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Roles of oxidative stress, adiponectin, and nuclear 
hormone receptors in obesity-associated insulin 
resistance and cardiovascular risk

Abstract: Obesity leads to the development of type 2 dia-
betes mellitus, which is a strong risk factor for cardiovas-
cular disease. A better understanding of the molecular 
basis of obesity will lead to the establishment of effective 
prevention strategies for cardiovascular diseases. Adipo-
cytes have been shown to generate a variety of endocrine 
factors termed adipokines/adipocytokines. Obesity-asso-
ciated changes to these adipocytokines contribute to the 
development of cardiovascular diseases. Adiponectin, 
which is one of the most well-characterized adipocy-
tokines, is produced exclusively by adipocytes and exerts 
insulin-sensitizing and anti-atherogenic effects. Obese 
subjects have lower levels of circulating adiponectin, and 
this is recognized as one of the factors involved in obesity-
induced insulin resistance and atherosclerosis. Another 
pathophysiological feature of obesity may involve the 
low-grade chronic inflammation in adipose tissue. This 
inflammatory process increases oxidative stress in adi-
pose tissue, which may affect remote organs, leading to 
the development of diabetes, hypertension, and athero-
sclerosis. Nuclear hormone receptors (NRs) regulate the 
transcription of the target genes in response to binding 
with their ligands, which include metabolic and nutri-
tional substrates. Among the various NRs, peroxisome 
proliferator-activated receptor γ promotes the transcrip-
tion of adiponectin and antioxidative enzymes, whereas 
mineralocorticoid receptor mediates the effects of aldos-
terone and glucocorticoid to induce oxidative stress in adi-
pocytes. It is hypothesized that both play crucial roles in 
the pathophysiology of obesity-associated insulin resist-
ance and cardiovascular diseases. Thus, reduced adi-
ponectin and increased oxidative stress play pathological 
roles in obesity-associated insulin resistance to increase 

the cardiovascular disease risk, and various NRs may be 
involved in this pathogenesis.
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Introduction
Over the past few decades, obesity has been a growing 
threat to the health of people in an increasing number of 
countries [1]. Obesity, especially visceral fat obesity, causes 
insulin resistance and leads to the development of type 2 
diabetes mellitus (T2DM), which is a strong risk factor for 
cardiovascular disease and cancers that are associated with 
a high mortality rate [2–4]. Furthermore, visceral fat obesity 
leads to the risk-clustering status known as metabolic syn-
drome, which is characterized by high plasma triglycerides 
(TG), low plasma high-density lipoprotein (HDL) choles-
terol, high fasting plasma glucose, and high blood pres-
sure, which is also a risk factor for cardiovascular events [5, 
6]. A better understanding of the molecular basis of obesity 
will lead to the development of effective prevention strate-
gies for obesity-associated cardiovascular diseases.

A series of studies have revealed that adipocytes gen-
erate and secrete a variety of endocrine factors known as 
adipokines/adipocytokines and that obesity-associated 
changes in adipocytokines contribute to the develop-
ment of cardiovascular diseases [7]. Adiponectin, one of 
the most well-characterized adipocytokines, is produced 
exclusively by adipocytes and exerts insulin-sensitizing 
and anti-atherogenic effects [8–10]. Obese subjects have 
lower levels of circulating adiponectin [11, 12], which is 
recognized as a molecular factor contributing to obesity-
induced insulin resistance and atherosclerosis.

Another important contributing factor for obesity-
associated insulin resistance may involve low-grade 
chronic inflammation in adipose tissue [13, 14]. This inflam-
matory process includes an increase in pro-inflammatory 
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adipocytokines [15–17] and an increase in oxidative stress 
[18]. In obese humans and rodents, the levels of oxidative 
stress-associated markers have been found to be elevated 
in plasma and urine [18]. In obese mice, oxidative stress 
was especially increased in adipose tissue [18]. This oxida-
tive stress may remotely affect the oxidative stress levels 
in β cells [19, 20], vascular endothelium [21, 22], and the 
brain [23, 24], leading to the development of diabetes, 
hypertension, and atherosclerosis.

Nuclear hormone receptors (NRs) regulate the tran-
scription of target genes in response to binding to their 
specific ligands, such as steroid hormones, fatty acids, 
oxysterol, and bile acids. NRs are expressed in tissues 
involved in lipid, carbohydrate, and energy homeosta-
sis, translating hormonal, metabolic, and nutritional 
signals into alterations in gene expression [25]. In par-
ticular, peroxisome proliferator-activated receptor (PPAR) 
γ is an essential NR in adipocytes, playing an important 
role in the differentiation of mature adipocytes, and can 
promote the transcription of adiponectin and antioxida-
tive enzymes [26–31]. Recently, mineralocorticoid recep-
tor (MR) has been demonstrated to mediate the effects of 
aldosterone and glucocorticoid to induce oxidative stress 
in adipocytes [32–34]. Thus, many studies have shown that 
NRs play various roles in the pathophysiology of obesity-
associated insulin resistance and cardiovascular diseases.

In this review, we describe the roles of reduced adi-
ponectin and increased oxidative stress in obesity-associ-
ated insulin resistance as well as cardiovascular risk and 
the contribution of various NRs to the pathophysiology of 
obesity.

The roles of oxidative stress in 
obesity

Obesity-associated increase in oxidative 
stress in adipose tissue

The Framingham study revealed that urinary levels of 
8-epi-prostaglandin F2α (8-epi-PGF2α), a systemic oxi-
dative stress marker, were significantly associated with 
body mass index [35]. We have shown that urinary 8-epi-
PGF2α levels are associated more closely with the visceral 
fat area than with the subcutaneous fat area measured by 
abdominal computed tomography [36]. In obese mice, the 
oxidative stress levels in plasma were elevated in compari-
son to those in control mice [18]. Moreover, lipid peroxide 
levels and hydrogen peroxide generation were elevated 
in adipose tissue, but not in the liver, skeletal muscle, or 

aorta [18]. These data suggest that the adipose tissue in 
obese individuals may represent a major source of reactive 
oxygen species (ROS). The question is why oxidative stress 
increases in adipose tissue with obesity. Several possible 
explanations have been proposed.

Increased expression of nicotinamide adenine 
dinucleotide phosphate oxidase subunits

In adipose tissue, increased expression of nicotinamide 
adenine dinucleotide phosphate (NADPH) oxidase, a 
plasma membrane enzyme that converts molecular oxygen 
to superoxide radicals, may be associated with increased 
oxidative stress levels. In obese mice, messenger ribonu-
cleic acid (mRNA) expression of the NADPH oxidase sub
units was increased in adipose tissue but not in the liver or 
muscles [18]. Moreover, treatment of obese mice with the 
NADPH oxidase inhibitor apocynin improved hyperglyce-
mia, hyperinsulinemia, hypertriglyceridemia, and hepatic 
steatosis [18]. These results suggest that ROS generation 
via NADPH oxidase could play an important role in the 
pathogenesis of obesity-associated metabolic disorder.

Decreased expression or activity of antioxidative enzymes

Adipose tissue expresses relatively high levels of anti-
oxidant defensive enzymes. However, the expression and 
activity of antioxidant enzymes such as catalase, super-
oxide dismutase (SOD) 1, and glutathione peroxidase 
(GPx) were reduced in the adipose tissues of obese indi-
viduals [18, 28, 29, 37]. ROS dose-dependently suppress 
the expression of PPARγ [18], an important transcrip-
tional factor that induces the expression of catalase [28]. 
Interestingly, these changes in antioxidant levels were 
observed in adipose tissue but not in the liver or skeletal 
muscle. In addition to increased NADPH oxidase levels, 
decreased antioxidant levels may contribute to increased 
oxidative stress in the adipose tissue [18].

Involvement of adipose tissue macrophages

Macrophage infiltration into adipose tissue has been con-
sidered an important factor in the pathogenesis of insulin 
resistance in obese individuals [13, 14]. Macrophages are 
known to produce ROS; thus, adipose tissue macrophages 
could be involved in increased ROS generation. ROS have 
been shown to increase monocyte chemotactic protein 
1 (MCP-1) expression in adipocytes [18]. Furthermore, 
the by-products of ROS-associated lipid peroxidation 
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are potent chemoattractants [38]. ROS also augment the 
mRNA expression of NADPH oxidase subunits in adipo-
cytes [18]; increased ROS generation could thus lead to 
increased macrophage infiltration and inflammatory 
changes. Therefore, in obesity, oxidative stress may con-
tribute to the establishment of a vicious cycle that pro-
motes increased inflammation in adipose tissues.

Overnutrition and ROS generation in mitochondria

Glucose is oxidized during the tricarboxylic acid cycle, 
which generates electron donors such as nicotinamide 
adenine dinucleotide dehydrogenase (NADH) and flavin 
adenine dinucleotide (FADH2). Excess glucose leads to the 
overproduction of electron donors in the mitochondrial 
electron transport chain, resulting in the generation of 
superoxide radicals [39]. Similarly, excess free fatty acids 
(FFAs) lead to increased FFA oxidation by mitochondria, 
which in turn generate excess NADH and FADH2, leading 
to the mitochondrial overproduction of ROS [39]. Further-
more, ROS generation is augmented in FFA-loaded adi-
pocytes but can be blocked by treatment with an NADPH 
oxidase inhibitor, indicating the involvement of NADPH 
oxidase in ROS generation by fatty acids [18]. FFAs, espe-
cially palmitate, can stimulate diacylglycerol synthesis 
and activate protein kinase C (PKC), which leads to the 
activation of NADPH oxidase [40]. Thus, excess glucose 
and FFAs cause oxidative stress in mitochondria and the 
plasma membrane.

Taken together, various mechanisms, including 
increased NADPH oxidase expression and decreased anti-
oxidant activities, may be involved in the increased ROS 
generation by adipose tissue in obesity.

Increased oxidative stress in obesity and 
insulin resistance

Many studies have reported an association between ROS 
and insulin resistance [37, 41–45]. In 3T3-L1 adipocytes, 
insulin resistance can be induced by treatment with 
either tumor necrosis factor (TNF-α) or glucocorticoid, 
via increased ROS generation, whereas treatment with an 
antioxidative agent, either SOD or catalase, can improve 
insulin resistance [41]. Oxidative stress has also been 
reported to induce insulin resistance in myocytes [45]. 
This ROS-induced insulin resistance can be attributed to 
the activation of stress signals such as c-Jun N-terminal 
kinase, p38 mitogen-activated protein kinase, nuclear 
factor κB (NF-κB), and certain isoforms of PKC [39, 41–43]. 

Meanwhile, hydrogen peroxide is produced transiently in 
response to insulin in a NADPH oxidase-mediated manner 
and acts as a second messenger to augment insulin 
signals in adipocytes [44]. These data indicate that, in 
adipocytes, transient increases in cellular ROS may play 
an important role in insulin signaling, but excessive and 
prolonged exposure to ROS suppresses insulin action. 
Glutathione (GSH) has been shown to overaccumulate 
in hypertrophied adipose tissues [37]. Although GSH is 
an antioxidant, excess GSH suppresses insulin action in 
adipocytes [37]. Meanwhile, insulin suppresses GPX activ-
ity, which leads to the accumulation of GSH in adipocytes 
[37], indicating a complex interaction between insulin 
and ROS in adipocytes. In β-cells and isolated islets, oxi-
dative stress suppresses insulin production [19, 46]. This 
impaired insulin production can be improved with anti-
oxidant treatment in obese mice [20]. Increased oxidative 
stress impairs insulin production as well as insulin action.

Increased oxidative stress in obesity and  
cardiovascular disease

Oxidative stress is strongly involved in the development 
of atherosclerosis [47]. Excess ROS attenuates nitric oxide 
bioavailability, and superoxide easily reacts with nitric 
oxide, leading to the generation of harmful peroxyni-
trite and, subsequently, to endothelial dysfunction [22]. 
Increased ROS facilitates the oxidation of low-density 
lipoprotein (LDL) in atherosclerotic lesions [48], thus facil-
itating immune reactions in endothelial cells, including 
the increased expression of adhesion molecules, which 
results in macrophage migration, and the formation of 
lipid-laden macrophages [47]. These processes aggravate 
vascular endothelial damage.

Several mechanisms that increase oxidative stress 
locally in the vascular wall have been postulated as athero-
sclerosis pathogeneses. Increased NADPH oxidase expres-
sion has been observed in pre-atherosclerotic vascular 
endothelium [49, 50], whereas angiotensin II acts through 
the angiotensin type I receptor to trigger a powerful stimu-
lus for ROS generation from NADPH oxidase [21, 51].

Several molecules may be involved in the modula-
tion of hyperglycemia-induced oxidative stress, including 
those in the polyol pathway, advanced glycation end prod-
ucts (AGEs), and PKC [52–55]. The polyol pathway is facili-
tated by hyperglycemic states. Aldose reductase, a polyol 
pathway enzyme, utilizes and depletes NADPH to convert 
excess glucose to sorbitol. In particular, AGE-receptor 
interactions activate NADPH oxidase, leading to ROS gen-
eration [56]. Mitochondrial ROS (described in a previous 
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section) are also involved in cellular AGE accumulation, 
activation of the polyol pathway, and PKC [54]. These oxi-
dative stresses are aggravated in obesity and diabetes.

The prolonged presence of increased TG-rich lipo-
proteins in the circulation induces oxidative stress in 
the endothelium [57, 58]. Our recent clinical study sug-
gested that in high-risk DM patients treated with statins, 
the circulating levels of malondialdehyde-modified LDL 
(MDA-LDL), a surrogate marker of oxidized LDL, were 
significantly correlated with the TG and HDL cholesterol 
levels [59]. Adiponectin levels were also significantly cor-
related with MDA-LDL levels, although not independently 
of TG and HDL cholesterol [59]. The serum MDA-LDL level 
was significantly associated with serum remnant lipo-
protein cholesterol levels [59]. Activation of lectin-like 
oxidized LDL receptor 1 by remnant lipoprotein particles 
induced NADPH oxidase-dependent production of super-
oxide in endothelial cells [60], which may explain the sig-
nificant association between LDL oxidation and remnant 
lipoproteins rich in TG. Moreover, HDL protects against 
the oxidation of LDL [61]. Collectively, the management of 
dyslipidemic metabolic syndrome components is impor-
tant for reducing the oxidization of LDL, and ultimately, to 
the development of atherosclerosis (Figure 1).

Roles of adiponectin in obesity-
associated insulin resistance and 
cardiovascular risk

Clinical implications of adiponectin in  
obesity-associated diseases

Circulating levels of adiponectin are low in patients with 
visceral fat obesity [11] or T2DM [12], and the levels are 
correlated with the indices of insulin sensitivity [62, 
63]. People with high levels of circulating adiponectin 
are less likely than those with low concentrations to 
develop T2DM [64]. Circulating adiponectin levels are 
also decreased with hypertension in humans, irrespec-
tive of insulin resistance [65]. Furthermore, adiponectin 
concentrations correlate positively with HDL cholesterol 
concentrations and negatively with TG concentrations 
[66]. Patients with missense mutations in the adiponec-
tin gene present with low adiponectin concentrations 
and have been reported to exhibit T2DM and metabolic 
syndrome phenotypes [67]. Thus, low circulating adi-
ponectin levels are associated with various coronary 
risk factors. A case-control study demonstrated that 
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Figure 1 Schematic diagram of the effects of adiponectin and oxi-
dative stress on circulating lipoproteins and atherosclerosis under 
healthy conditions and in metabolic syndrome.
In metabolic syndrome, the reduction of adiponectin leads to the 
increase of TG-rich remnant lipoproteins via decreased insulin 
sensitivity, which contributes to generation of ROS, resulting in the 
oxidation of LDL that accelerates the development of atherosclero-
sis. Moreover, the anti-atherosclerosis force is ameliorated directly 
by the reduction of adiponectin and indirectly through the decrease 
of HDL that contributes to reverse cholesterol transport and sup-
presses the oxidation of LDL.

low adiponectin levels are associated with a high risk of 
coronary artery disease [68], whereas a clinical prospec-
tive study demonstrated that men with high circulating 
adiponectin levels had a significantly lower prevalence 
of myocardial infarction than those with low adiponec-
tin levels [69]. Recent clinical studies have demonstrated 
that low levels of circulating adiponectin are significantly 
associated with lipid-rich plaques in coronary arteries, as 
assessed by intravascular ultrasound [70]. Low adiponec-
tin levels were significantly associated with multivessel 
coronary atherosclerosis assessed on computed tomog-
raphy angiography independently of conventional risk 
factors in patients with suspected coronary artery disease 
and were predictive of multivessel coronary atheroscle-
rosis in combination with age, sex, hypertension, and 
diabetes [71]. Taken together with the basic researches 
described in detail in the following sections, these clini-
cal studies indicate that circulating adiponectin protein 
should directly protect coronary artery walls from pro-
atherogenic stresses induced by conventional risk factors 
as well as enhance insulin sensitivity, and hence, the vas-
cular walls with reduced adiponectin protein should be 
susceptible to pro-atherogenic stresses, facilitating the 
development of coronary atherosclerosis.
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Insulin-sensitizing effects of adiponectin

The insulin-sensitizing or anti-diabetes effects of adi-
ponectin have been demonstrated in vivo in animal 
studies. Adiponectin-deficient mice showed marked ele-
vations in plasma glucose and insulin levels, as well as 
insulin resistance, relative to wild-type mice, when fed 
a high-fat and high-sucrose diet, although they did not 
present this phenotype on a normal diet [9]. Adiponec-
tin supplementation via transfection with an adiponec-
tin-generating adenovirus reduced the development of 
insulin resistance in adiponectin-deficient mice that con-
sumed a high-fat and high-sucrose diet [9].

A study by Kadowaki and his colleagues has eluci-
dated the precise molecular mechanism involved in the 
adiponectin-mediated modulation of insulin sensitivity. 
Adiponectin exerts insulin-sensitizing effects via adeno-
sine monophosphate-activated protein kinase (AMPK) 
activation and facilitates fatty acid oxidization via PPARα 
activation [72]. These effects are mediated by the mem-
brane receptor proteins AdipoR1 and AdipoR2, which spe-
cifically bind to adiponectin [73]. Analysis of mice deficient 
in both AdipoR1 and AdipoR2 revealed that these proteins 
play essential roles in mediating the effects of adiponectin 
with regard to insulin sensitization and the suppression of 
inflammation or oxidative stress [74].

Anti-inflammatory and anti-atherogenic 
effects of adiponectin

Anti-atherosclerotic effects have been demonstrated in 
vivo in animal studies of adiponectin-deficient mice. 
When compared with wild-type mice, adiponectin-
deficient mice developed more severe intimal thicken-
ing, with more active smooth muscle cell proliferation 
after receiving an experimental vascular injury [10]. 
Treatment with adiponectin-producing adenovirus sup-
pressed this intimal thickening [10]. Adiponectin overex-
pression attenuated plaque formation in apolipoprotein 
E-deficient mice [75, 76]. The various biological prop-
erties of adiponectin that suppress pro-inflammatory 
or pro-atherosclerotic processes have been elucidated. 
Adiponectin can suppress the expression of adhesion 
molecules, such as intracellular adhesion molecule 1, 
by inhibiting the TNF-α-mediated activation of NF-κB in 
endothelial cells, leading to the suppression of monocyte 
adhesion, which is an initial step in atherosclerosis [77]. 
Adiponectin predominantly inhibits the proliferation of 
myelomonocytic lineage cells and suppresses mature 
macrophage functions, including phagocytic activity 

and lipopolysaccharide-induced TNF-α production [78]. 
In macrophages, adiponectin can suppress foam cell 
transformation by inhibiting scavenger receptor class A 
expression [79]. Adiponectin overexpression significantly 
reduces the vascular wall expression of scavenger recep-
tor class A, TNF-α, and intracellular adhesion molecule 1 
in apolipoprotein E-deficient mice and suppresses athero-
sclerosis [75, 76]. It also suppresses growth factor-induced 
vascular smooth muscle cell proliferation by inhibiting 
mitogen-activated protein kinase [80]. Furthermore, adi-
ponectin increases the expression of a tissue inhibitor of 
metalloproteinase in macrophages, which contributes to 
coronary artery plaque stabilization by inhibiting matrix 
metalloproteinases [81]. The adiponectin protein exists 
in the aortic endothelium under steady state conditions 
and may protect vasculature from the initiation of ath-
erosclerosis [82]. Adiponectin increases HDL assembly 
by enhancing the ATP-binding cassette transporter A1 
(ABCA1) pathway and apolipoprotein A-1 synthesis in the 
liver [83, 84], leading to an enhancement of reverse cho-
lesterol transport. Collectively, these properties contribute 
to the anti-atherosclerotic and anti-inflammatory func-
tions of adiponectin.

The oxidative stress and  
adiponectin antagonism

Adiponectin suppresses the harmful effects 
of oxidative stress

Besides its suppressive effects on atherosclerosis, adiponec-
tin inhibits pressure overload-induced myocardial hyper-
trophy, decreases angiotensin II-induced cardiac fibrosis, 
and protects the heart from ischemia-reperfusion injury 
[85–87]. In a myocardial infarction/reperfusion model, adi-
ponectin played a protective role against oxidative stress-
induced myocardial damage. It is possible that adiponectin 
decreases oxidative/nitrative stress by inhibiting inducible 
nitric oxide synthase and suppressing the expression of 
gp91phox, a NADPH oxidase subunit [88], in an AMPK-inde-
pendent manner [89]. Similar effects of adiponectin have 
also been observed in the endothelium. Adiponectin can 
suppress oxidative/nitrative stress in the arteries of hyper-
lipidemic rats [90]. In addition, adiponectin exerts car-
dioprotective effects against the oxidative stress-induced 
remodeling processes in cardiomyocytes by activating 
AMPK and inhibiting extracellular signal-regulated kinases 
and NF-κB [91]. Interestingly, this cardioprotective effect of 
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adiponectin was reduced in mice in which diabetes was 
induced through a high fat diet [92], which may be asso-
ciated with reduced AdipoR1 and AdipoR2 expression in 
response to insufficient insulin activity [93].

Oxidative stress suppresses adiponectin 
production

In humans, serum adiponectin levels are inversely cor-
related with systemic oxidative stress [18, 36]. In adipose 
cells, ROS exposure suppressed adiponectin mRNA expres-
sion and secretion and increased the mRNA expression of 
pro-inflammatory adipocytokines such as interleukin (IL) 6 
and MCP-1 [18]. The antioxidant N-acetylcysteine reversed 
the effects of ROS and restored gene expression to the basal 
level [18]. Furthermore, in an in vivo study, treatment of 
obese mice with apocynin, an NADPH oxidase inhibitor, led 
to increased adiponectin expression and decreased TNF-α 
expression, which were accompanied by the suppression 
of oxidative stress in the adipose tissue [18]. These data 
suggest that oxidative stress plays a role in reducing adi-
ponectin levels, which in turn contributes to obesity-asso-
ciated disease pathogenesis. Conversely, oxidative stress 
was enhanced in AdipoR1- and AdipoR2-deficient mice 
[74], which provides evidence that the adiponectin-AdipoR 
pathway contributes to the suppression of oxidative stress.

Roles of NRs in obesity-associated 
insulin resistance and  
cardiovascular risk

Peroxisome proliferator-activated receptors

PPARγ is a master regulator that plays a key role in the 
control of adipocyte-specific gene expression in combi-
nation with CCAAT/enhancer binding protein α during 
adipose differentiation [26]. PPARγ2 is exclusively 
expressed by adipocytes and plays essential roles in regu-
lating various important genes involved in adipose dif-
ferentiation as well as in glucose and lipid metabolism in 
adipocytes. Thiazolidinediones (TZDs), synthetic PPARγ 
ligands, can improve insulin resistance [94]. TZDs can 
increase circulating adiponectin levels by activating adi-
ponectin gene transcription through a PPARγ-responsive 
element in the gene promoter region [27]. Kubota et al. [95] 
demonstrated that TZDs exert insulin-sensitizing effects in 
ob/ob mice, mainly by activating AMPK and suppressing 

gluconeogenesis in the liver. This effect is mediated partly 
by an adiponectin-dependent pathway.

PPARγ plays an important role in the transcriptional 
activation of antioxidant enzymes such as SOD1, catalase, 
and GPX3 [28–31]. The expression of these antioxidant 
enzymes is decreased in the adipocytes of obese animals 
[18, 31, 37], whereas TZDs increase the expression, which 
may contribute to the suppression of oxidative stress [28, 
29, 31]. TZDs have been shown to suppress TNF-α-induced 
oxidative stress [57]. Therefore, the insulin-sensitizing 
effects of TZDs might be explained partly by their ability 
to inhibit oxidative stress. Interestingly, PPARγ-mediated 
regulation of catalase is functionally conserved between 
mice and humans, although the locations of the PPARγ-
responsive sites in the promoter regions are different [28, 
29]. Clinically, a randomized controlled trial revealed that 
pioglitazone, a TZD, reduces the incidence of all-cause 
mortality, nonfatal myocardial infarction, and stroke 
in patients with type 2 diabetes, who have a high risk of 
macrovascular events [96]. PPARγ could prove to be a 
therapeutic target for insulin resistance to reduce cardio-
vascular risk, especially in obese subjects.

Although other PPARs are not key regulators of adipo-
genesis, they can control lipid metabolism. Activation of 
PPARα results in a reduction of plasma TG levels, through 
the induction of genes that decrease the availability of TG 
for hepatic very-low-density lipoprotein secretion, and the 
induction of genes that promote lipoprotein lipase-medi-
ated lipolysis of TG-rich plasma lipoproteins [97]. Fibrates, 
synthetic ligands of PPARα, can increase the production 
of adiponectin via PPARα in adipocytes [98]. Several clini-
cal trials have suggested that fibrates may be effective for 
the prevention of cardiovascular events in patients with 
high TG and low HDL-C levels [99, 100]. PPARδ induces 
the expression of genes required for fatty acid oxidation 
and energy dissipation in skeletal muscle and contributes 
to the development of oxidative muscle fiber [101, 102]. 
Activation or overexpression of PPARδ in mice results in 
resistance to weight gain and improved insulin sensitivity 
in high fat diet-induced obesity, as well as genetically pre-
disposed obesity, via enhanced oxidation [103].

Mineralocorticoid receptor

Recent studies have resulted in a better understanding 
of MR physiology in the heart, vasculature, brain, and 
adipose tissues [104]. Activation of MR by aldosterone pro-
motes ROS generation through NADPH oxidase in the heart 
and vasculature [105]. Recent studies have revealed that 
MR was also involved in oxidative stress in adipose tissue 
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[32–34]. Adipose expression of MR increases in obese mice 
[33]. Treatment of obese mice with eplerenone, an inhibi-
tory agent of MR, can improve insulin resistance through 
the suppression of macrophage infiltration, a decrease in 
inflammatory adipocytokines, and an increase in serum 
adiponectin levels [32]. Similarly, in 3T3-L1 adipocytes, 
treatment with aldosterone suppresses the expression of 
adiponectin, which is blocked by eplerenone [33]. More
over, aldosterone increases oxidative stress in 3T3-L1 adi-
pocytes, which is blocked by treatment with eplerenone or 
small interfering RNA of MR, indicating that the effect of 
aldosterone is mediated by MR [33].

MR can bind not only to aldosterone but also to glu-
cocorticoid, with 10-fold higher affinity than the gluco-
corticoid receptor (GR) [106]. Glucocorticoids are a potent 
regulator of adipose differentiation, which is mediated by 
MR [107]. A selective MR blockade can inhibit adipose dif-
ferentiation and TG accumulation in 3T3-L1 and 3T3-F442A 
cells [108]. 11β-Hydroxysteroid dehydrogenase type 1 (11β-
HSD1), an enzyme that converts cortisone to active corti-
sol, is expressed in adipose tissue [109]. 11β-HSD1 mRNA in 
adipose tissue is expressed more highly in obese subjects, 
suggesting that active cortisol has a role in the pathophysi-
ology of obesity [110, 111]. Fat-specific overexpression of 11β-
HSD1 shows a phenotype presenting abdominal obesity, 
hypertension, and insulin resistance [112]. In 3T3-L1 adipo-
cytes, treatment with glucocorticoid increases the expres-
sion of NADPH oxidase subunits, leading to an increase 
in oxidative stress [34], and decreases the expression of 
adiponectin and catalase (Figure 2), which is blocked by 
treatment with eplerenone, suggesting that these effects of 
glucocorticoid are mediated by MR in adipocytes [34]. The 
expression and activity of 11β-HSD1 in adipocytes is nega-
tively regulated by PPARγ [113]. Therefore, the reduction of 
PPARγ leads to an increase in 11β-HSD1 activity, resulting in 
greater generation of cortisol, leading to increased oxidative 
stress through MR, which in turn causes a further reduction 
in PPARγ (Figure 2). This vicious cycle mediated by inappro-
priate MR activation (by both aldosterone and glucocorti-
coids) should be associated with the development of insulin 
resistance and atherosclerosis [114] (Figure 2), which can be 
blocked by treatment with TZDs or eplerenone.

Meanwhile, selective GR stimulation inhibits the 
expression of pro-inflammatory adipocytokines [115]. A 
recent research have revealed that cardiomyocyte-specific 
GR-deficient mice die prematurely from spontaneous 
cardiovascular disease or display a marked reduction in 
left ventricular systolic function by 3 months of age [116]. 
Thus, glucocorticoids via activating GR play a crucial role 
in protecting target tissues from stresses, whereas they 
induce oxidative stress via activating MR.

Aldosterone Cortisol (active)

MR

Oxidative stress

11β-HSD1
NADPH oxidase 

Cortisone (inactive)

Adiponectin

PPARγCatalase

Insulin resistance / Atherosclerosis

Adipocytes
in obesity

GR Protective roles

Figure 2 Working model illustrating the contribution of nuclear 
receptors to increased oxidative stress and decreased adiponectin 
expression in adipocytes in obesity.
Inappropriate MR activation by both aldosterone and cortisol leads 
to increased oxidative stress via the activation of NADPH oxidase, 
which ameliorates PPARγ, which plays an essential role in the 
expression of adiponectin. The reduction of adiponectin is causally 
associated with the development of insulin resistance and athero-
sclerosis. Moreover, the inactivation of PPARγ causes the reduc-
tion of catalase, leading to further increase of oxidative stress and 
increase of 11β-HSD1, which facilitates the conversion of inactive 
cortisone to active cortisol, which further activates MR activity.

Liver X receptors

There are two liver X receptors (LXRs), termed LXRα 
and LXRβ. LXRα is expressed in liver, intestine, mac-
rophages, and adipose tissue, whereas LXRβ is ubiq-
uitously expressed [117]. LXR regulates the expression 
of the ABCA1 [118, 119], which is one of the important 
transporters for reverse cholesterol transport, the process 
of cholesterol delivery from the periphery to the liver. A 
synthetic LXR agonist has been demonstrated to inhibit 
the development of atherosclerosis in mice [120]. Mean-
while, LXR stimulates lipogenesis through the induction 
of sterol-regulatory element-binding protein 1c (SREBP1c), 
a transcriptional factor activating various genes involved 
in lipogenesis [121]. In addition, LXR activation leads to 
hypertriglyceridemia via the expression of angiopoietin-
like protein 3, suppressing lipoprotein lipase activity [122]. 
Thus, LXR agonists have a beneficial effect of inhibiting 
atherosclerosis, but they also have a harmful effect of pro-
moting hepatic steatosis and hypertriglyceridemia.

Both LXRs are highly expressed in white and brown 
adipose tissues. Although LXRs do not contribute to 
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adipocyte differentiation, they regulate the genes involved  
in adipocyte growth and glucose homeostasis [123, 124]. 
LXR activation promotes the expression of glucose trans-
porter 4 (GLUT4) and increases glucose uptake in adipose 
tissue [125, 126]. Meanwhile, LXR increases fatty acid 
β-oxidation and decreases glucose oxidation in white 
adipose tissue [127]. LXR-deficient mice are resistant 
to diet-induced obesity, which may be mediated by 
increased energy expenditure in brown adipose tissue 
[128, 129]. Collectively, these data suggest that LXRs play 
some role in governing glucose and lipid metabolism in 
adipose tissue.

Other nuclear hormone receptors

Farnesoid X receptor (FXR), liver receptor homologue 1 
(LRH-1), and a small heterodimer partner (SHP) are NRs 
that have been shown to regulate various genes involved 
in bile acid metabolism [130–132]. In mice fed a high-fat 
diet, FXR deletion had a protective effect, reducing weight 
gain, hyperglycemia, hyperinsulinemia, and glucose 
intolerance, despite higher plasma TG levels [133]. Mean-
while, FXR activation reduced atherosclerotic lesion for-
mation in LDL receptor null or apolipoprotein E null mice 
[134]. LRH-1 augments PPARγ-induced transactivation of 
the adiponectin gene [27]. Treatment with an LRH-1 ligand 
leads to decreased hepatic TGs and serum glucose [135]. 
Mutations of the SHP gene are associated with a mildly 
obese phenotype in Japanese subjects [136]. Meanwhile, 
SHP knockout mice are resistant to diet-induced obesity 
[137, 138]. Although the precise mechanism has not yet 
been fully clarified, SHP has been reported to modulate 
the activity of PPARγ [139] and PPARα [137]. Other NRs 
such as chicken ovalbumin upstream promoter transcrip-
tion factor II [140, 141], RAR-related receptor α (RORα) 
[142], estrogen-related receptor α (ERRα) [143], ERRγ [144], 
and REV-ERBα [145] have been shown to be involved in adi-
pogenesis. In the future, the identification of new ligands 
for NRs may facilitate the development of new therapeutic 
approaches for the treatment of patients with obesity and 
insulin resistance to reduce cardiovascular risk, although 
further studies are required.

Expert opinion
Measuring circulating adiponectin levels and oxidative 
stress levels is beneficial because they give an indica-
tion of obesity-associated cardiovascular risk and are 

predictive of the occurrence of severe cardiovascular 
disease, in combination with conventional risk factors. 
TZDs and eplerenone increase adiponectin levels and 
decrease oxidative stress levels via the activation of PPARγ 
and suppression of MR, respectively. Other NRs in adi-
pocytes may be good drug targets for obesity-associated 
insulin resistance and cardiovascular diseases.

Outlook
The identification of new ligands for NRs will facilitate 
the development of new therapeutic approaches for the 
treatment of patients with obesity and insulin resistance 
to reduce cardiovascular risk.

Highlights
–– Adiponectin is an adipocyte-derived factor that has 

insulin-sensitizing and anti-atherogenic functions. 
In obese subjects, plasma adiponectin levels are 
reduced, which facilitates the development of 
diabetes and atherosclerosis.

–– In obese subjects, oxidative stress levels are elevated 
in adipose tissue, which affects the remote organs, 
contributing to the development of obesity-associated 
diseases, such as diabetes, hypertension, and 
atherosclerosis.

–– Adiponectin and oxidative stress are co-associated. 
Oxidative stress suppresses the production of 
adiponectin in adipocytes. Adiponectin suppresses 
oxidative stress-induced damage in the heart and the 
vascular wall.

–– PPARγ is an essential NR for adipocyte differentiation 
and regulates the transcription of various genes 
involved in glucose and lipid metabolism in adipocytes. 
Oxidative stress suppresses the expression of PPARγ, 
leading to amelioration of adipocyte function.

–– TZDs, synthetic ligands of PPARγ, can increase the 
expression of adiponectin and antioxidative enzymes, 
such as catalase, SOD1, and GPX3.

–– MR is an NR expressed in adipocytes that mediates the 
effect of aldosterone and glucocorticoid to increase 
oxidative stress.

–– Treatment of obese mice with eplerenone, an MR 
antagonist, can decrease oxidative stress and increase 
adiponectin expression in adipose tissue.

–– There are a number of NRs in adipocytes that may be 
involved in obesity-associated diseases. Activation 
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or repression of these NRs will be targets for the 
development of new therapeutic approaches to obesity-
associated insulin resistance and atherosclerosis.
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