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Abstract:
An imbalance between energy intake and expenditure leads to obesity. Adiposity associated with obesity pro-
gressively causes inflammation, type 2 diabetes, hypertension, hyperlipidemia and cardiovascular disease. Ex-
cessive dietary intake of fat results in its accumulation and storage in the white adipose tissue (WAT), whereas
energy expenditure by fat utilization and oxidation predominately occurs in the brown adipose tissue (BAT).
Recently, the presence of a third type of fat, referred to as beige or brite (brown in white), has been recog-
nized in certain kinds of WAT depots. It has been suggested that WAT can undergo the process of browning
in response to stimuli that induce and enhance the expression of thermogenes characteristic of those typically
associated with brown fat. The resultant beige or brite cells enhance energy expenditure by reducing lipids
stored within adipose tissue. This has created significant excitement towards the development of a promising
strategy to induce browning/beiging in WAT to combat the growing epidemic of obesity. This review system-
atically describes differential locations and functions of WAT and BAT, mechanisms of beiging of WAT and a
concise analysis of drug molecules and natural products that activate the browning phenomenon in vitro and
in vivo. This review also discusses potential approaches for targeting WAT with compounds for site-specific
beiging induction. Overall, there are numerous mechanisms that govern browning of WAT. There are a vari-
ety of newly identified targets whereby potential molecules can promote beiging of WAT and thereby combat
obesity.
Keywords: beiging, brite, browning, peroxisome proliferator-activated receptor gamma (PPARγ), PR domain-
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Introduction

Adipose tissue is a loose connective tissue composed primarily of adipocytes, which are cells distended with
stored lipids. Hence, adipose depots are the fundamental storage sites for excess energy, as fat, in the body.
These cells play a role in balancing responses to both internal homeostasis and external cues needed to regu-
late biological function in numerous different ways including, but not limited to, reproduction, inflammation
and energy balance. Therefore, perturbation of adipocyte function can lead to disruption of adipose depot
homeostasis and metabolic communications that subsequently leads to systemic metabolic dysfunctions. An
increase in adiposity associated with obesity is among the most common drivers of adipose depot dysfunction.
Excessive adipose can culminate into metabolic disease, progressively leading to type 2 diabetes, dyslipidemia,
vascular dysfunctions and cardiovascular diseases [1], [2], [3], [4].

Traditionally, adipose tissue depots are broadly classified into two distinct categories, white and brown
adipose tissues (WAT and BAT, respectively). Morphologically, white and brown adipocytes are inherently
different, which gives rise to their divergent roles. As discussed previously, white adipocytes are unilocular
lipid-laden cells. Brown adipocytes, however, are multilocular cells that contain numerous smaller lipid com-
partments and an increased number of mitochondria, which gives rise to the brown appearance. Adipocyte
morphology translates to functions, where unilocular WAT serve to predominately store energy and cushion
and insulate the body, while multilocular BAT is involved in expending the stored energy via lipid oxidation
to produce heat by the process of thermogenesis. Last, in response to various activators, WAT can be converted
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to “brown-like” adipocytes known as beige cells. There is a growing interest in targeting WAT to be induced
toward a beige phenotype. It is postulated that WAT beiging may be used to facilitate increases in energy ex-
penditure, which will result in adiposity losses.

BAT function from infancy to adulthood

Traditionally, BAT was considered to play a more prominent role in neonates and very young children than
adults. BAT develops at 5 weeks of gestation and at birth represents 5% of an infant’s body weight [5]. Infants,
especially those born prematurely, are at a high risk for hypothermia because of their low muscle mass, small
surface area and lack of the ability to shiver to generate heat; hence, BAT activation for thermogenesis is critical
in the early years post birth [5]. In the past, little attention has been placed on BAT regulation in adults be-
cause shivering combats hypothermia as we age; thus, the alternative method of heat production through BAT
was predominantly thought to be a method only needed in infants. Indeed, some postulate that BAT remains
biologically relevant throughout childhood [6] but regresses as we age by turning into WAT [7], reducing its
contribution toward energy metabolism [6], [8].

Positron emission tomography (PET) studies in adult humans, however, shifted traditional thinking by pro-
viding evidence that BAT is active in adults [6], [9], [10]. This was first demonstrated in nuclear medicine litera-
ture with the use of the intravenously administered radioactive glucose analog 18F-fluorodeoxyglucose (FDG),
a non-metabolized glucose analog used to delineate metastatic cancers in PET scans [11], [12]. In these scans,
FDG also localized in adipose tissue, specifically BAT that was not associated with tumor tissue, indicating that
BAT thermogenesis was still active in adulthood [11], [12]. Subsequently, numerous groups have demonstrated
BAT to be located and activated by cold in adults [9], [10], [13].

Anatomical classification of adipose depots

As previously stated, WAT plays a role in insulation and padding protection, while BAT plays a role in ther-
mogenesis. This classification of adipose tissues is based, in part, on their biological functions, which overlaps
with the metabolic properties of adipose tissue compartments relative to anatomical regions. Adipose tissue
depots primarily consist of WAT. Although the exact proportion is not yet known, it is thus far estimated that
BAT constitutes a very small proportion of adipose tissue in the body. BAT and WAT do coexist in certain parts
of the body; however, some particular regions of adipose depots stores may consist primarily of one type or the
other.

In its role in insulation and protection, WAT is located throughout the body. The largest deposits of adipose
tissue in the human can be categorized as intra-abdominal or subcutaneous depots. The adipose tissue stored
in our abdominal cavity typically constitutes ∼15% of our total body fat, whereas that located subcutaneously
is ∼85% [14]. In the intra-abdominal cavity, WAT sits among and between organs such as the stomach, liver,
intestines and kidneys. Considerable depots include visceral, mesenteric and retroperitoneal WAT. The larger
proportion of WAT stores, however, are located subcutaneously between the muscle and skin. Areas of location
is general spread underneath the skin; however, larger depots include those located in the hips, thighs, buttocks
and the lower abdominal area.

BAT plays a fundamental role in thermogenesis; thus, unlike WAT pads that insulate organs and muscles,
BAT is situated within the body to promote survival against cold via hypothermia-induced adaptive thermo-
genesis [15]. When activated, BAT helps preserve normal body temperature. Studies demonstrate a functional
relevance to the anatomical location of human BAT. Although BAT constitutes a small portion of adipose tis-
sue, it is located throughout the human body in numerous distinct regions. The major regions include BAT
within the chest, visceral cavity and subcutaneous region. In the chest cavity, BAT is located perivascularly (e.g.
around the aorta, common carotid artery, cardiac veins and brachiocephalic artery) and along hollowed tissues
(e.g. heart, trachea, lungs and esophagus). In the visceral region, BAT is around hollowed tissues (e.g. colon)
and solid organs (pancreas, kidneys, adrenal, liver and spleen) [9], [10], [16], [17], [18]. BAT in the subcutaneous
region is located among the interior neck muscles, clavicle region, anterior abdominal wall and inguinal area
[18]. In 1969, Smith and Horwitz postulated that the strategic location of BAT and its function in thermogenesis
and close association with vasculature allows it to provide internal heating when cooler blood circulates back
from the skin surface [19]. Overall, the prominent locations of BAT around vessels, heart, hollow organs, solid
organs and the shoulder and groin areas suggest that a major role of BAT is to maintain core temperature and
increase temperature in areas where heat may easily be dissipated [18].

2

http://rivervalleytechnologies.com/products/


Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td
DE GRUYTER Thyagarajan and Foster

BAT activity in lean adults

Similarly to infants, BAT in adults plays a fundamental role in cold-induced thermogenesis. Indeed, studies
from Finland demonstrate that working in a cold environment maintains BAT in areas surrounding the neck
and heart [20]. Studies support these observations by demonstrating that BAT activity increases as outside tem-
perature decreases [9]. In regard to this study, it is important to note that only 7.5% of women and 3.1% of men
were identified to have active BAT. Other studies, however, demonstrate that ∼50% of adults have detectable
BAT when activated in the laboratory by 2 h of cold exposure [21]. In addition, adults with detectable BAT were
characterized as younger with lower HbA1c, cholesterol, low-density lipoprotein (LDL)-cholesterol, glucose,
adiposity and body mass index (BMI). In other studies, repeated cold exposure is demonstrated to decrease
body fat mass [22], [23] and improve insulin sensitivity in individuals with type 2 diabetes [24]. Cold expo-
sure increases energy expenditure by ∼5–20% [10], [25], [26]. Although muscle contributes to this increase in
metabolism, BAT is also demonstrated to utilize substrates [22], [23], [27]. Indeed, increases in cold-induced
WAT release of non-esterified fatty acids are associated with BAT activation whereas glucose utilization links
to muscles that contribute to shivering [28]. Together, these findings indicate that BAT plays a role in the lipid
metabolism of healthy lean individuals and, therefore, has the potential to be a novel therapeutic mechanism
for the treatment of obesity and, consequently, metabolic disease.

BAT alterations in obesity

BAT locations discussed above are readily identified in infants and children; however, its distribution decreases
variably among individuals as age increases, with significant decreases occurring by age ∼80 [7]. Although
adults have BAT, age remains a factor in its decrease as well as increase in adiposity. Numerous studies demon-
strate that BAT activity is inversely associated with BMI [9], [10], [25], [29]. As such, cold-induced thermogenesis
is also significantly lower in overweight/obese individuals [30], [31]. It is postulated that increases in adiposity,
especially in subcutaneous regions, provides increased insulation against heat loss and protection against cold
exposure [30]. Subsequently, increases in adipose insulation enhances heat retention, which consequently de-
creases BAT responsiveness to cold. Although repeated cold can reduce adiposity in healthy lean individuals
[22], [32], this is less likely to occur in obese individuals with greater adipose insulation. Despite these cir-
cumstances, there is a revived interest in targeting BAT in adults to drive increases in energy expenditure with
subsequent decreases in adiposity. To target BAT energetics for the treatment of obesity requires BAT activation
that can occur during thermoneutrality.

Obesity treatment – beiging of WAT; a brite tool to counter obesity

As previously discussed, increases in adiposity decrease BAT stores, ultimately leading to the inhibition of
cold-induced increases in energy expenditure. Therefore, therapies aimed to reduce adiposity by non-shivering
thermogenesis will likely not produce significant results. Rather, mechanisms that intend to use BAT for obesity
therapy should first be efficient at reestablishing BAT mass lost in obesity and, second, activate newly estab-
lished BAT at thermoneutrality. As such, an anti-obesity treatment should not solely activate but also increase
the amount of BAT. This process naturally occurs in the body via differentiation (recruitment) from “inducible”
brite/beige progenitor cells located in WAT. Cold can naturally induce the beiging of WAT (For review, see
[33]); however, beiging/browning can also be induced by systemically administered agents (Table 1). Hence,
the beiging phenomenon has received much attention as a possible mechanism to alter WAT metabolism toward
enhanced energy utilization, which subsequently counters obesity.

Table 1: Drug molecules/natural products that activate browning phenomenon in vitro and in vivo.

Agent Mechanism of induction of browning
of WAT

Model organism
(rodents/humans/cell lines)

Thiazolidinediones SIRT-1-dependent deacetylation of
PPARγ [34]

Mouse

Stabilization of PPARγ [35] HIB-1B cells
Kruppel-like factor (KLF11) [36]

Fenofibrate PPARα activation [37] Mouse
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Capsaicin – SIRT-1 activation, SIRT-1-dependent
PPARγ and PRDM-16 deacetylation
and their interaction [38]

Mouse

– Increase in brown fat-specific genes
in vitro [39]

3T3-L1 preadipocytes

Berberine AMPK and PGC-1α-dependent
mechanism [40]

Mouse

Resveratrol AMPK activation [41] Mouse
Retinoic acid p38 MAPK signaling [42] Mouse
Menthol UCP-1-dependent thermogenesis [43] Human adipocytes
Green/black tea AMPK activation [44] Mouse
Melatonin UCP-1- and PGC-1α-dependent

mechanism [45]
Zucker diabetic fatty rats

Ginsenoside PPARγ induction [46] 3T3-L1 adipocytes
Irisin p38 MAPK and ERK pathways [47] Mouse
Green tea AMPK, induction of UCP-1 and IGF

binding protein 1 [44]
Mouse

Curcumin Stimulation of
norepinephrine-β3-adrenergic
receptor [48], [49]

Mouse

Butein Prdm4 induction [50] Mouse
β-adrenergic receptor stimulation by
catecholamines

mTORC1-dependent mechanism [51] Mouse

Artepillin C Increased UCP-1 and PRDM-16 [52] Mouse
Bitter melon seed oil (BMSO) Mitochondrial uncoupling [53] Mouse
Omega 3 fatty acid Increase UCP-1 and fatty acid

oxidation [54], [55]
Mouse

Beiging/browning of WAT favors energy expenditure by triggering thermogenesis, which suppresses diet-
induced weight gain [56], [57], [58]. Increased beiging/browning of WAT also enhances the efficiency of brown
fat activity. Further analysis of molecular mechanisms underscoring the induction of beiging/browning of
WAT led to the identification of adipogenic factors and their stabilization and interaction with proteins, which
serve as catalysts for the browning of WAT [34], [35], [59]. Harnessing brown fat thermogenesis has opened new
strategies to counteract obesity [60], [61], [62]. Previous research also indicates an inverse relation between body
mass and BAT activation and suggests that recruitment of beige or brown cells in WAT increases energy expen-
diture to antagonize obesity [63]. Table 2 characterizes studies that demonstrate WAT depots capable of being
induced toward beiging/browning, markers and transcription factors known to be involved in the process and
activators that can promote the progression.

Table 2: Location of beige-able WAT, markers of beiging and activators of browning of WAT.

Table I Beige-able fat (fat that exhibits browning phenomenon)

Location in mice Subcutaneous, inguinal and visceral [64]
Location in humans Supraclavicular [64], perirenal, visceral and subcutaneous

depots [65]
Markers Cd137 [66], Shox2 [67], Cited 1 [64], Tmem26 [66], Tbx1

[66], [68], BMP8b [37], [69], [70], UCP-1 [71], [72],
SIRT-1-dependent mechanisms [34], [38]

Transcription factors C/ebpβ, PRDM-16 [34], [73], [74], PGC-1α [75], [76], [77],
PPARα [37], PPARγ [34], [38]

Activators Thiazolidinediones [34], [78], [79], [80], natriuretic
peptides [57], [81], [82], [83], capsaicin [38], [39], [84], [85],
irisin [47], [86], [87], [88], FGF21 [84], [89], green tea [44],
[90], resveratrol [41], [84], quercetin [91], berberine [40],
bile acids [84], [92], retinoic acid [84], [93], melatonin [45],
ginsenoside [46], β-aminoisobutyric acid [94], amino acid
restriction [84], menthol [43], [95], caffeine [44], curcumin
[48], [49], butein [50]

Mechanism that promotes browning of WAT Inhibition of notch signaling [56], inhibition of myostatin
[96], BDNF signaling [58], inhibition of Sam68 [97]
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Thermoneutrality and beiging of WAT

The amount of energy used for thermogenesis is critically regulated by environmental temperature [98], [99]. As
the environmental temperature increases, the energy required to maintain body temperature decreases [100].
Thermoneutrality is a critical temperature zone of the body in which no extra heat is required to maintain
body temperature [100]. Most of the studies describing the beiging of WAT have been conducted at tempera-
tures below thermoneutrality. At thermoneutrality, minimal energy is required to maintain body temperature.
Maintaining mice at temperatures below thermoneutrality (around 30 °C) presents a mild cold stress to mice,
which stimulates an increase in energy expenditure needed to defend body temperature against the cold en-
vironmental temperature. Mitochondrial uncoupling protein 1 (UCP-1) is a key regulator of adaptive thermo-
genesis that generates heat by uncoupling oxidative phosphorylation ATP generation during thermogenesis.
Several studies have demonstrated UCP-1 upregulation in white fat as a mechanism for browning of WAT [37],
[38], [84], [101]. Lack of UCP-1 ablates adaptive thermogenesis, but the effect is temperature-dependent. For
example, UCP-1−/− mice are resistant to diet-induced obesity when maintained below thermoneutrality [102].
This suggests that UCP-1-dependent thermogenesis is not fundamental when mice were maintained at ambient
temperature (22 °C). Therefore, below thermoneutrality, UCP-1−/− mice are forced to use alternate mechanisms
for thermogenesis. However, ablation of cold stress by rearing at 30 °C makes UCP-1−/− mice prone to obesity,
which suggest a role for UCP-1 that at thermoneutrality, which when expressed, leads to increases in energy
expenditure and protection against obesity in UCP1+/+ mice. Although these data have implications toward
humans, there are significant differences in thermoneutrality and resting metabolic rate between humans and
mice [103], [104]. Further, mice can easily regulate heat loss via the tail [105]. Therefore, care should be exer-
cised in interpreting data from mice and extrapolating the rodent research to humans, as clothing and external
environmental temperature facilitate thermoneutrality in humans. Despite these differences, recent research
aims to develop human strategies to counter obesity by enhancement of thermogenesis and energy expendi-
ture through WAT browning.

Mechanisms involved in the browning of WAT

Brown adipocytes arise from the lineage of myogenic factor 5 (Myf5)-expressing cells while white adipocytes
arise from a cell lineage lacking Myf5. However, there is a subpopulation of WAT derived from the
Myf5-positive cell lineage. These adipocytes exhibit the potential of beiging (or brite, defined as brown in
white) and such beige-able WAT has enhanced metabolism due to enhanced expression BAT-specific genes
of thermogenesis. However, the functional implication of Myf5-positive and Myf5-negative cells lineages in
WAT remains unclear. Molecular signaling mediated by adipocyte progenitors significantly differ among the
various depots of adipocytes, yet cellular metabolic sensor, sirtuin-1 (SIRT-1), peroxisome proliferator-activated
receptor gamma (PPARγ) and positive regulatory domain-containing protein 16 (PRDM-16) are commonly rec-
ognized as beiging factors [106].

Beiging/browning of WAT involves the expression and activation of the brown fat-specific genes in white
adipocytes [67], [73], [107], [108]. For example, bone morphogenetic proteins (BMP) regulate thermogenesis and
fatty acid oxidation [109], [110], [111]. A distinct form, bone morphogenetic protein 8b (BMP8b), is specifically
demonstrated to facilitate energy dissipation by thermogenesis [112]. Another important protein that regulates
brown fat thermogenesis is UCP-1 [113]. UCP-1, localized on the inner mitochondrial membrane, short-circuits
the mitochondrial proton gradient to promote thermogenesis via oxidation of fatty acids. Hence, as discussed
earlier, mice lacking UCP-1 are prone to obesity at thermoneutrality [114], [115]. Conversely, enhancement of
BMP8b and UCP-1 in the subcutaneous adipose depot is associated with browning of WAT and decreased
adiposity [43], [44]. Another important factor that governs beiging and BAT thermogenesis is the activation of
β-adrenergic receptors [78]. Fibroblast growth factor 21 (FGF21) and bone morphogenetic protein 9 (BMP9) are
also identified as important metabolic regulators involved in the browning of WAT [116].

The development and function of the classical beige adipocyte is primarily governed by PRDM-16, a tran-
scriptional co-regulator that controls the production of the brown adipocyte gene [35], [73]. Posttranslational
modification, such as deacetylation, of PRDM-16 by SIRT-1 (a cellular energy sensor [34], [38]) has been shown
to be involved in the browning of WAT [38]. SIRT-1 deacetylation of PPARγ [34], [38], [117] leading to the stabi-
lization of the PRDM-16/PPARγ protein complex [38], which is also demonstrated to fundamentally contribute
to the browning of WAT. As such, research focuses on SIRT-1 as a potential strategy to induce browning of WAT.
This is further supported by the findings that ablation of PRDM-16 in mice presents metabolic dysfunctions
and ablates the thermogenic program of beige fat cells. PRDM-16 ablation also drives subcutaneous adipocytes

5

http://rivervalleytechnologies.com/products/


Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td
Thyagarajan and Foster DE GRUYTER

to alter inherent characteristics to resemble those of the visceral depot [59], by enrichment of Willms tumor-1
(Wt1). Taken together, this emphasizes the importance of PRDM-16 in the browning of WAT.

SIRT-1, a central player that regulates the browning program in WAT, is a sensor of cellular metabolism
and energy utilization. SIRT-1 is phosphorylated and activated by cellular protein kinases including
Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ [118]) and 5′-adenosine monophosphate-
activated protein kinase (AMPK [119], [120], [121]). Intracellular Ca2+-dependent CaMKII-AMPK signaling
plays a role in metabolism and fatty acid oxidation, and CaMKII is an upstream regulator of AMPK [122].
Thus, crosstalk signaling between intracellular Ca2+-activated CaMKII-AMPK signaling and SIRT-1 are essen-
tial for the regulation of browning of WAT [38]. Overall, the browning phenomenon has been recognized in
specific depots of WAT based on the expression of these several specific thermogenic markers that regulate
beiging transcription. Figure 1 is a diagram of the proposed mechanisms that regulate the induction of WAT
browning.

Figure 1: Model describing possible mechanisms involved in the browning of WAT.
Left. Noradrenaline release at the sympathetic innervations, which activates β-adrenergic receptors. The resultant Ca2+ in-
flux enhances AMPK-dependent SIRT-1 activation. SRt-1 deacetylates PPARγ and PRDM-16. This causes a PPARγ-PRDM-
16 interaction leading to the browning of inguinal WAT, and counters diet-induced obesity. Right. High-fat diet (HFD)
feeding TRPV1-dependent noradrenaline-β-adrenergic receptor signaling. This decreases AMPK-SIRT-1-dependent
deacetylation of PPARγ and PRDM-16. Browning of inguinal WAT does not occur and HFD promotes obesity.

Pharmacological approaches to BAT induction

Pharmacological approaches used to induce browning of WAT include the use of specific agonists of PPARs [34],
[37], [38], SIRT-1 [34], [38], β3-adrenergic receptor stimulation [51], thyroid hormone, irisin and FGF21 [84], [89]
induction. In addition, activation of the transcription factor peroxisome proliferator-activated receptor gamma
coactivator 1α (PGC-1α) enhances mitochondrial biogenesis and increases burning of fat by the upregulation
of UCP-1 expression in WAT [43], [123]. Several natural products that also enhance metabolism and thermoge-
nesis thus have the potential to trigger the induction of browning in WAT. Specific examples include specific
amino acid restrictions, capsaicin, bile acids, resveratrol and retinoic acid. Besides that, some classes of lipids,
as well as many plant extracts, have also been implicated in the browning of WAT (Refer to Table 2 for specific
mechanisms). Metabolic signaling mechanisms from the muscle and liver, such as irisin and FGF21, are also
recognized as activators of BAT and beige/brite adipocytes in humans [124]. The classes of molecules, syn-
thetic and from natural origin, and the mechanisms by which the molecules stimulate browning of WAT are
summarized in Table 1.
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Targeting WAT depots for beiging

The identification of genes that are metabolically important in the regulation of thermogenesis in WAT creates
numerous potential targets that can be favorably altered to enhance the beiging of WAT. This will allow WAT
to acquire the functional phenotype of BAT and subsequently enhance WAT metabolic activity toward an in-
creased ability to burn the stored fat into heat energy. A recent discovery that suggests the transformation of
sWAT from energy-storing to energy-dissipating tissue has geared up novel strategies to target WAT for obesity
management [37].

A viable strategy to enhance thermogenesis and energy expenditure in humans is by stimulating the brown-
ing of WAT by UCP-1 upregulation. There are numerous natural and synthetic drug molecules presented in
Table 2 that are promising therapies to promote browning of WAT and mediate weight loss in humans. Ta-
ble 3 summarizes the clinically relevant targets evaluated in humans for BAT activation and enhancement of
browning of WAT to counter obesity and metabolic diseases in humans.

Table 3: Clinically relevant targets for human BAT activation.

Molecules/targets Mechanism and effect

Capsinoids (non-pungent analogs of
capsaicin)/capsaicinoids (analogs of capsaicin)

–Capsinoids increased BAT density [125]
–A combination of capsaicinoids, epigallocatechin gallate,
piperin and L-carnitine – Increased satiety and stimulated
thermogenesis [126]
–Repetitive stimulation by cold and capsinoids increased
energy expenditure, BAT activity and a concomitant
decrease in body fat mass [22]
–Capsinoid increased fat oxidation and facilitated
abdominal fat loss [127]

β-adrenergic stimulation – Induced thermogenic program but did not improve
insulin-dependent glucose uptake [128]
– Isoprenaline increased β-adrenergic stimulation,
increased metabolic activity but did not activate BAT [129]
– Chronic epinephrine reduced body fat content but did
not increase BAT activity [130]

Vagus nerve stimulation Increased energy expenditure and BAT activation [131]
PPARα Binds to PPAR-responsive element, promotes PGC-1α and

enhances UCP-1 transcription [132]
Promotes mitochondrial fatty acid oxidation [133]
Thermogenic activation of PRDM-16 [132]

PPARγ Deacetylation of PRDM-16 [35]
Beiging of WAT [35], [39], [84]

BMP8B Upregulated by capsaicin to enhance browning of WAT
[38] and BAT thermogenesis [117]
AMPK and orexin-mediated signaling [69]
Regulate energy expenditure in association with AMPK
[112]

Irisin Promotes osteogenesis and browning of WAT [134]
(Effect is controversial) [135], [136]

Chili pepper extracts/capsinoids and capsaicinoids Energy expenditure and weight loss [137]
Suppress fat accumulation via lipid metabolism [138]
Increase fat oxidation [127]

Capsiate Increase in UCP-1 expression [139]
Exercise Whole-body energy homeostasis [140]

Conclusion

The concept of browning of WAT in humans opens the possibility of targeting white fat with drug molecules and
modulators that induce and enhance the expression and signaling of genes of thermogenesis in these tissues.
The use of orally bioavailable PPAR agonists dual and pan agonists has provided immense benefit to control
hyperlipidemia and insulin resistance associated with obesity [141]. However, there are also significant adverse
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effects associated with such therapy [142], [143], [144]. Therefore, there is a clear need for selective PPAR agonists
with minimal side effects.

Attempts to enhance SIRT-1 and AMPK with natural compounds like resveratrol has been proven to be
fruitful in developing browning of WAT [145]. Although several other natural products have been accolated for
their ability to counter obesity by triggering browning of WAT (refer to Table 2), further studies are warranted
to characterize their effective doses in their pure form for human use.

Another important aspect of targeting WAT for obesity management will be developing adipose tissue
target-specific drug delivery systems. Methods such as ligand targeting of liposomes provide new hope for
targeting WAT [146], [147], which may significantly decrease undesired adverse effects of drug molecules. The
use of magnetic nanoparticles for target site-specific delivery [148], [149], [150], [151] for agents that can trigger
browning of WAT is another novel approach. Lastly, recent research has provided new hope for developing
topical capsaicin formulation for reducing visceral adipose fat [152].

Taken together, WAT contributes the greatest proportion toward overall adipose tissue mass in the body.
Unlike BAT, which decreases in obesity, WAT effortlessly expands with excessive calorie intake, making BAT
thermogenesis obsolete for numerous reasons. BAT can effectively burn through lipids, and when consistently
activated, can reduced adiposity. However, cold-induced therapy is not a feasible option for the reversal of
obesity. Instead, research demonstrates that this same system, burning of lipids through UCP-1, can be targeted
at thermoneutrality and use WAT as a fuel source. Beiging of WAT has great potential as a treatment for obesity
reversal, but the most effective treatments for targeted, safe and specific adipose tissue delivery still remain to
be elucidated.
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