Home Retinol binding protein 4 and its membrane receptors: a metabolic perspective
Article
Licensed
Unlicensed Requires Authentication

Retinol binding protein 4 and its membrane receptors: a metabolic perspective

  • Ronja Fedders , Matthias Muenzner and Michael Schupp EMAIL logo
Published/Copyright: May 5, 2015

Abstract

Nearly a decade of intense research has passed since the first report linking circulating retinol binding protein 4 (RBP4) to the development of insulin resistance. By now, a variety of underlying mechanisms have been identified; some of them are adherent to the canonical role of this circulating protein, which is to transport and deliver retinol to target tissues, and others that seem rather independent of retinol transport. Despite all these efforts, a consensus in the basic principles of RBP4’s metabolic effects has not been reached and some controversy remains. Using this as an opportunity, we here review and discuss current data on RBP4’s action on insulin sensitivity and its dependency on retinol homeostasis. We pay special attention to the involvement of RBP4 membrane receptors that were identified during these years, such as ‘stimulated by retinoic acid 6’ (STRA6), and whose identification added another layer of complexity to RBP4’s diverse actions. A better understanding of RBP4’s functions might allow its therapeutic exploitations, urgently needed in our period that is defined by an epidemic increase in metabolic diseases such as obesity and type 2 diabetes.


Corresponding author: Michael Schupp, PhD, Institute of Pharmacology, Center for Cardiovascular Research, Charité University Medicine Berlin, Hessische Str. 3-4, 10115 Berlin, Germany, Phone: +49(0)30/450 578 724, Fax: +49/30/450525901, E-mail:

Acknowledgments

The authors have no conflicts of interest. This work was supported by the German Research foundation (DFG, Emmy Noether grant SCHU 2546/1-1) and a Career Integration Grant from the European Union (CIG 291867), both to MS.

References

1. Rosen ED, Spiegelman BM. What we talk about when we talk about fat. Cell 2014;156:20–44.10.1016/j.cell.2013.12.012Search in Google Scholar PubMed PubMed Central

2. Friedman J. 20 years of leptin: leptin at 20: an overview. J Endocrinol 2014;223:T1–8.10.1530/JOE-14-0405Search in Google Scholar PubMed

3. Unger RH, Clark GO, Scherer PE, Orci L. Lipid homeostasis, lipotoxicity and the metabolic syndrome. Biochim Biophys Acta 2010;1801:209–14.10.1016/j.bbalip.2009.10.006Search in Google Scholar PubMed

4. Kloting N, Fasshauer M, Dietrich A, Kovacs P, Schon MR, Kern M, Stumvoll M, Bluher M. Insulin-sensitive obesity. Am J Physiol Endocrinol Metab 2010;299:E506–15.10.1152/ajpendo.00586.2009Search in Google Scholar PubMed

5. Yang Q, Graham TE, Mody N, Preitner F, Peroni OD, Zabolotny JM, Kotani K, Quadro L, Kahn BB. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 2005;436:356–62.10.1038/nature03711Search in Google Scholar PubMed

6. Quadro L, Blaner WS, Salchow DJ, Vogel S, Piantedosi R, Gouras P, Freeman S, Cosma MP, Colantuoni V, Gottesman ME. Impaired retinal function and vitamin A availability in mice lacking retinol-binding protein. EMBO J 1999;18:4633–44.10.1093/emboj/18.17.4633Search in Google Scholar PubMed PubMed Central

7. Flajollet S, Staels B, Lefebvre P. Retinoids and nuclear retinoid receptors in white and brown adipose tissues: physiopathologic aspects. Horm Mol Biol Clin Investig 2013;14:75–86.10.1515/hmbci-2013-0013Search in Google Scholar PubMed

8. Pervaiz S, Brew K. Homology and structure-function correlations between alpha 1-acid glycoprotein and serum retinol-binding protein and its relatives. FASEB J 1987;1:209–14.10.1096/fasebj.1.3.3622999Search in Google Scholar PubMed

9. Blaner WS. Retinol-binding protein: the serum transport protein for vitamin A. Endocr Rev 1989;10:308–16.10.1210/edrv-10-3-308Search in Google Scholar PubMed

10. O’Byrne SM, Wongsiriroj N, Libien J, Vogel S, Goldberg IJ, Baehr W, Palczewski K, Blaner WS. Retinoid absorption and storage is impaired in mice lacking lecithin: retinol acyltransferase (LRAT). J Biol Chem 2005;280:35647–57.10.1074/jbc.M507924200Search in Google Scholar PubMed PubMed Central

11. Liu L, Gudas LJ. Disruption of the lecithin: retinol acyltransferase gene makes mice more susceptible to vitamin A deficiency. J Biol Chem 2005;280:40226–34.10.1074/jbc.M509643200Search in Google Scholar PubMed

12. Kotnik P, Keuper M, Wabitsch M, Fischer-Posovszky P. Interleukin-1beta downregulates RBP4 secretion in human adipocytes. PLoS One 2013;8:e57796.10.1371/journal.pone.0057796Search in Google Scholar PubMed PubMed Central

13. Friebe D, Neef M, Erbs S, Dittrich K, Kratzsch J, Kovacs P, Bluher M, Kiess W, Korner A. Retinol binding protein 4 (RBP4) is primarily associated with adipose tissue mass in children. Int J Pediatr Obes 2011;6:e345–52.10.3109/17477166.2010.491228Search in Google Scholar PubMed

14. O’Byrne SM, Blaner WS. Retinol and retinyl esters: biochemistry and physiology. J Lipid Res 2013;54:1731–43.10.1194/jlr.R037648Search in Google Scholar PubMed PubMed Central

15. Kane MA, Folias AE, Napoli JL. HPLC/UV quantitation of retinal, retinol, and retinyl esters in serum and tissues. Anal Biochem 2008;378:71–9.10.1016/j.ab.2008.03.038Search in Google Scholar PubMed PubMed Central

16. Naylor HM, Newcomer ME. The structure of human retinol-binding protein (RBP) with its carrier protein transthyretin reveals an interaction with the carboxy terminus of RBP. Biochemistry 1999;38:2647–53.10.1021/bi982291iSearch in Google Scholar PubMed

17. Quadro L, Hamberger L, Gottesman ME, Colantuoni V, Ramakrishnan R, Blaner WS. Transplacental delivery of retinoid: the role of retinol-binding protein and lipoprotein retinyl ester. Am J Physiol Endocrinol Metab 2004;286:E844–51.10.1152/ajpendo.00556.2003Search in Google Scholar PubMed

18. Quadro L, Hamberger L, Gottesman ME, Wang F, Colantuoni V, Blaner WS, Mendelsohn CL. Pathways of vitamin A delivery to the embryo: insights from a new tunable model of embryonic vitamin A deficiency. Endocrinology 2005;146:4479–90.10.1210/en.2005-0158Search in Google Scholar PubMed

19. Vogel S, Piantedosi R, O’Byrne SM, Kako Y, Quadro L, Gottesman ME, Goldberg IJ, Blaner WS. Retinol-binding protein-deficient mice: biochemical basis for impaired vision. Biochemistry 2002;41:15360–8.10.1021/bi0268551Search in Google Scholar PubMed

20. Chambon P. A decade of molecular biology of retinoic acid receptors. FASEB J 1996;10:940–54.10.1096/fasebj.10.9.8801176Search in Google Scholar

21. Noy N. Retinoid-binding proteins: mediators of retinoid action. Biochem J 2000;348 Pt 3:481–95.10.1042/bj3480481Search in Google Scholar

22. Berry DC, Jacobs H, Marwarha G, Gely-Pernot A, O’Byrne SM, DeSantis D, Klopfenstein M, Feret B, Dennefeld C, Blaner WS, Croniger CM, Mark M, Noy N, Ghyselinck NB. The STRA6 receptor is essential for retinol-binding protein-induced insulin resistance but not for maintaining vitamin A homeostasis in tissues other than the eye. J Biol Chem 2013;288:24528–39.10.1074/jbc.M113.484014Search in Google Scholar PubMed PubMed Central

23. Terra R, Wang X, Hu Y, Charpentier T, Lamarre A, Zhong M, Sun H, Mao J, Qi S, Luo H, Wu J. To investigate the necessity of STRA6 upregulation in T cells during T cell immune responses. PLoS One 2013;8:e82808.10.1371/journal.pone.0082808Search in Google Scholar PubMed PubMed Central

24. Suh JB, Kim SM, Cho GJ, Choi KM, Han JH, Taek Geun H. Elevated serum retinol-binding protein 4 is associated with insulin resistance in older women. Metabolism 2010;59:118–22.10.1016/j.metabol.2009.06.025Search in Google Scholar PubMed

25. Graham TE, Yang Q, Bluher M, Hammarstedt A, Ciaraldi TP, Henry RR, Wason CJ, Oberbach A, Jansson PA, Smith U, Kahn BB. Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects. N Engl J Med 2006;354:2552–63.10.1056/NEJMoa054862Search in Google Scholar PubMed

26. Norseen J, Hosooka T, Hammarstedt A, Yore MM, Kant S, Aryal P, Kiernan UA, Phillips DA, Maruyama H, Kraus BJ, Usheva A, Davis RJ, Smith U, Kahn BB. Retinol-binding protein 4 inhibits insulin signaling in adipocytes by inducing proinflammatory cytokines in macrophages through a c-Jun N-terminal kinase- and toll-like receptor 4-dependent and retinol-independent mechanism. Mol Cell Biol 2012;32:2010–9.10.1128/MCB.06193-11Search in Google Scholar PubMed PubMed Central

27. Cho YM, Youn BS, Lee H, Lee N, Min SS, Kwak SH, Lee HK, Park KS. Plasma retinol-binding protein-4 concentrations are elevated in human subjects with impaired glucose tolerance and type 2 diabetes. Diabetes Care 2006;29: 2457–61.10.2337/dc06-0360Search in Google Scholar PubMed

28. Haider DG, Schindler K, Prager G, Bohdjalian A, Luger A, Wolzt M, Ludvik B. Serum retinol-binding protein 4 is reduced after weight loss in morbidly obese subjects. J Clin Endocrinol Metab 2007;92:1168–71.10.1210/jc.2006-1839Search in Google Scholar PubMed

29. Lee DC, Lee JW, Im JA. Association of serum retinol binding protein 4 and insulin resistance in apparently healthy adolescents. Metabolism 2007;56:327–31.10.1016/j.metabol.2006.10.011Search in Google Scholar PubMed

30. Gavi S, Stuart LM, Kelly P, Melendez MM, Mynarcik DC, Gelato MC, McNurlan MA. Retinol-binding protein 4 is associated with insulin resistance and body fat distribution in nonobese subjects without type 2 diabetes. J Clin Endocrinol Metab 2007;92:1886–90.10.1210/jc.2006-1815Search in Google Scholar PubMed

31. Takebayashi K, Suetsugu M, Wakabayashi S, Aso Y, Inukai T. Retinol binding protein-4 levels and clinical features of type 2 diabetes patients. J Clin Endocrinol Metab 2007;92:2712–9.10.1210/jc.2006-1249Search in Google Scholar PubMed

32. Weiping L, Qingfeng C, Shikun M, Xiurong L, Hua Q, Xiaoshu B, Suhua Z, Qifu L. Elevated serum RBP4 is associated with insulin resistance in women with polycystic ovary syndrome. Endocrine 2006;30:283–7.10.1007/s12020-006-0006-3Search in Google Scholar PubMed

33. Jia W, Wu H, Bao Y, Wang C, Lu J, Zhu J, Xiang K. Association of serum retinol-binding protein 4 and visceral adiposity in Chinese subjects with and without type 2 diabetes. J Clin Endocrinol Metab 2007;92:3224–9.10.1210/jc.2007-0209Search in Google Scholar PubMed

34. Balagopal P, Graham TE, Kahn BB, Altomare A, Funanage V, George D. Reduction of elevated serum retinol binding protein in obese children by lifestyle intervention: association with subclinical inflammation. J Clin Endocrinol Metab 2007;92:1971–4.10.1210/jc.2006-2712Search in Google Scholar PubMed

35. Aeberli I, Biebinger R, Lehmann R, L’Allemand D, Spinas GA, Zimmermann MB. Serum retinol-binding protein 4 concentration and its ratio to serum retinol are associated with obesity and metabolic syndrome components in children. J Clin Endocrinol Metab 2007;92:4359–65.10.1210/jc.2007-0468Search in Google Scholar PubMed

36. Reinehr T, Stoffel-Wagner B, Roth CL. Retinol-binding protein 4 and its relation to insulin resistance in obese children before and after weight loss. J Clin Endocrinol Metab 2008;93: 2287–93.10.1210/jc.2007-2745Search in Google Scholar PubMed PubMed Central

37. Kotnik P, Fischer-Posovszky P, Wabitsch M. RBP4: a controversial adipokine. Eur J Endocrinol 2011;165:703–11.10.1530/EJE-11-0431Search in Google Scholar PubMed

38. Broch M, Vendrell J, Ricart W, Richart C, Fernandez-Real JM. Circulating retinol-binding protein-4, insulin sensitivity, insulin secretion, and insulin disposition index in obese and nonobese subjects. Diabetes Care 2007;30:1802–6.10.2337/dc06-2034Search in Google Scholar PubMed

39. von Eynatten M, Lepper PM, Liu D, Lang K, Baumann M, Nawroth PP, Bierhaus A, Dugi KA, Heemann U, Allolio B, Humpert PM. Retinol-binding protein 4 is associated with components of the metabolic syndrome, but not with insulin resistance, in men with type 2 diabetes or coronary artery disease. Diabetologia 2007;50:1930–7.10.1007/s00125-007-0743-8Search in Google Scholar PubMed

40. Gomez-Ambrosi J, Rodriguez A, Catalan V, Ramirez B, Silva C, Rotellar F, Gil MJ, Salvador J, Fruhbeck G. Serum retinol-binding protein 4 is not increased in obesity or obesity-associated type 2 diabetes mellitus, but is reduced after relevant reductions in body fat following gastric bypass. Clin Endocrinol (Oxf) 2008;69:208–15.10.1111/j.1365-2265.2007.03156.xSearch in Google Scholar PubMed

41. Lewis JG, Shand BI, Frampton CM, Elder PA, Scott RS. Plasma retinol-binding protein is not a marker of insulin resistance in overweight subjects: a three year longitudinal study. Clin Biochem 2008;41:1034–8.10.1016/j.clinbiochem.2008.06.002Search in Google Scholar PubMed

42. Janke J, Engeli S, Boschmann M, Adams F, Bohnke J, Luft FC, Sharma AM, Jordan J. Retinol-binding protein 4 in human obesity. Diabetes 2006;55:2805–10.10.2337/db06-0616Search in Google Scholar PubMed

43. Graham TE, Wason CJ, Bluher M, Kahn BB. Shortcomings in methodology complicate measurements of serum retinol binding protein (RBP4) in insulin-resistant human subjects. Diabetologia 2007;50:814–23.10.1007/s00125-006-0557-0Search in Google Scholar PubMed

44. Yang Q, Eskurza I, Kiernan UA, Phillips DA, Bluher M, Graham TE, Kahn BB. Quantitative measurement of full-length and C-terminal proteolyzed RBP4 in serum of normal and insulin-resistant humans using a novel mass spectrometry immunoassay. Endocrinology 2012;153:1519–27.10.1210/en.2011-1750Search in Google Scholar PubMed PubMed Central

45. Mody N, Graham TE, Tsuji Y, Yang Q, Kahn BB. Decreased clearance of serum retinol-binding protein and elevated levels of transthyretin in insulin-resistant ob/ob mice. Am J Physiol Endocrinol Metab 2008;294:E785–93.10.1152/ajpendo.00521.2007Search in Google Scholar PubMed PubMed Central

46. Akbay E, Muslu N, Nayir E, Ozhan O, Kiykim A. Serum retinol binding protein 4 level is related with renal functions in Type 2 diabetes. J Endocrinol Invest 2010;33:725–9.10.1007/BF03346678Search in Google Scholar PubMed

47. Henze A, Frey SK, Raila J, Tepel M, Scholze A, Pfeiffer AF, Weickert MO, Spranger J, Schweigert FJ. Evidence that kidney function but not type 2 diabetes determines retinol-binding protein 4 serum levels. Diabetes 2008;57:3323–6.10.2337/db08-0866Search in Google Scholar PubMed PubMed Central

48. Raila J, Henze A, Spranger J, Mohlig M, Pfeiffer AF, Schweigert FJ. Microalbuminuria is a major determinant of elevated plasma retinol-binding protein 4 in type 2 diabetic patients. Kidney Int 2007;72:505–11.10.1038/sj.ki.5002372Search in Google Scholar PubMed

49. Muenzner M, Tuvia N, Deutschmann C, Witte N, Tolkachov A, Valai A, Henze A, Sander LE, Raila J, Schupp M. Retinol-binding protein 4 and its membrane receptor STRA6 control adipogenesis by regulating cellular retinoid homeostasis and retinoic acid receptor alpha activity. Mol Cell Biol 2013;33:4068–82.10.1128/MCB.00221-13Search in Google Scholar PubMed PubMed Central

50. Mills JP, Furr HC, Tanumihardjo SA. Retinol to retinol-binding protein (RBP) is low in obese adults due to elevated apo-RBP. Exp Biol Med (Maywood) 2008;233:1255–61.10.3181/0803-RM-94Search in Google Scholar PubMed PubMed Central

51. Erikstrup C, Mortensen OH, Nielsen AR, Fischer CP, Plomgaard P, Petersen AM, Krogh-Madsen R, Lindegaard B, Erhardt JG, Ullum H, Benn CS, Pedersen BK. RBP-to-retinol ratio, but not total RBP, is elevated in patients with type 2 diabetes. Diabetes Obes Metab 2009;11:204–12.10.1111/j.1463-1326.2008.00901.xSearch in Google Scholar

52. Kawaguchi R, Zhong M, Kassai M, Ter-Stepanian M, Sun H. STRA6-catalyzed vitamin A influx, efflux, and exchange. J Membr Biol 2012;245:731–45.10.1007/s00232-012-9463-1Search in Google Scholar

53. Isken A, Golczak M, Oberhauser V, Hunzelmann S, Driever W, Imanishi Y, Palczewski K, von Lintig J. RBP4 disrupts vitamin A uptake homeostasis in a STRA6-deficient animal model for Matthew-Wood syndrome. Cell Metab 2008;7:258–68.10.1016/j.cmet.2008.01.009Search in Google Scholar

54. Ziouzenkova O, Orasanu G, Sharlach M, Akiyama TE, Berger JP, Viereck J, Hamilton JA, Tang G, Dolnikowski GG, Vogel S, Duester G, Plutzky J. Retinaldehyde represses adipogenesis and diet-induced obesity. Nat Med 2007;13:695–702.10.1038/nm1587Search in Google Scholar

55. Tan Y, Sun LQ, Kamal MA, Wang X, Seale JP, Qu X. Suppression of retinol-binding protein 4 with RNA oligonucleotide prevents high-fat diet-induced metabolic syndrome and non-alcoholic fatty liver disease in mice. Biochim Biophys Acta 2011;1811:1045–53.10.1016/j.bbalip.2011.09.011Search in Google Scholar

56. Shin DJ, Odom DP, Scribner KB, Ghoshal S, McGrane MM. Retinoid regulation of the phosphoenolpyruvate carboxykinase gene in liver. Mol Cell Endocrinol 2002;195:39–54.10.1016/S0303-7207(02)00215-0Search in Google Scholar

57. Alapatt P, Guo F, Komanetsky SM, Wang S, Cai J, Sargsyan A, Rodriguez Diaz E, Bacon BT, Aryal P, Graham TE. Liver retinol transporter and receptor for serum retinol binding protein (RBP4). J Biol Chem 2013;288:1250–65.10.1074/jbc.M112.369132Search in Google Scholar PubMed PubMed Central

58. Kiefer FW, Orasanu G, Nallamshetty S, Brown JD, Wang H, Luger P, Qi NR, Burant CF, Duester G, Plutzky J. Retinaldehyde dehydrogenase 1 coordinates hepatic gluconeogenesis and lipid metabolism. Endocrinology 2012;153:3089–99.10.1210/en.2011-2104Search in Google Scholar PubMed PubMed Central

59. McIlroy GD, Delibegovic M, Owen C, Stoney PN, Shearer KD, McCaffery PJ, Mody N. Fenretinide treatment prevents diet-induced obesity in association with major alterations in retinoid homeostatic gene expression in adipose, liver, and hypothalamus. Diabetes 2013;62:825–36.10.2337/db12-0458Search in Google Scholar PubMed PubMed Central

60. Chen G, Zhang Y, Lu D, Li NQ, Ross AC. Retinoids synergize with insulin to induce hepatic Gck expression. Biochem J 2009;419:645–53.10.1042/BJ20082368Search in Google Scholar PubMed PubMed Central

61. Li Y, Wong K, Walsh K, Gao B, Zang M. Retinoic acid receptor beta stimulates hepatic induction of fibroblast growth factor 21 to promote fatty acid oxidation and control whole-body energy homeostasis in mice. J Biol Chem 2013;288:10490–504.10.1074/jbc.M112.429852Search in Google Scholar PubMed PubMed Central

62. Berry DC, DeSantis D, Soltanian H, Croniger CM, Noy N. Retinoic acid upregulates preadipocyte genes to block adipogenesis and suppress diet-induced obesity. Diabetes 2012;61:1112–21.10.2337/db11-1620Search in Google Scholar PubMed PubMed Central

63. Preitner F, Mody N, Graham TE, Peroni OD, Kahn BB. Long-term Fenretinide treatment prevents high-fat diet-induced obesity, insulin resistance, and hepatic steatosis. Am J Physiol Endocrinol Metab 2009;297:E1420–9.10.1152/ajpendo.00362.2009Search in Google Scholar PubMed PubMed Central

64. Blaner WS. STRA6, a cell-surface receptor for retinol-binding protein: the plot thickens. Cell Metab 2007;5:164–6.10.1016/j.cmet.2007.02.006Search in Google Scholar PubMed

65. Kawaguchi R, Yu J, Honda J, Hu J, Whitelegge J, Ping P, Wiita P, Bok D, Sun H. A membrane receptor for retinol binding protein mediates cellular uptake of vitamin A. Science 2007;315:820–5.10.1126/science.1136244Search in Google Scholar PubMed

66. Taneja R, Bouillet P, Boylan JF, Gaub MP, Roy B, Gudas LJ, Chambon P. Reexpression of retinoic acid receptor (RAR) gamma or overexpression of RAR alpha or RAR beta in RAR gamma-null F9 cells reveals a partial functional redundancy between the three RAR types. Proc Natl Acad Sci USA 1995;92:7854–8.10.1073/pnas.92.17.7854Search in Google Scholar PubMed PubMed Central

67. Kawaguchi R, Yu J, Wiita P, Honda J, Sun H. An essential ligand-binding domain in the membrane receptor for retinol-binding protein revealed by large-scale mutagenesis and a human polymorphism. J Biol Chem 2008;283:15160–8.10.1074/jbc.M801060200Search in Google Scholar PubMed PubMed Central

68. Kawaguchi R, Yu J, Wiita P, Ter-Stepanian M, Sun H. Mapping the membrane topology and extracellular ligand binding domains of the retinol binding protein receptor. Biochemistry 2008;47:5387–95.10.1021/bi8002082Search in Google Scholar PubMed PubMed Central

69. Zhong M, Kawaguchi R, Ter-Stepanian M, Kassai M, Sun H. Vitamin A transport and the transmembrane pore in the cell-surface receptor for plasma retinol binding protein. PLoS One 2013;8:e73838.10.1371/journal.pone.0073838Search in Google Scholar PubMed PubMed Central

70. Berry DC, Jin H, Majumdar A, Noy N. Signaling by vitamin A and retinol-binding protein regulates gene expression to inhibit insulin responses. Proc Natl Acad Sci USA 2011;108:4340–5.10.1073/pnas.1011115108Search in Google Scholar PubMed PubMed Central

71. Berry DC, O’Byrne SM, Vreeland AC, Blaner WS, Noy N. Cross talk between signaling and vitamin A transport by the retinol-binding protein receptor STRA6. Mol Cell Biol 2012;32:3164–75.10.1128/MCB.00505-12Search in Google Scholar

72. Berry DC, Croniger CM, Ghyselinck NB, Noy N. Transthyretin blocks retinol uptake and cell signaling by the holo-retinol-binding protein receptor STRA6. Mol Cell Biol 2012;32:3851–9.10.1128/MCB.00775-12Search in Google Scholar

73. Zemany L, Bhanot S, Peroni OD, Murray SF, Moraes-Vieira PM, Castoldi A, Manchem P, Guo S, Monia BP, Kahn BB. Transthyretin antisense oligonucleotides lower circulating RBP4 levels and improve insulin sensitivity in obese mice. Diabetes 2014; Epub ahead of print.10.2337/db14-0970Search in Google Scholar

74. Zemany L, Kraus BJ, Norseen J, Saito T, Peroni OD, Johnson RL, Kahn BB. Downregulation of STRA6 in adipocytes and adipose stromovascular fraction in obesity and effects of adipocyte-specific STRA6 knockdown in vivo. Mol Cell Biol 2014;34: 1170–86.10.1128/MCB.01106-13Search in Google Scholar

75. Quadro L, Blaner WS, Hamberger L, Van Gelder RN, Vogel S, Piantedosi R, Gouras P, Colantuoni V, Gottesman ME. Muscle expression of human retinol-binding protein (RBP). Suppression of the visual defect of RBP knockout mice. J Biol Chem 2002;277:30191–7.10.1074/jbc.M205046200Search in Google Scholar

76. Moraes-Vieira PM, Yore MM, Dwyer PM, Syed I, Aryal P, Kahn BB. RBP4 activates antigen-presenting cells, leading to adipose tissue inflammation and systemic insulin resistance. Cell Metab 2014;19:512–26.10.1016/j.cmet.2014.01.018Search in Google Scholar

77. Nefedova Y, Gabrilovich DI. Targeting of Jak/STAT pathway in antigen presenting cells in cancer. Curr Cancer Drug Targets 2007;7:71–7.10.2174/156800907780006887Search in Google Scholar

78. Pfitzner E, Kliem S, Baus D, Litterst CM. The role of STATs in inflammation and inflammatory diseases. Curr Pharm Des 2004;10:2839–50.10.2174/1381612043383638Search in Google Scholar

79. Farjo KM, Farjo RA, Halsey S, Moiseyev G, Ma JX. Retinol-binding protein 4 induces inflammation in human endothelial cells by an NADPH oxidase- and nuclear factor kappa B-dependent and retinol-independent mechanism. Mol Cell Biol 2012;32:5103–15.10.1128/MCB.00820-12Search in Google Scholar

80. Bouillet P, Sapin V, Chazaud C, Messaddeq N, Decimo D, Dolle P, Chambon P. Developmental expression pattern of Stra6, a retinoic acid-responsive gene encoding a new type of membrane protein. Mech Dev 1997;63:173–86.10.1016/S0925-4773(97)00039-7Search in Google Scholar

81. Wu C, Orozco C, Boyer J, Leglise M, Goodale J, Batalov S, Hodge CL, Haase J, Janes J, Huss JW, 3rd, Su AI. BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources. Genome Biol 2009;10:R130.10.1186/gb-2009-10-11-r130Search in Google Scholar PubMed PubMed Central

82. Lattin JE, Schroder K, Su AI, Walker JR, Zhang J, Wiltshire T, Saijo K, Glass CK, Hume DA, Kellie S, Sweet MJ. Expression analysis of G protein-coupled receptors in mouse macrophages. Immunome Res 2008;4:5.10.1186/1745-7580-4-5Search in Google Scholar PubMed PubMed Central

83. Amengual J, Zhang N, Kemerer M, Maeda T, Palczewski K, Von Lintig J. STRA6 is critical for cellular vitamin A uptake and homeostasis. Hum Mol Genet 2014;23:5402–17.10.1093/hmg/ddu258Search in Google Scholar PubMed PubMed Central

84. Ruiz A, Mark M, Jacobs H, Klopfenstein M, Hu J, Lloyd M, Habib S, Tosha C, Radu RA, Ghyselinck NB, Nusinowitz S, Bok D. Retinoid content, visual responses, and ocular morphology are compromised in the retinas of mice lacking the retinol-binding protein receptor, STRA6. Invest Ophthalmol Vis Sci 2012;53:3027–39.10.1167/iovs.11-8476Search in Google Scholar PubMed PubMed Central

85. Golzio C, Martinovic-Bouriel J, Thomas S, Mougou-Zrelli S, Grattagliano-Bessieres B, Bonniere M, Delahaye S, Munnich A, Encha-Razavi F, Lyonnet S, Vekemans M, Attie-Bitach T, Etchevers HC. Matthew-Wood syndrome is caused by truncating mutations in the retinol-binding protein receptor gene STRA6. Am J Hum Genet 2007;80:1179–87.10.1086/518177Search in Google Scholar PubMed PubMed Central

86. Chassaing N, Golzio C, Odent S, Lequeux L, Vigouroux A, Martinovic-Bouriel J, Tiziano FD, Masini L, Piro F, Maragliano G, Delezoide AL, Attie-Bitach T, Manouvrier-Hanu S, Etchevers HC, Calvas P. Phenotypic spectrum of STRA6 mutations: from Matthew-Wood syndrome to non-lethal anophthalmia. Hum Mutat 2009;30:E673–81.10.1002/humu.21023Search in Google Scholar PubMed

87. Pasutto F, Sticht H, Hammersen G, Gillessen-Kaesbach G, Fitzpatrick DR, Nurnberg G, Brasch F, Schirmer-Zimmermann H, Tolmie JL, Chitayat D, Houge G, Fernandez-Martinez L, Keating S, Mortier G, Hennekam RC, von der Wense A, Slavotinek A, Meinecke P, Bitoun P, Becker C, Nurnberg P, Reis A, Rauch A. Mutations in STRA6 cause a broad spectrum of malformations including anophthalmia, congenital heart defects, diaphragmatic hernia, alveolar capillary dysplasia, lung hypoplasia, and mental retardation. Am J Hum Genet 2007;80:550–60.10.1086/512203Search in Google Scholar PubMed PubMed Central

88. Laursen KB, Kashyap V, Scandura J, Gudas LJ. An alternative retinoic acid responsive Stra6 promoter regulated in response to retinol deficiency. J Biol Chem 2014;290:4356–66.10.1074/jbc.M114.613968Search in Google Scholar PubMed PubMed Central

89. Xia M, Liu Y, Guo H, Wang D, Wang Y, Ling W. Retinol binding protein 4 stimulates hepatic SREBP-1 and increases lipogenesis through PGC-1beta-dependent pathway. Hepatology 2013;58:564–75.10.1002/hep.26227Search in Google Scholar PubMed

90. Verges B, Guiu B, Cercueil JP, Duvillard L, Robin I, Buffier P, Bouillet B, Aho S, Brindisi MC, Petit JM. Retinol-binding protein 4 is an independent factor associated with triglycerides and a determinant of very low-density lipoprotein-apolipoprotein B100 catabolism in type 2 diabetes mellitus. Arterioscler Thromb Vasc Biol 2012;32:3050–7.10.1161/ATVBAHA.112.255190Search in Google Scholar PubMed

91. Stefan N, Hennige AM, Staiger H, Machann J, Schick F, Schleicher E, Fritsche A, Haring HU. High circulating retinol-binding protein 4 is associated with elevated liver fat but not with total, subcutaneous, visceral, or intramyocellular fat in humans. Diabetes Care 2007;30:1173–8.10.2337/dc06-2342Search in Google Scholar

92. Ost A, Danielsson A, Liden M, Eriksson U, Nystrom FH, Stralfors P. Retinol-binding protein-4 attenuates insulin-induced phosphorylation of IRS1 and ERK1/2 in primary human adipocytes. FASEB J 2007;21:3696–704.10.1096/fj.07-8173comSearch in Google Scholar

93. Li L, Wang C, Bao Y, Wu H, Lu J, Xiang K, Jia W. Serum retinol-binding protein 4 is associated with insulin secretion in Chinese people with normal glucose tolerance. J Diabetes 2009;1:125–30.10.1111/j.1753-0407.2009.00024.xSearch in Google Scholar

94. Li J, Feng ZC, Yeung FS, Wong MR, Oakie A, Fellows GF, Goodyer CG, Hess DA, Wang R. Aldehyde dehydrogenase 1 activity in the developing human pancreas modulates retinoic acid signalling in mediating islet differentiation and survival. Diabetologia 2014;57:754–64.10.1007/s00125-013-3147-ySearch in Google Scholar

95. Huang W, Wang G, Delaspre F, Vitery Mdel C, Beer RL, Parsons MJ. Retinoic acid plays an evolutionarily conserved and biphasic role in pancreas development. Dev Biol 2014;394:83–93.10.1016/j.ydbio.2014.07.021Search in Google Scholar

96. Perez RJ, Benoit YD, Gudas LJ. Deletion of retinoic acid receptor beta (RARbeta) impairs pancreatic endocrine differentiation. Exp Cell Res 2013;319:2196–204.10.1016/j.yexcr.2013.05.032Search in Google Scholar

97. Stafford D, Prince VE. Retinoic acid signaling is required for a critical early step in zebrafish pancreatic development. Curr Biol 2002;12:1215–20.10.1016/S0960-9822(02)00929-6Search in Google Scholar

98. Ribel-Madsen R, Friedrichsen M, Vaag A, Poulsen P. Retinol-binding protein 4 in twins: regulatory mechanisms and impact of circulating and tissue expression levels on insulin secretion and action. Diabetes 2009;58:54–60.10.2337/db08-1019Search in Google Scholar PubMed PubMed Central

99. Brun PJ, Grijalva A, Rausch R, Watson E, Yuen JJ, Das BC, Shudo K, Kagechika H, Leibel RL, Blaner WS. Retinoic acid receptor signaling is required to maintain glucose-stimulated insulin secretion and beta-cell mass. FASEB J 2015;29:671–83.10.1096/fj.14-256743Search in Google Scholar PubMed PubMed Central

100. Kane MA, Folias AE, Pingitore A, Perri M, Obrochta KM, Krois CR, Cione E, Ryu JY, Napoli JL. Identification of 9-cis-retinoic acid as a pancreas-specific autacoid that attenuates glucose-stimulated insulin secretion. Proc Natl Acad Sci USA 2010;107:21884–9.10.1073/pnas.1008859107Search in Google Scholar PubMed PubMed Central

101. Motani A, Wang Z, Conn M, Siegler K, Zhang Y, Liu Q, Johnstone S, Xu H, Thibault S, Wang Y, Fan P, Connors R, Le H, Xu G, Walker N, Shan B, Coward P. Identification and characterization of a non-retinoid ligand for retinol-binding protein 4 which lowers serum retinol-binding protein 4 levels in vivo. J Biol Chem 2009;284:7673–80.10.1074/jbc.M809654200Search in Google Scholar

102. Kloting N, Graham TE, Berndt J, Kralisch S, Kovacs P, Wason CJ, Fasshauer M, Schon MR, Stumvoll M, Bluher M, Kahn BB. Serum retinol-binding protein is more highly expressed in visceral than in subcutaneous adipose tissue and is a marker of intra-abdominal fat mass. Cell Metab 2007;6:79–87.10.1016/j.cmet.2007.06.002Search in Google Scholar

103. Kawaguchi R, Sun H. Techniques to study specific cell-surface receptor-mediated cellular vitamin A uptake. Methods Mol Biol 2010;652:341–61.10.1007/978-1-60327-325-1_20Search in Google Scholar

104. Brun PJ, Yang KJ, Lee SA, Yuen JJ, Blaner WS. Retinoids: potent regulators of metabolism. Biofactors 2013;39:151–63.10.1002/biof.1056Search in Google Scholar

Received: 2015-2-17
Accepted: 2015-3-9
Published Online: 2015-5-5
Published in Print: 2015-4-1

©2015 by De Gruyter

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. A message from the new Editor-in-Chief
  4. Special issue on: Adiposopathy in Cancer and (Cardio) Metabolic Diseases: An Endocrine Approach – Part 3 / Editors: Gérard S. Chetrite and Bruno Fève
  5. Editorial Preface
  6. Preface to special issue on: Adiposopathy in cancer and (cardio)metabolic diseases: an endocrine approach – Part 3
  7. Topic 1: Impact of Adiposopathy In Cardiovascular and Metabolic Diseases: Endocrine And Clinical Aspects
  8. Review Articles
  9. Not all fats are created equal: adipose vs. ectopic fat, implication in cardiometabolic diseases
  10. Perivascular adipose tissue, inflammation and insulin resistance: link to vascular dysfunction and cardiovascular disease
  11. Retinol binding protein 4 and its membrane receptors: a metabolic perspective
Downloaded on 20.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hmbci-2015-0013/html
Scroll to top button