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Abstract: One of the biggest challenges of today’s society is
cancer, which imposes a significant financial, emotional and
spiritual burden on human life. Breast cancer (BC) is one of the
most common cancers that affects people in society, especially
women, and due to advanced treatment strategies and primary
prevention, it is still the second cause of cancer-related deaths
in society. Various genetic and environmental factors are
involved in the development of BC. MicroRNAs (miRNA)s are
non-coding RNAs, that the degradation or inhibition of them
plays an important role in the prevention or development of
cancer by modulating many cellular pathways including
apoptosis, drug resistance, and tumorigenesis. Drug resistance
is one of the important defense mechanisms of cancer cells
against anticancer drugs and is considered one of the main
causes of cancer treatment failure.DifferentmiRNAs, including
mir-7, mir-21, mir-31, and mir-124 control different cell activ-
ities, including drug resistance, through different pathways,
including PI3K/AKT/mTOR, TGF-β, STAT3, and NF-kB. There-
fore, cell signaling pathways are one of the important factors

that miRNAs control cellular activities. Hence, in this study, we
decided to highlight an overview of the relationship between
miRNAs and signaling pathways in the development of drug
resistance in BC.
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Introduction

Contrary to the increasing prevalence of breast cancer (BC) in
recent decades, the death rate from this cancer has decreased
[1]. In the past few years, the prevalence of BC has statistically
increased more than lung cancer. BC, which accounted
for 11.7 % of all cancers in 2020, affected about 2.3 million
individuals. Since the use of mammography, the rate of BC
detection has increased, a trend that continues with the aging
of the population. The death rate from BC is lower in devel-
oped countries than in developing countries. In developed
countries, due to the improvements in technology, modern
treatments, and diagnostic methods, the death rate from BC
has declined [2, 3]. The mortality rate of BC in China is the
highest among women aged 13–44 years. The average age at
which BC is diagnosed in China is about 49 years, which is
significantly different from that in the United States, which is
about 60 years [4, 5]. The pathophysiology of BC is complex
and not fully understood. Female gender and aging are the
most important risk factors [6]. Among the key genetic mu-
tations associatedwith BC are BRCA1-associated RINGdomain
1 [BARD1], BC1/2 [BRCA1/2], RAD51 homolog C [RAD51C], ATM,
BRCA2 [PALB2], and checkpoint kinase 2 [CHEK2]. Premature
menstruation, latemenopause, a high bodymass index (BMI),
dense breasts, and hormone therapy after menopause are
BC risk factors [7–9]. One of the most basic methods of BC
treatment is surgery along with auxiliary treatments, such as
chemotherapy, hormone therapy, radiotherapy, or a combi-
nation of these approaches. Cancer cells become resistant to
drugs and treatment via various mechanisms that have been
identified during treatment. Multiple drug resistance (MDR),
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ATP-binding cassette (ABC) transporter, adaptive signaling
pathways, unprogrammed apoptosis, and epigenetic
changes are among the mechanisms that contribute to
drug resistance in cancer cells [10]. miRNAs are a group of
non-coding RNAs with approximately 20–25 nucleotides
that bind to the 3′ untranslated region (UTR) of mRNA
through their 5′ UTR and suppress gene expression after
transcription. Gene expression is involved in metastasis,
carcinogenesis, and cancer response. Growing studies
have shown that the dysfunction of miRNAs is associated
with drug resistance in cancer cells. miRNAs can affect the
expression of hundreds of genes, or a target gene can be
regulated by several different miRNAs. One of the most
important factors that regulate the function of miRNAs are
exosomes, which transfer miRNAs from donor cells to
recipient cells in the tumor microenvironment [11–14].
On the other hand, various studies have revealed that
miRNAs play a role in different cellular processes,
including angiogenesis, apoptosis, cell growth, cell prolif-
eration, and inflammation. miRNAs contribute to these
cellular processes mostly through interaction with cellular
signaling pathways [15]. Moreover, signaling pathways
play a vital role in controlling cellular processes, including
cell division, transcription, translation, cell cycle, cell
growth and proliferation, and apoptosis [16, 17]. According
to the above-mentioned findings, miRNAs are one of the
main regulators of cellular processes, exerting their con-
trol mostly through interaction with signaling pathways.
Therefore, in this review, we decided to clarify the rela-
tionship betweenmiRNAs and signaling pathways in order
to examine their role in the development and progression
of BC, or conversely, in preventing the development and
progression of this disease.

Methods

In the present study, we conducted literature search using
the PubMed database, Semantic Scholar, and Google Scholar
search engines. It is noteworthy that in this review, we
identified articles thatwere related to our research topic and
were written in English. In addition, the search for articles
was conducted between November 2022 and December 2023.
To find articles related to the topic, keywords including drug
resistance, miRNAs, breast cancer, and signaling pathways
were used. Moreover, in the review article, we were willing
to examine the articles related to this topic from 2001 to 2023.
Therefore, articles that were outside the specific time frame
of our study or were in languages other than English were
excluded.

BC

The second leading cause of cancer death among women is
BC. One of the most effective methods to prevent BC is early
detection. In developed countries, due to early detection, the
survival rate of patients with BC is about 80 %. In recent
years, significant progress has been made in understanding
the pathogenesis of the disease, diagnostic methods, and
drug resistance mechanisms through the study of BC stem
cells (BCSCs) [18]. There are two main theories about the
origin of BC: The random theory and the cancer stem cell
theory. The random theory states that cancer originates
from a single cell and various mutations can accumulate in
this cell, leading to its transformation into a cancerous cell.
Cancer stem cell theory suggests that stem cells are the origin
of all tumor subtypes. Different genetic and epigenetic mu-
tations in progenitor and stem cells lead to different cancer
phenotypes [19]. BC is divided into different groups based on
the presence of biomarkers, metastasis, tumor size, estrogen
and progesterone receptors, and ERBB2 receptor. Stage zero
BC, referred to as ductal carcinoma in situ (DCIS), is a non-
invasive form of BC. Stages I, IIa, and IIb are the initial
invasive stages, and stages IIIa and IIIb involve advanced
local invasiveness. The fourth stage is the metastatic stage
[20, 21]. DCIS involves the microcalcification of the ducts of
the breast. Women with DCIS are treated with radiation
therapy, lumpectomy, andmastectomy. Systemic treatments
include immunotherapy with monoclonal antibodies,
chemotherapy, radiation therapy, and endocrine treatments
before and after surgery for non-metastatic BC. In the met-
astatic stage, BC metastasizes to the lungs, liver, and brain.
Patients with metastasis can rarely be cured, and their sur-
vival rate is 2–3 years [22, 23].

However, treatments such as radiation therapy, chemo-
therapy, immunotherapy, and surgery are performed for pur-
poses such as reducing the symptoms and improving patients’
quality of life [24]. BC treatment faces many challenges. The
emergence of miRNAs as biological biomarkers has provided a
new perspective on the treatment and diagnosis of BC. In BC,
miRNAs play a significant role in the growth and proliferation
of cancer cells and tumorigenesis [25]. There are many simi-
larities between the growth of cancerous cells and normal
cells. In healthy humans, cell growth is controlled by complex
signaling pathways that allow cells to communicate with
their surrounding environment. However, this regulatory
system is disrupted in cancer cells, causing them to escape
from the mechanisms that control the growth, prolifera-
tion, and migration of cells. Therefore, the activating
mutations of proto-oncogenes lead to the activation of
more signaling pathways and the inactivation of tumor
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suppressors, resulting in the elimination of negative regu-
lators of signals [26, 27].

Drug resistance

One of the main problems in cancer treatment is the drug
resistance that develops in cancer cells when exposed to
drugs and chemicals. This complex mechanism operates via
correlation with complicated signaling pathways. Cells
usually develop drug resistance via increasing uptake and
decreasing efflux through ABC drug transporters, the
glutathione S-transferase π (GSTπ) gene, tumor microenvi-
ronment regulation, evasion from apoptosis, and the BC
resistance protein (BCRP) gene. One of the most important
members of the ABC transporter group is P-glycoprotein (P-
gp), which is encoded by the MDR1 gene. Overexpression of
P-gp causes resistance to anticancer drugs including
tamoxifen, anthracyclines, platinum-based drugs, plant al-
kaloids, and taxanes. According to previous studies, changes
in the structure and function of the estrogen receptor (ER),
including ER gene mutations, reduction or loss of ER
expression, abnormality of ER activators, post-translational
modification of ER, and interference between ER and phos-
phoinositide 3-kinase (PI3K)/AKT/mTOR, HER2, mitogen-
activated protein kinase (MAPK) pathways/ERK and HER2
are among the most important endocrine resistance mech-
anisms [28]. One of the factors controlling P-gp is miRNAs,
which modulate the drug resistance of cancer cells [29, 30].
As an example, in drug-resistant MCF-7, the expressions of
miR-345 andmiR-326 are suppressed. Increasing the levels of
these miRNAs directly by decreasing MRP enhances the
sensitivity of MCF-7 cells to chemotherapy drugs [31]. In one
study, miR-19 expression was reduced in the sensitive
MCF-7 cell line contrary to three MDR BC cell lines (BCRP,
MRP-1, and over-expressing MDR-1). miR-19 decreased the
sensitivity of cells to chemotherapeutic drugs in MDR cells
through modulating PTEN [32]. This paraclinical evidence
indicates that miRNAs modulate the drug resistance of BC
cells through different mechanisms, particularly signaling
pathways.

miRNAs

miRNAs, which are non-coding RNAs about 22 nucleotides in
length, are transcribed by RNA polymerases II and III. The
pre-miRNAs produced by Drosha and DGCR8 are processed
and generate 70-nucleotide RNAs. Pre-miRNAs are trans-
ported to the cytoplasm by exportin 5 and separated by
Dicer, producing 22-nucleotide RNAs. Then these mature

miRNAs interact with Argonautes and complexes with other
proteins to form the RNA-induced silencing complex (miR-
ISC), which combines with target mRNAs and causes the
degradation or inhibition of mRNA functions [33, 34]. Tran-
scription factors involved in mRNA transcription also con-
trol the transcription of miRNAs. In addition to the
transcription factor that plays a crucial role in the biogenesis
of miRNAs, the expression of miRNAs can also be regulated
by other factors, such as DNAmethylation. ThemiRNA binds
to the 3′ UTR of the target mRNA through its 5′ UTR. If the
miRNA is fully complementary to the target mRNA, the
target mRNA undergoes degradation; however, if themiRNA
is complementary to the mRNA in only a limited number of
nucleotides, the target mRNA is inhibited [35, 36] (Figure 1).
Growing studies have revealed that miRNAs significantly
contribute to tumor progression. miRNAs are differentially
expressed based on the tumor subtype, and tumors can be
classified based on the expression profile of miRNAs. Tumor
suppressor miRNAs are mostly located in fragile chromo-
somal regions; therefore, mutation or damage to these re-
gions leads to the disruption of tumor suppressor genes and
causes the upregulation of oncogenes. Moreover, the pro-
liferation of chromosomal regions encoding oncogenic
miRNAs that suppress tumor suppressor genes plays a key
role in cancer development [37–39]. According to the liter-
ature,miRNAs can affect self-renewal and drug resistance by
regulating the characteristics of cancer stem cells, such as
tumorigenesis. Therefore, many miRNAs are known as on-
cogenes or tumor suppressors in BC and regulate tumor
initiation, drug resistance, and metastasis [40, 41]. By tar-
geting ABC, miRNAs increase the chemosensitivity of cells to
chemical drugs. Additionally, miRNAs are associated with
drug resistance via othermechanisms. For example,miRNAs
cause drug resistance by regulating proteins and signaling
pathways that control important cellular processes, such as
cell cycle and drug resistance [42]. Mir-452 causes the resis-
tance of MCF-7 BC cells to adriamycin (ADR) by expressing
insulin-like growth factor 1 receptor (IGF-1R) [43, 44]. The
study by Zhang et al. revealed that miR-3646 leads to the
resistance of MCF-7 cells to docetaxel chemotherapy by
inhibiting the expression of glycogen synthase kinase 3β
(GSK-3β) and the subsequent induction of the GSK-3β/β-cat-
enin pathway [45] (Table 1).

Tumor microenvironment in drug resistance
of BC

The tumor microenvironment (TME), which is made of con-
nective tissue, consists of different cells and a network of
glycoprotein, proteoglycan and collagen called the extracellular
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matrix. Cellular components include endothelial cells, immune
cells, fat cells, and fibroblasts. Each of the cells plays its role in
themicroenvironment according to its nature.Mutations in the
stromaor epithelium lead tomutagenesis.Healthy stromal cells
are affected by factors secreted frommalignant cells, including
transforming growth factor-beta TGF-β, fibroblast growth fac-
tor (FGF), platelet-derived growth factor (PDGF), epidermal
(EGF), and vascular endothelial growth factor (VEGF) or
microvesicles such as exosomes are placed to get the charac-
teristics similar to them [46–48]. In BC, TME plays a funda-
mental role in tumor treatment response, tumor behavior, and
pathological examination for treatment management [49].
Cancer cellswithmetastatic propertyhada tendency tomigrate
to the desired places and grow. The seed and soil theory was

first presented by Stephen Paget. In this theory, metastatic cells
are considered as seeds and the place of growth is considered
as soil, and it points to the role of TME in cancer metastasis
[50, 51]. TME leads to chemoresistance to chemotherapy drugs
through an acquired mechanism or de novo pathway. Expres-
sion of ABCs, expression of tumor suppressor genes, and
oncogenes are involved in acquired MDR through cell-to-TME
matrix communication and cell-cell interaction. In the path of
drug resistance that is created e novo, cancer cells after being
exposed to treatment, the stromal tissue inside theTMEshelters
the cancer cells and induces stem formation in them, causing
chemical resistance. On the other hand, cancer cells that have
previously been exposed to drugs change their phenotype
leading to resistance to subsequent treatments [52–54].

Figure 1: miRNA biosynthesis.

Table : miRNAs that regulate drug resistance in breast cancer.

Drug miRNA Ref

Anastrozole miR-b or miR-, miR- []
Capivasertib miR--p []
Fulvestrant microRNA-/, miR-, miR-, miR- [–]
Lapatinib ditosylate miR- []
Letrozole miR-a, miRNAa, miRNA [, ]
Olaparib miRNAs-a/b []
Palbociclib miRNA--p, miR-b-p, miR-, miR--p, miR-b, miR--p [–]
Pertuzumab miRNA-, miR-a-p [, ]
Trastuzumab miRNA--p, miR-, miR-b-p, miR--p, miR--p, miR--p, miR-, miR- [–]
Tamoxifen miR-, miR-, miR-a, miR-, miR-b, miR-c, miR-, miR-, miRNA-b-p, miR- [–]
Doxorubicin miR-c, miR-, miR--p, miR-, miR-, miR--p, miR-, miR--p, miR-, miR-a [–]
Adriamycin mir-, mir-a, mir‐, mir-, miR- [–]
Cisplatin Let-i, miR-, miR-, miR-a, miR-a, mir-/, mir-, mir-b, mir-c [, ]
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miRNAs and breast CSCs

Growing evidence shows that many cancers are curable af-
ter they grow and metastasize to other organs, although
early-stage cancers are easier and more cost-effective to
treat. However, by treating cancers in the early stages, a
number of cancer source cells remain that can grow later
and cause cancer recurrence and metastasis. These stem
cells are said to be found in every stage of cancer and are
similar to stem cells and are known as CSCs. It is believed
that the activity of CSCs is mostly seen inmalignant and solid
cancers including breast, lung, liver, and brain cancer [28,
55]. CSCs show resistance to chemotherapy and cause cancer
resistance [56]. It is said that the normal homeostasis of
cancer stem cells is controlled by signaling pathways.
Nevertheless, it is not far-fetched to expect that these
signaling pathways are activated or suppressed in breast
CSCs. Among these pathways, β-catenin, JAK/STAT, Notch,
phosphoinositide 3-kinase (PI3K)/Akt, TGF-β, and NF-κB
pathways are involved in CSC homeostasis [57, 58]. Since
CSCs cause drug and chemical resistance, therefore, target-
ing CSCs is one of the ways to treat cancers, including breast
cancer. One of the treatment methods is to target the
signaling pathways of CSCs. Targeting the surfacemarkers of
CSCs by monoclonal antibodies is one of the new treatment
methods. But this method of treatment is because: 1). Simi-
larity of markers of CSCs with normal SCs and other CSCs, 2).
Lack of some markers to classify CSCs, 3). The very small
presence of CSCs in cancer faces challenges. On the other
hand,miRNAs are another treatment option that can be used
alone or together with other treatment methods for CSCs.
One of the basic problems in the use of miRNAs is the
methods of providing miRNAs. The most basic delivery sys-
tem is non-viral systems, which due to their low efficiency
compared to viral systems, recently many efforts have been
made to increase their efficiency by enlarging the size of the
particles or increasing their surface area [59–63].

Interaction between signaling pathways and
miRNAs in BC

PTEN induces tumor suppression by inhibiting the PI3K
signaling pathway. PTEN, which is a phosphatase upstream
of Akt, converts phosphatidyl-inositol-3,4,5-triphosphate
(PIP3) to phosphatidyl-inositol-4,5-bisphosphate (PIP2), thus
inhibiting the PI3K pathway. Various studies have been
conducted on the relationship between the PTEN pathway
and miRNAs in the development of drug resistance in BC
cells. The study by Yuan et al. indicated that miR-130b in
MCF-7 and MCF-7/ADR cells causes resistance to ADR and
increases proliferation by targeting the PTEN-PI3K/Akt
pathway. In addition, in BC cells, miR-130b increases the
expression of p-Akt308 and p-Akt473. Interestingly, the effect
of miR-130b on p-Akt308 and p-Akt473 is reduced by
increasing the expression of PTEN. Overall, this finding
revealed that miR-130b, by acting on PTEN through the PI3K/
Akt pathway, increases the drug resistance and growth of
BC cells [64–66]. Manxin et al. found that the expression
of miR-132/212 through the PTEN pathway enhanced the
resistance of BC cells [67]. A study on the relationship
between miRNA-200c and drug resistance in MCF-7 cancer
cells showed that miRNA-200c increases the sensitivity of
MCF-7 cells to ADR by promoting the expression of PTEN and
E-cadherin while decreasing the expression of Akt and ZEB1
[68]. In the study by Shen et al., it was revealed that miR-155
suppresses SOCS6 mRNA and protein. By reducing miR-155,
SOCS6 levels are elevated, which can inhibit STAT3 through
miR-155 and cause cell growth [69]. The results of a study in
2021 indicated that exosomal miR-205 causes resistance to
tamoxifen, proliferation, and migration by targeting E2F
transcription factor 1 (E2F1) in BC cells and suppresses
apoptosis by phosphorylating Akt and activating the caspase
pathway. On the other hand, the overexpression of E2F1 or
the knockdown of miRNA-205 reverses this result [70].
Experiments on LINC00968 in BC showed that its expression

Figure 2: The interference of miRNAs with
signaling pathways associated with drug
resistance in breast cancer cells.
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in BC is low, while the expression of WNT2 is higher. In vitro
and animal studies have shown that the overexpression
of LINC00968 reduces drug resistance by silencing WNT2
through the recruitment of HEY1 and inhibiting the Wnt2/
β-catenin signaling pathway [71]. A study on the relationship
between LncRNA-HOX transcript antisense RNA (HOTAIR)
and resistance to doxorubicin (DOX) in BC cells showed
that lncRNA-HOTAIR reduces DOX resistance in these
cells through the PI3K/AKT/mTOR signaling pathway. It also
promotes apoptosis in MCF-7 cells and the DOX-resistant BC
cell line (DOXR-MCF-7) and can be a therapeutic target in BC
[72]. miR-124 causes BCSC sensitivity to DOX by interfering
with HIF-1 and STAT3 signaling pathways in DOX-resistant
BCSCs [73]. The research conducted by Bergamaschi et al.
showed that miR-451 increases the sensitivity of BC cells to
chemotherapy drugs by suppressing the epidermal growth
factor receptor (EGFR) and increases apoptosis by targeting
14-3-3ζ [74] (Figure 2). Hence, considering the emerging data,
there is substantial evidence elucidating that some miRNAs
contribute to drug resistance in BC through signaling path-
ways. However, more studies are required in this field.

Conclusion

Initially, it was believed that miRNAs had no role in con-
trolling the functions of the body and cells. However, sub-
sequent research revealed that miRNAs play a pivotal role in
controlling various cellular activities. SomemiRNAs prevent
cancer development and the growth of cancer cells by con-
trolling cell pathways, and on the contrary, other miRNAs
cause cell growth, invasion, and progression. Our findings
demonstrated that miRNAs increase or eliminate drug
resistance in BC cells through different mechanisms,
particularly signaling pathways. According to the findings in
this field, drug resistance, which is one of the strategies
cancer cells use to escape from treatment, can be mediated
through miRNA interference in cancer cells, which either
increases or decreases their sensitivity to drugs. Therefore,
more studies in this field are required to shed light on the
function of miRNAs in the development of drug resistance in
BC cells via interference with signaling pathways.
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