
racy in establishing aggressive prostate cancer prognosis
over possible benign tumors, and on the identification
of set threshold levels to determine the need for invasive
techniques such as biopsies (Prensner et al., 2012), thus
calling for a timely investigation to fine-tune the efficiency
of PSA as a prostate cancer biomarker, possibly through
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the detailed investigation of the kallikrein gene locus and
the genetic variants at this locus, and to uncover the func-
tional aspects of this disease-associated region.

The KLK locus, which features among the seven
highly-ranked susceptibility loci in a multi-stage prostate
cancer GWAS (Kote-Jarai et al., 2008, 2011a), is clustered
in a tandem array of approximately 300 kilobases (kb)
on chromosome 19q13.4, and contains the largest cluster
of 15 homologous protease genes (Lawrence et al., 2010)
said to have evolutionarily emerged 330 million years ago
(Clements, 2008; Pavlopoulou et al., 2010). With the recent
imperative given to research on the KLK gene locus, many
significant gene — disease associations have been estab-
lished and previously unknown roles of KLK proteins
elaborated. Since the initial observation that the three clas-
sical kallikreins — human kallikrein 1 (hk1/KLK1), human
kallikrein 2 (hk2/KLK2) and PSA - are localized in this
region, an additional 12 newly-discovered kallikreins have
been mapped to the KLK locus (Paliouras and Diamandis,
2006). Their secreted extracellular nature makes the KLK
proteins potential targets as biomarkers that can easily be
analyzed by the well-established enzyme-linked immuno-
sorbent assay (ELISA) method. Apart from their importance
as potential cancer biomarkers, their imprint has also been
made in diseases like diabetes, skin disorders and neurode-
generative diseases (Paliouras and Diamandis, 2006).

We have reviewed the genetic architecture, genetic
isoforms, function and the role of kallikreins in disease
metastasis in previous articles (Tan Olivia et al., 2006;
Lawrence et al., 2007, 2010). To the best of our knowledge,
this article catalogs most of the identified SNPs within the
KLK locus and reviews the role of these polymorphisms
in various malignant and non-malignant diseases estab-
lished in the context of gene-association studies con-
ducted to date, with the objective of providing the reader-
ship with a consolidated resource on relevant SNPs in the
KLK locus for future disease association studies.

KLK SNP data-mining from SNPdb
and 1000 Genomes

We assessed all the SNPs recorded within +10 kb of
the KLK locus mapped in Genome Build GRCh37/hg19
(chr19:51312404..51587502), from the most popular public
database of SNPs, the National Center for Biotechnology
Information’s dbSNP (Sherry et al., 2001) build 132, using
the UCSC web-browser (http://genome.ucsc.edu/). From a
total of 4331 polymorphisms identified within the KLK locus,
3420 (73.4%) were found to be SNPs and 911 (26.6%) were



DE GRUYTER

insertion/deletion polymorphisms (indels) and/or mixed
type. A similar study was published by Goard et al., in 2007
using custom designed tools ‘ParSNPs’ and ‘LocusAnnotator’,
which generated a catalog of 1856 polymorphisms of which
1023 were validated (Goard et al., 2007). While in our analysis
a total of 2627 out of the 4331 polymorphisms were found to
be validated (Nov, 2011) either by frequency, two-hit, submit-
ter, cluster or by HapMap, which includes 2535 SNPs and 92
indels. (dbSNP uses certain validation methods to identify
SNPs for their relevance. By frequency, where at least one
submitted SNP in the cluster should have frequency data sub-
mitted; by cluster, which has two submissions with at least
one submission assayed with a non-computational method;
by submitter, with at least one submitter validated by inde-
pendent assay. By two-hit/two-allele signifies that all alleles
have been observed in at least two chromosomes). Five-hun-
dred-seventy-four SNPs out of 2627 have recently been discov-
ered from the 1000 Genomes database (Siva, 2008; Pennisi,
2010). A total of 2150 SNPs were shown to have a minor allele
frequency (MAF) >1% in the European population.

Our further analysis was restricted to validated poly-
morphisms only in an attempt to avoid analysis of false-
positive records in the dbSNP database that might have
arisen due to sequencing artifacts. Based on the nature of
their alleles, 1678 (66.2%) out of the 2535 validated SNPs in
the KLK locus (66.2%) were C—T transitions (or G—A on
the opposite strand), and 464 (18.3%) were C—A (G—T on
the opposite strand), while 234 (9.2%) and 148 (5.8%) were
C—G and T—A transversions, respectively. The records for
11 SNPs, which were reported to constitute more than two
alleles, were not classified in the above groups. Considering
the functional effects of SNPs based on their position to the
nearest gene, and as defined by the UCSC browser, the most
prevalent class annotations corresponded to those lying in
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M Coding
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non-coding intronic class (678/2535; 26.7%), untranslated
region (113, 4.5%) and gene locus region polymorphisms
(241, 9.5%, present near the 3’ or 5’ of the gene). A smaller
proportion of polymorphisms were associated with coding
regions in the KLK locus (97/2535; 3.8%), with 35% syn-
onymous, 62% missense and 3% nonsense changes. The
remaining polymorphisms not attributed to any position
class by dbSNP (1406/2535; 55.4%) may refer to either inter-
genic or unannotated polymorphisms (Figure 1).

Functional KLK SNPs: in silico annotation

Functional SNPs are those polymorphisms that, depend-
ing on their position with respect to a protein coding region
and/or a regulatory site, can affect the gene function and
thus have a tendency to alter the cellular processes and
functioning of the cell. Figure 2 details various web-based
tools that can be used for the detailed in silico prediction
and analysis of potential functional roles of the KLK SNPs.
To this end, data for 1404 out of 2535 SNPs were retrieved
using ‘FuncPred’ (http://snpinfo.niehs.nih.gov/snpfunc.
htm) from the SNPinfo web-server (http://manticore.niehs.
nih.gov/snpfunc.htm), which assesses multiple functional
prediction programs as well as calculating the regulatory
potential score and conservation scores of SNPs (i.e., protein
stability, splicing regulation, transcriptional regulation and
post-translational modification), but lacking updated SNPs
information from the 1000 Genomes project. Fourteen SNPs
(rs11670728, 1s12974899, 1512978483, 152569522, 152659056,
1528384475, 153212811, 153212840, 153212846, 153760739,
1558876874, 157252452, 153212850 and rs3745541) were pre-
dicted to alter a transcription-factor binding site. Nine SNPs
(rs1624358, 1516988799, 152736433, 1528384475, 1535192866,

Missense M Nonsense

Figure1 Position-based class annotations associated with validated KLK polymorphisms in dbSNP as downloaded from the UCSC browser.
Note: As multiple transcript variants are known for each KLK gene, the functional class annotations may vary based upon the transcript
under consideration. In the current annotation, single nucleotide polymorphisms have been labeled on a preferential basis, e.g., coding
region preferred over untranslated region (UTR), followed by intronic and near gene locations.
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Splicing regions
Human Splice Finder (HSF)
ESEFinder, ESRSearch, FAS ESE, PESX,
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TRANSFAC, JASPER
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Figure 2 An overview of some of the web-based tools used are represented relative to the single nucleotide polymorphism location in a

gene (Figure adapted from Lee et al., 2009b).

Each single nucleotide polymorphism should be further examined for its functional effect with respect to each category (i.e., protein coding,
splicing regulation, transcriptional regulation and post-translation) using a series of algorithms.

1s61752567, 1s7259651, rs10403407 and rs2659094) were
predicted to alter the exonic splicing enhancer sites and
disturb splicing regulation, while six might abolish the
splicing domain itself. The PolyPhen (http://coot.embl.de/
PolyPhen/) tool used by FuncPred (Adzhubei et al., 2010)
estimated the structural and functional impact of an amino
acid substitution and predicted five SNPs to be deleterious
(rs1048328, rs198977, rs5515, 1510422897 and rs183854). The
SNPs3D software (http://www.snps3d.org; Yue et al., 2006)
was used to predict any deleterious effect of SNPs on protein
function, which it does by making predictions based on the
estimated impact of a non-synonymous SNP on protein sta-
bility, or considering conservation of the given amino acid
within a protein family. Eleven SNPs (rs17632542, 1s5515,
15198977, 156072, 3733402, 1s3733402, 154253325, 154253379,
1s2569527, 1s1048328 and rs183854) were predicted to be
affirmative in their deleterious effect on protein functional-
ity by SNPs3D. Twenty-four SNPs were predicted to have a
high conservation score of >0.4 and three SNPs (rs7245858,
1s2691209 and rs16989073) to have a score of 1.

Another important class of functionally relevant
SNPs are polymorphisms present at or near the micro-
RNA binding sites of functional genes (miRSNPs) with the
potential to interfere with miRNA function, thus affecting
gene expression (Pelletier and Weidhaas, 2010). Among
the KLK SNPs, four (rs10426, 1s2691258, rs58682039 and
1s61269009) were predicted to alter miRNA-binding sites,
as predicted by Miranda (http://www.microrna.org/
microrna/home.do), while the Sanger method (http://
www.mirbase.org/) predicted nine miRSNPs (rs2411334,

152569735, 152659092, 15268883, rs4846, 159524, 1512151211,
151654555 and rs2232539) within the KLK locus.

Functional KLK SNPs: experimental
validation

Apart from the various in silico methods mentioned above,
naturally-occurring polymorphisms identified in many
human KLK genes (e.g., KLK1, KLK2, KLK3 and KLK12)
have had their functional role established through labora-
tory investigation, as summarized in Table 1.

KLK1 activity has previously been reported to
decrease in people with primary hypertension and to
be partly inherited, which led to the investigation of the
association of KLK1 exon 3 non-synonymous polymor-
phism Arg77His (dbSNP ID rs5515) with urinary KLKI
activity in hypertensive individuals (Slim et al., 2002).
Out of the 66 patients analyzed, five who were heterozy-
gous for the Arg77His polymorphism were seen to harbor
statistically significant down-regulation of urinary KLK1
activity. In vitro functional analysis of the activity of the
wild-type or polymorphic KLK1 protein confirmed this
decreased activity in the presence of the histidine residue,
and modeling using crystallographic data suggested this
residue may alter substrate binding. The same labora-
tory performed a follow-up study of this finding in nor-
motensive subjects and confirmed the reduced activity in
those carrying the histidine allele (Slim et al., 2002). In
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addition, the individuals heterozygous for Arg77His also
showed inappropriate remodeling of the brachial artery,
which suggested implications for cardiovascular disease
(Azizi et al., 2005). These studies support the finding
of SNP rs5515 in the in silico analysis mentioned above,
which also predicted it to possibly be deleterious. Another
KLK1 coding SNP, GIn145Glu (rs5516), was not shown to
affect urinary KLK1 activity in this study (Slim et al., 2002).
Incidentally, a functional analysis in 1997 reported SNPs/
fragment length polymorphism in the promoter region of
KLK1 (between -133 and -121 with respect to the transcrip-
tion initiation site) to be associated with decreased KLK1
gene expression (Table 1; Song et al., 1997).

KLK2 displays a common coding region polymor-
phism that substitutes Arg250 for a tryptophan residue
(rs198977). Experimental analysis using recombinant
KLK2 in insect cells revealed a lack of trypsin-like activity
by the polymorphic KLK2 protein (Table 1; Herrala et al.,
1997). The rs198977 SNP has also been shown to be asso-
ciated with significantly decreased levels of serum KLK2
in two large studies (Nam et al., 2003; Klein et al., 2010),
and our in silico analyses in the last subsection indicated a
possibly damaging/deleterious effect. This SNP has been
the subject of much investigation in relation to prostate
cancer risk and will be discussed later in this review.

The KLK3 15266882 SNP is one of the most interest-
ing functional SNPs in the context of prostate cancer sus-
ceptibility. Residing within one of the androgen response
elements (AREs) of KLK3, ARE1, various studies have
reported its association with increased serum PSA levels
(Xue et al., 2001; Medeiros et al., 2002; Xu et al., 2002; Rao
et al., 2003; Schatzl et al., 2005). Functional studies on
15266882 attribute KLK3 gene expression alteration to dif-
ferential binding of ARE1 to the androgen receptor (Table
1) and enhanced transcriptional response to androgens.
They also show increased prostate cancer susceptibility
in the presence of A/A genotype (three-fold risk) and A/G
genotype (2.4-fold risk; Lai et al., 2007).

Vasilopoulos et al. investigated the KLK7 3’ untrans-
lated region AACCins5874 insertion polymorphism for
functional effects on KLK7 expression and observed an
increased expression in the presence of the insertion
(Table 1; Vasilopoulos et al., 2011), although no convinc-
ing association of this polymorphism with disease has
been established to date.

The KLK12 intronic c.457+2T>C polymorphism, i.e., a
T to C substitution in the second nucleotide of intron 2,
was claimed to be associated with a splicing abnormality
(Table 1), with the expression of the human KLK12 classi-
cal mRNA and the protein (hK12/KLK12) corresponding to
the putative serine protease being absent in individuals
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with a c.457+2C/C genotype but not in individuals with the
T/T or T/C genotypes (Shinmura et al., 2004). However,
the small number (n=22) of samples considered in the
analysis cells for replication in a larger set for results to be
validated and conclusively confirmed.

Additional experimental studies are required to vali-
date the functional role of the SNPs shortlisted by the in
silico methods mentioned above.

Genetic architecture of the KLK
locus: haplotypes and tagging

Alleles of SNPs in close physical proximity to each other
are often correlated, and can be represented as haplo-
types. Linkage disequilibrium (LD) is the occurrence of
some combinations of alleles within a population more
or less often than would be expected from a random
formation of haplotypes from alleles (Devlin and Risch,
1995). LD is represented by an r?> or a D’ value, which is
calculated based on the difference between observed and
expected allelic frequencies (assuming random distribu-
tions). Geneticists commonly use the threshold of 2 >0.8
to measure which SNPs are in LD with other SNPs. To
draw the LD map of the KLK locus, we used the HapMap
Public Release 27, Build 36 (http://hapmap.ncbi.nlm.nih.
gov/cgi-perl/gbrowse/hapmap27_B36/#search). All data-
base SNPs within the Centre d’Etude du Polymorphisme
Humain (CEPH) population (Utah residents with ancestry
from northern and western Europe) were plotted using the
Haploview 4.2 software (http://www.broadinstitute.org/
scientific-community/science/programs/medical-and-
population-genetics/haploview/downloads; Barrett et al.,
2005).

A total of 262 SNPs were genotyped in HapMap for a
total of 205 individuals; 19 SNPs had a frequency of <0.01,
and so were not included in haplotype analysis. A total
of 33 LD blocks were identified for the 15 KLK genes, as
shown in Figure 3. A tag SNP is a representative of a group
of SNPs in a region of the genome with high LD. Tag SNPs
are useful in whole-genome SNP association studies
(described in detail later) as it is then possible to confi-
dently predict genotypes for a number of different SNPs
without assessing every SNP in a chromosomal region.
The number of tagging SNPs within the KLK loci required
to represent those HapMap SNPs with a frequency of <0.01
was determined using the ‘Tagger’ functionality with Hap-
loview by means of a pairwise analysis of LD with an r?
threshold of 0.8. Genotyping of 156 representative tagging
SNPs is required to cover the 243 KLK variants based on
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Data from the HapMap database European population was used.
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a pairwise analysis of LD with an r? threshold of 0.8. As
discussed above, the 1000 Genomes project is identifying
many more genetic variants than those included in the
HapMap database, and hence a vastly refined LD map of
the KLK locus can be produced when the data are released
in a user-friendly format.

Recently, Parikh et al. (2010) generated a comprehen-
sive LD map of common SNPs and indels through deep
sequencing analysis of a 56 kb region covering the KLK15-
KLK3-KLK2 genes (chr 19: 56,019,829-56,076,043 bp;
NCBI Build 36.3) in 78 unrelated individuals of European
ancestry. A total of 555 polymorphic loci were identified,
including 116 novel SNPs and 182 novel indels. Based on
tagging analysis, 144 SNPs are necessary to tag the region
at an r? threshold of 0.8 and MAF of 1% or higher, while 86
loci are required to tag all SNPs with a MAF >5%. Further,
these sequence data augment coverage of this region by
only 35% and 78% compared to variants in dbSNP and
HapMap, respectively. Thus, additional studies on LD
mapping and tag SNP selection based on deep sequenc-
ing data are highly recommended.

Genetic association studies
and KLK SNPs

Numerous studies have been performed to investigate
SNPs found in the KLK genes for their malignant and
non-malignant disease associations. The majority of
SNP association studies have focused on their effects on
cancer risk, particularly prostate cancer. Presumably, this
was originally because of the identification of PSA/KLK3
in the etiology of this disease, and more recently because
of results from large genome-wide studies implicating
this locus in prostate cancer risk. Below we review the
various SNP association studies carried out to determine
disease susceptibility and the methods used to perform
these analyses. The genotyping for the association studies
was conducted on blood genomic DNA unless otherwise
specified.

Association studies on low risk variants in
KLK genes

Inherited genetic variants can be segregated into two
categories: rare high-risk genetic variants (or mutations)
and common low-risk genetic variants, such as SNPs. This
review subsequently focuses on common, low-risk genetic
variants or SNPs of the KLKs and the genetic approaches

DE GRUYTER

used to identify these. While these SNPs have much
weaker effects than high-risk genetic mutations, they are
common and may have a large population attributable risk
(>5%) and together could contribute to a complex disease
phenotype (Pestell, 2008). A complete and detailed list
of SNPs analyzed in gene-association studies in previous
research initiatives, including those that failed to reach
statistical significance, has been included in the supple-
mentary tables.

Pre-GWAS KLK candidate gene-association
studies

Prior to 2007, the candidate-gene approach was the pre-
dominant method used to explore inherited low-risk
genetic variants. This approach is based on a priori knowl-
edge about the gene(s) of interest in the pathogenesis of
the phenotype and involves an examination of a relatively
small number of genetic variants (between 1 and 100
SNPs; Savage, 2008). The approach has led to the iden-
tification of a number of SNPs that may influence the risk
of hormone-related cancers, particularly prostate cancer,
with instances of ovarian cancer and breast cancer, as
listed in Table 2.

The most frequently analyzed KLK SNP before 2008
was 15266882 (G-158A) in the KLK3 locus; a significant
association with prostate cancer risk for this SNP was
originally reported by Xue et al., in 2000 (Table 2). Numer-
ous subsequent studies have revealed conflicting results.
Some have reported an association with the same allele
as the original study (Gsur et al., 2002; Medeiros et al.,
2002; Cicek et al., 2005; Lai et al., 2007), while others
have reported either a significant association in the oppo-
site direction (Chiang et al., 2004; Binnie et al., 2005) or
no association for this SNP (Wang et al., 2003; Salinas et
al., 2005; Mononen et al., 2006; Severi et al., 2006; Cun-
ningham et al., 2007; Pal et al., 2007; Penney et al., 2011).
A meta-analysis of all studies published up until 2008
reported no evidence of association with prostate cancer
risk overall (Supplementary Table 1; Jesser et al., 2008).

Currently, significant associations have been reported
for SNPs located within KLK2, KLK3, KLK4, KLK10 and
KLK15 with breast cancer, ovarian cancer survival and
prostate cancer. Genes and significant SNPs of KLK2
(rs198977, rs2664155 and 1s1506684), KLK4 (rs806019),
KLK10 (rs3745535) and KLK15 (rs266851) found to be asso-
ciated with cancer risk or prognosis are detailed in Table
2. Information on subsequent studies, especially of those
SNPs that failed to reach significance, can be found in
Supplementary Table 1.
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Regarding the potential role of polymorphisms in non-
cancerous diseases, KLK1 has been the most intensively
studied KLK gene, perhaps because it was the first KLK gene
to be discovered. Of the 13 different non-malignant diseases
and traits investigated in KLKs (Table 3), the role of KLK1
in cardiovascular and kidney-related diseases has been the
focus of the majority of studies. A candidate gene associa-
tion study for the functional SNP rs5515 with risk of cardio-
vascular traits/disease did not report any association in the
two small candidate SNP studies performed to date (Sup-
plementary Table 2). Perhaps the most compelling finding
arose from research into hypertension in the Chinese Han
population, with several KLK1 polymorphisms indicating
an increased cardiovascular traits/disease risk (Table 3,
Supplementary Table 2; Hua et al., 2005; Zhao et al., 2007).
Other examples of disease associations include KLK4 for
AIH IIA1, KLK7 for atopic dermatitis, and KLK8 for intra-
cranial aneurysm, details of which can be found in Table 3.

A recent small cohort study (cases=218 and con-
trols=220) by Lee et al., performed pyrosequencing to
genotype the SNP site (+255G>A, rs2664155) in intron 1
of the KLK2 gene. A statistically significant association
between rs2664155 and male infertility (OR=0.47, 95%
CI=0.26—-0.85, p<0.05) was reported (Lee and Lee, 2011),
although no functional analysis towards this risk suscep-
tibility has been carried out to date.

Unless performed in a very large sample size from
a well-characterized population, the candidate-gene
approach is prone to spurious results. This is evident by
the number of follow-up studies performed that have
attempted to validate positive reports of KLK polymor-
phism disease associations that have, however, failed to
confirm original results (Supplementary Tables 1 and 2).

KLK genes in genome-wide association
studies

Since around 2007, genetic epidemiology has been trans-
formed by the availability of high-throughput genotyping
methods designed to provide an unbiased survey on the
effects of common genetic variants, called GWAS. GWAS
are studies wherein research subjects are typed for a large
number of genetic variants, typically between 300 000
and 1 000 000 polymorphisms, and the allele or genotype
frequencies are evaluated for differences between groups
(e.g., disease vs. non-disease groups). The advantage of
GWAS is that they allow for a wide search of genetic vari-
ants associated with disease without having to specify
a particular gene of interest, facilitating the mining of
potentially novel variants (Wellcome Trust Case Control
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Consortium, 2007). Due to the massive number of joint
statistical tests performed, however, there is a higher level
of type-1 error (false-positives). Statistical corrections
for multiple hypotheses testing are therefore essential
and a p<107 has been proposed as an appropriate sig-
nificance level for evidence of a genome-wide associa-
tion (Thomas et al., 2005). This means that large sample
sizes are required for GWAS to ensure adequate statisti-
cal power to detect an association with small p-values.
Since the advent of GWAS technology, highly statistically
significant and robust associations with SNPs in over 230
diseases and traits have been successfully identified (Hin-
dorff et al., 2011). The National Human Genome Research
Institute maintains a catalog of published GWAS that can
be accessed at http://www.genome.gov/gwastudies/.

A pioneering GWAS performed with 3268 cases and
3366 controls identified a prostate cancer susceptibility
locus between KLK2 and KLK3. The minor allele of an SNP
(rs2735839) in this region was reported to confer a 1.2-
fold decreased risk of prostate cancer (per allele odds
ratio [OR] 0.83, 95% confidence interval [CI] =0.75-0.91;
p=1.5x10"%; Table 4; Eeles et al., 2008). Following this
discovery, there have been a large number of studies
pursuing association studies of SNPs in the KLK region,
examining both prostate cancer risk and prognostic
features. The KLK gene associations found to be signifi-
cant to prostate cancer susceptibility are summarized in
Table 4, with non-significant associations mentioned in
Supplementary Table 3. Relevant studies are discussed
below.

The above GWAS-identified SNP, rs2735839, dis-
played a strong association with PSA levels (Table 4;
Eeles et al., 2008). However, there has been some debate
as to whether this SNP is truly associated with prostate
cancer or simply relates to PSA expression levels, since
male controls used for the stage 1 analysis were limited
to those with clinically low PSA levels (<0.5 ng/ml;
Ahn et al., 2008). Nevertheless, further investigation of
rs2735839 in additional large case-control sample sets
where controls were not screened for PSA levels did rep-
licate the association (Kote-Jarai et al., 2008). There have
been several studies performed to find more such risk
alleles, assessing the association of SNPs in the KLK2
and KLK3 region with PSA and hK2/KLK2 levels (Supple-
mentary Table 4).

An evaluation study was carried out by Bensen et al. to
determine SNP associations with prostate cancer aggres-
siveness in Afro-American and European-American men
from the North Carolina-Louisiana Prostate Cancer Project.
Genotyped DNA from blood and buccal cell samples dem-
onstrated three SNPs in the KLK3 region (i.e., 1s266870,
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2 N En rs1058205 and rs2735839) showing significant associations
§ g 2 < with prostate cancer risk and significantly associating with
;g g = z PSA levels in Afro-American men (Bensen et al., 2012), as
o= = e detailed in Table 4.
bn
o ) ) E Even though no significant polymorphisms in KLK4
° I S were identified relating to prostate cancer susceptibil-
- A B g ity, recent efforts by a multistage GWAS i.e., stages I and
Eolg=88cc¢ 5 I of the Cancer Genetics Markers of Susceptibility Ini-
w O w a9 na o S <
Cel8F28T22 = tiative have established gene interactions of rs2735839
win| Em G Em G2 a
2|45 4°9 S (taken as a conditioning SNP) with rs1558874, which is
3 — © 3 intronic to PRRX2 (p=4.80E-5, multiplicative OR =1.33),
2 © I =] "
5 g °S‘ e 2 and rs17714461 (p=7.14E-4) located 15 kb from KLK4 and
(%}
§ N N '—;“ = 2 60 kb from the conditioning SNP, although not demon-
w w - QO
< = = - = 4 strating LD with it (1> <0.001). Other notable interactions
P 2
° p of 1s2735839 were with rs17714461 (close to KLK4) and
E k)
S R R 2 1s1558875, an intronic SNP to PRRX2, both SNPs being
o wn © . . . . . .
» implicated in prostate cancer cell proliferation by previ-
E ous studies (Ciampa et al., 2011).
" 2 A study of the KLK12 gene locus (cases=3153 and
£ 2 controls=3199) established an association between
wn
§ N N E s 153865443, a SNP in KLK12 having a marginal statistically
b 0 © _5 significant association with prostate cancer risk, and
~ o
S o a requirement for further validation in a larger sample
> ~ ~N < s <
= @ § E, @ § E,, 8 < o group (Supplementary Table 3).
£ S O © E v S ) . . ..
s ESHES55®E = Another recent interesting finding was that KLK14 was
w L ¥ Owx oo = 2
o inversely androgen regulated in prostate cancer cells (Lose
2 y
& et al., 2012). The potential of this gene in prostate cancer
£ ‘= prognosis is promising, with the further identification of
g S
< ) S three SNPs around the KLK14 locus being associated with
= 2 =
e g S 2 prostate cancer aggression. The SNPs were rs17728459
,E,, s £ ar and rs4802765, located 9 kb and 2 kb upstream of KLK14,
£ = © & . .
a & o " respectively, and rs35287116, which encodes a p.GIn33Arg
= .8 < v = e . . . .
e g = @2 substitution in the KLK14 signal peptide region (Lose
88 - % 8 4 et al., 2012) listed in Table 4.
= =
= c ca In the process of GWAS follow-up, our study of the
o e s o
5 =y £ 05 § Prostinogen (KLK15) gene identified rs2659056 to be
k=4 — ~ T @
g .2 é E g2 associated with tumor aggressiveness in a Queensland
E £ v ) S g o (QLD) study cohort (cases=1011 and controls=1405). This
a 8 = = ]
| £ 2 £ 9% = was again confirmed in replicate sets of UK GWAS stage
< Sllivs = - 20
g g 0 b £ 3 study. A highly significant association with Gleason
N~ - =
%‘ = 7] S £ s%e score was observed in the combined analysis from dif-
[-% a == o .S 2
o~ °oF o ferent datasets (Table 4; Batra et al., 2011a). However,
% °§° ;U S é 3 further experiments are needed to establish the func-
@ = - § : § tional relevance of the RORalpha transcription-factor
2 @ e i binding alteration predicted in silico by the study (Batra
- g 228 et al., 2011a).
552
3 % SES The intrinsic design of the GWAS means that sig-
£ n 9 o o« g .
= 5 x 2 2 nificantly associated SNPs are seldom those that are
S g ?,” : é 2 causally linked to the phenotype, and are instead in LD
%\ S 8 2 g s with a functionally important variant. Identification of
e 3 & R~ the causal variant is important for understanding of the
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molecular mechanisms underlying the pathogenesis
of disease. Moreover, sincere efforts are being made to
include various ‘omics’ levels from a systems biology
viewpoint (Quigley and Balmain, 2009), epigenetic con-
siderations and gene-environment interactions to boost
casual variant determination and also in the follow-up
functional analysis of isolated SNPs in the post-GWAS
era (Wang et al., 2011). Consequently, additional inten-
sive studies are required to complement GWAS to iden-
tify disease-causing alleles and their functional role in
pathogenicity, such as fine-mapping and imputation
studies.

Fine-mapping studies on GWAS identified
KLK SNPs

One method that can be used to identify causal SNPs
involves the performance of fine-mapping studies. These
involve examining the association of all known common
sequence variants in the vicinity of the GWAS-identified
SNP with the disease of interest. Appropriate common
sequence variants may be identified by accessing SNP
databases, using sequencing data from the 1000 Genomes
project, or by performing re-sequencing studies of the
region of interest.

As discussed previously, Parikh et al. (2010) per-
formed deep sequencing analysis of a 56 kb region
flanking the GWAS-identified prostate cancer risk SNP
rs2735839 in KLK3. Using these sequencing results, they
then selected 24 SNPs to tag the region surrounding
rs2735839 and genotyped these in five prostate cancer
case-control studies from the US, France, Norway and
Finland (cases=3522 and controls=3338; Parikh et al.,
2011). While no strong association was observed with the
original KLK3 variant, rs2735839 (p=0.20), there was evi-
dence of an association of three highly-correlated SNPs
(rs17632542, 1s62113212 and rs62113214) with prostate
cancer risk (rs17632542 per allele OR 0.7, 95% CI =0.67-
0.89, p=3.41x10*). When stratified by disease aggressive-
ness, an association was only observed among less severe
prostate cancer cases (Gleason score <7 and disease
stage <III). The rs17632542 SNP is potentially functional,
introducing a non-synonymous amino acid change from
isoleucine (hydrophobic) to threonine (polar) at position
179 of the KLK3 protein. This amino acid is conserved
in humans, chimpanzee and rhesus monkeys but not in
other mammals or vertebrates. It is unclear whether this
amino acid change has a benign or neutral functional
impact and it is currently being investigated (Parikh
et al., 2011).

DE GRUYTER

Imputation: a new tool for fine-mapping
studies

Another method that can be used to refine GWAS signals
and identify causal SNPs is imputation. Genotype imputa-
tion is the process of predicting (or imputing) genotypes for
known variants that are not directly assayed in a sample
of individuals. These ungenotyped variants can then be
tested for association with the trait. Imputation involves
the comparison of study samples genotyped for a rela-
tively large number of genetic markers (100 000-1 000 000
SNPs) to a reference panel of haplotypes derived from a
number of individuals genotyped at all markers of interest
(Browning, 2008). To date, the HapMap database has typi-
cally served as this reference panel, with Phase II of this
project (Frazer et al., 2007) including over 3.1 million SNPs
genotyped on four panels of individuals. Other reference
panels, such as the 1000 Genomes project, have recently
been made available.

A recent paper by Kote-Jarai et al. (2011a) undertook
an imputation approach to refine the association between
SNPs in the KLK3 GWAS-identified region and prostate
cancer. Using genotyping data from a two-stage GWAS
using British and Australian samples (Eeles et al., 2009)
and the Cancer Genetic Markers of Susceptibility study
(http://www.cgems.cancer.gov/), genotypes were imputed
for 197 and 312 SNPs from HapMap Phase II and the 1000
Genomes project, respectively. Interestingly, the same
previously unreported SNP identified in the fine mapping
study by Parikh et al., in 2011, 1517632542, was also found
to be strongly associated with prostate cancer risk in
this study. The association was subsequently confirmed
by direct genotyping of 10 405 cases and 10 681 control
individuals from the three stages of the British/Austral-
ian GWAS. This association remained strong after adjust-
ing for the GWAS-identified SNP rs2735839 (p=8.5x10").
The authors suggest rs17632542 to be the most plausible
functional variant and multiple molecular dynamic sim-
ulations revealed that the threonine variant displayed
superior stability in solution with likely displacement
of the kallikrein loop (Kote-Jarai et al., 2011a). The func-
tional consequences of these in silico findings are yet to
be established.

Aside from prostate cancer, the KLK locus has not
specifically been identified by GWAS to be associated
with any other disease or trait. Coverage of genetic vari-
ation in the KLK locus by the genotyping chips used in
these studies is quite poor, however, ranging from just
6% of the SNPs in the KLK9 gene to 55% in the KLK14
gene (Lose and Batra, unpublished data). Hence, more
comprehensive and targeted investigations of SNPs in
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the KLK locus and various diseases are still warranted.
In addition, the majority of GWAS studies have been
performed in Caucasian subjects, thus genome-wide
studies of Asian and African/African-American popula-
tions may yet reveal or confirm a role for the KLKs in
other diseases.

Association studies on high-risk
variants in KLK genes

Rare genetic variants are considered to have a larger
phenotypic effect on disease risk. As lethal variations are
not favorable to propagation through natural selection,
many of these have been identified using family-based
studies (Marian, 2012). Rare variants were commonly
overlooked in GWAS analysis due to their inability to reach
statistical significance relative to other common variants.
Thus there was a conceptual shift of hypothesis from
common disease to common variant (CD-CV) to rare vari-
ants to common disease (RV-CD). This has been guiding
next-generation sequencing measures to direct focus
towards high-risk variants in order to establish complex
disease associations (Marian, 2012).

Only one KLK gene, KLK4, has successfully been iden-
tified as containing a high-risk, disease-causing muta-
tion. Amelogenesis imperfecta (AI)-hypomaturation type
ITA1, as listed in Table 3, is a disorder of the teeth that
results from incomplete mineralization of tooth enamel.
KLK4 was shown to be one of several factors critical for
normal enamel formation (Simmer and Hu, 2002) and was
therefore investigated for mutations in Al families. The
initial study identified a truncating mutation, p.W153X,
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