Abstract
Numerous studies have demonstrated the interaction that exists between adipocyte differentiation, energy balance and factors involved in fluid and electrolyte homeostasis, such as the renin-angiotensin-aldosterone system. More specifically, a potential impact of aldosterone on the function of several organs implicated in the control of energy homeostasis, such as adipose tissue, liver, skeletal muscle or pancreas, has been recently described. In addition, the mineralocorticoid receptor (MR, NR3C2), a transcription factor, was shown to play a crucial role on white and brown adipocyte differentiation and function, mediating the effects of both mineralocorticoid and glucocorticoid hormones on adipose tissues. Transgenic mouse models as well as pharmacological inactivation of MR signaling provided compelling evidence that MR is an important control point for energy homeostasis. Herein, we review recent findings on the involvement of aldosterone but also of MR on energy metabolism and discuss the therapeutic potential of manipulating MR signaling for the management of metabolic disorders in humans.
References
1. Cornier M-A, Dabelea D, Hernandez TL, Lindstrom RC, Steig AJ, Stob NR, Van Pelt RE, Wang H, Eckel RH. The metabolic syndrome. Endocr Rev 2008;29:777–822.10.1210/er.2008-0024Search in Google Scholar PubMed PubMed Central
2. Hotamisligil GS. Inflammation and metabolic disorders. Nature 2006;444:860–7.10.1038/nature05485Search in Google Scholar PubMed
3. Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest 2005;115:1111–9.10.1172/JCI25102Search in Google Scholar PubMed PubMed Central
4. Després J-P, Lemieux I. Abdominal obesity and metabolic syndrome. Nature 2006;444:881–7.10.1038/nature05488Search in Google Scholar PubMed
5. Pascual-Le Tallec L, Lombès M. The mineralocorticoid receptor: a journey exploring its diversity and specificity of action. Mol Endocrinol Baltim Md 2005;19:2211–21.10.1210/me.2005-0089Search in Google Scholar PubMed
6. Fan YS, Eddy RL, Byers MG, Haley LL, Henry WM, Nowak NJ, Shows TB. The human mineralocorticoid receptor gene (MLR) is located on chromosome 4 at q31.2. Cytogenet Cell Genet 1989;52:83–4.10.1159/000132846Search in Google Scholar PubMed
7. Morrison N, Harrap SB, Arriza JL, Boyd E, Connor JM. Regional chromosomal assignment of the human mineralocorticoid receptor gene to 4q31.1. Hum Genet 1990;85:130–2.Search in Google Scholar
8. Le Menuet D, Munier M, Meduri G, Viengchareun S, Lombès M. Mineralocorticoid receptor overexpression in embryonic stem cell-derived cardiomyocytes increases their beating frequency. Cardiovasc Res 2010;87:467–75.10.1093/cvr/cvq087Search in Google Scholar PubMed
9. Munier M, Meduri G, Viengchareun S, Leclerc P, Le Menuet D, Lombès M. Regulation of mineralocorticoid receptor expression during neuronal differentiation of murine embryonic stem cells. Endocrinology 2010;151:2244–54.10.1210/en.2009-0753Search in Google Scholar PubMed PubMed Central
10. Zennaro MC, Le Menuet D, Lombès M. Characterization of the human mineralocorticoid receptor gene 5′-regulatory region: evidence for differential hormonal regulation of two alternative promoters via nonclassical mechanisms. Mol Endocrinol Baltim Md 1996;10:1549–60.Search in Google Scholar
11. Le Menuet D, Viengchareun S, Penfornis P, Walker F, Zennaro MC, Lombès M. Targeted oncogenesis reveals a distinct tissue-specific utilization of alternative promoters of the human mineralocorticoid receptor gene in transgenic mice. J Biol Chem 2000;275:7878–86.10.1074/jbc.275.11.7878Search in Google Scholar PubMed
12. Faresse N, Vitagliano J-J, Staub O. Differential ubiquitylation of the mineralocorticoid receptor is regulated by phosphorylation. Faseb J Off Publ Fed Am Soc Exp Biol 2012;26:4373–82.10.1096/fj.12-209924Search in Google Scholar PubMed
13. Viengchareun S, Le Menuet D, Martinerie L, Munier M, Pascual-Le Tallec L, Lombès M. The mineralocorticoid receptor: insights into its molecular and (patho)physiological biology. Nucl Recept Signal 2007;5:e012.10.1621/nrs.05012Search in Google Scholar PubMed PubMed Central
14. Binart N, Lombes M, Rafestin-Oblin ME, Baulieu EE. Characterization of human mineralocorticosteroid receptor expressed in the baculovirus system. Proc Natl Acad Sci USA 1991;88:10681–5.10.1073/pnas.88.23.10681Search in Google Scholar PubMed PubMed Central
15. Lombès M, Binart N, Delahaye F, Baulieu EE, Rafestin-Oblin ME. Differential intracellular localization of human mineralocorticosteroid receptor on binding of agonists and antagonists. Biochem J 1994;302 (Pt 1):191–7.10.1042/bj3020191Search in Google Scholar PubMed PubMed Central
16. Couette B, Fagart J, Jalaguier S, Lombes M, Souque A, Rafestin-Oblin ME. Ligand-induced conformational change in the human mineralocorticoid receptor occurs within its hetero-oligomeric structure. Biochem J 1996;315 (Pt 2):421–7.10.1042/bj3150421Search in Google Scholar PubMed PubMed Central
17. So AY-L, Chaivorapol C, Bolton EC, Li H, Yamamoto KR. Determinants of cell- and gene-specific transcriptional regulation by the glucocorticoid receptor. Plos Genet 2007;3:e94.10.1371/journal.pgen.0030094Search in Google Scholar PubMed PubMed Central
18. Kolla V, Robertson NM, Litwack G. Identification of a mineralocorticoid/glucocorticoid response element in the human Na/K ATPase alpha1 gene promoter. Biochem Biophys Res Commun 1999;266:5–14.10.1006/bbrc.1999.1765Search in Google Scholar PubMed
19. Handschin C, Spiegelman BM. Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr Rev 2006;27:728–35.10.1210/er.2006-0037Search in Google Scholar PubMed
20. Lombès M, Oblin ME, Gasc JM, Baulieu EE, Farman N, Bonvalet JP. Immunohistochemical and biochemical evidence for a cardiovascular mineralocorticoid receptor. Circ Res 1992;71:503–10.10.1161/01.RES.71.3.503Search in Google Scholar PubMed
21. Lombès M, Alfaidy N, Eugene E, Lessana A, Farman N, Bonvalet JP. Prerequisite for cardiac aldosterone action. Mineralocorticoid receptor and 11 beta-hydroxysteroid dehydrogenase in the human heart. Circulation 1995;92:175–82.10.1161/01.CIR.92.2.175Search in Google Scholar PubMed
22. Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, Palensky J, Wittes J. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med 1999;341:709–17.10.1056/NEJM199909023411001Search in Google Scholar PubMed
23. Zannad F, McMurray JJ, Krum H, van Veldhuisen DJ, Swedberg K, Shi H, Vincent J, Pocock SJ, Pitt B; EMPHASIS-HF Study Group. Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med 2011;364:11–21.10.1056/NEJMoa1009492Search in Google Scholar
24. Pitt B, Remme W, Zannad F, Neaton J, Martinez F, Roniker B, Bittman R, Hurley S, Kleiman J, Gatlin M; Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study Investigators. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med 2003;348:1309–21.10.1056/NEJMoa030207Search in Google Scholar
25. Edwards CR, Stewart PM, Burt D, Brett L, McIntyre MA, Sutanto WS, de Kloet ER, Monder C. Localisation of 11 beta-hydroxysteroid dehydrogenase–tissue specific protector of the mineralocorticoid receptor. Lancet 1988;2:986–9.10.1016/S0140-6736(88)90742-8Search in Google Scholar
26. Edwards CR, Benediktsson R, Lindsay RS, Seckl JR. 11 beta-Hydroxysteroid dehydrogenases: key enzymes in determining tissue-specific glucocorticoid effects. Steroids 1996;61:263–9.10.1016/0039-128X(96)00033-5Search in Google Scholar
27. Funder JW, Pearce PT, Smith R, Smith AI. Mineralocorticoid action: target tissue specificity is enzyme, not receptor, mediated. Science 1988;242:583–5.10.1126/science.2845584Search in Google Scholar PubMed
28. Draper N, Stewart PM. 11beta-hydroxysteroid dehydrogenase and the pre-receptor regulation of corticosteroid hormone action. J Endocrinol 2005;186:251–71.10.1677/joe.1.06019Search in Google Scholar PubMed
29. Conn JW. Hypertension, the potassium ion and impaired carbohydrate tolerance. N Engl J Med 1 1965;273:1135–43.10.1056/NEJM196511182732106Search in Google Scholar PubMed
30. Bochud M, Nussberger J, Bovet P, Maillard MR, Elston RC, Paccaud F, Shamlaye C, Burnier M. Plasma aldosterone is independently associated with the metabolic syndrome. Hypertension 2006;48:239–45.10.1161/01.HYP.0000231338.41548.fcSearch in Google Scholar PubMed
31. Fallo F, Veglio F, Bertello C, Sonino N, Della Mea P, Ermani M, Rabbia F, Federspil G, Mulatero P. Prevalence and characteristics of the metabolic syndrome in primary aldosteronism. J Clin Endocrinol Metab 2006;91:454–9.10.1210/jc.2005-1733Search in Google Scholar PubMed
32. Giacchetti G, Ronconi V, Turchi F, Agostinelli L, Mantero F, Rilli S, Boscaro M. Aldosterone as a key mediator of the cardiometabolic syndrome in primary aldosteronism: an observational study. J Hypertens 2007;25:177–86.10.1097/HJH.0b013e3280108e6fSearch in Google Scholar PubMed
33. Catena C, Lapenna R, Baroselli S, Nadalini E, Colussi G, Novello M, Favret G, Melis A, Cavarape A, Sechi LA. Insulin sensitivity in patients with primary aldosteronism: a follow-up study. J Clin Endocrinol Metab 2006;91:3457–63.10.1210/jc.2006-0736Search in Google Scholar
34. Carranza MC, Torres A, Calle C. Decreased insulin receptor number and affinity in subcutaneous adipose tissue in a patient with primary hyperaldosteronism. Rev Clínica Española 1991;188:414–17.Search in Google Scholar
35. Fallo F, Federspil G, Veglio F, Mulatero P. The metabolic syndrome in primary aldosteronism. Curr Diab Rep 2008;8:42–7.10.1007/s11892-008-0009-ySearch in Google Scholar
36. Urbanet R, Pilon C, Calcagno A, Peschechera A, Hubert E-L, Giacchetti G, Gomez-Sanchez C, Mulatero P, Toffanin M, Sonino N, Zennaro MC, Giorgino F, Vettor R, Fallo F. Analysis of insulin sensitivity in adipose tissue of patients with primary aldosteronism. J Clin Endocrinol Metab 2010;95:4037–42.10.1210/jc.2010-0097Search in Google Scholar
37. Urbanet R, Pilon C, Giorgino F, Vettor R, Fallo F. Insulin signaling in adipose tissue of patients with primary aldosteronism. J Endocrinol Invest 2011;34:86–9.10.1007/BF03347035Search in Google Scholar
38. Wada T, Ohshima S, Fujisawa E, Koya D, Tsuneki H, Sasaoka T. Aldosterone inhibits insulin-induced glucose uptake by degradation of insulin receptor substrate (IRS) 1 and IRS2 via a reactive oxygen species-mediated pathway in 3T3-L1 adipocytes. Endocrinology 2009;150:1662–9.10.1210/en.2008-1018Search in Google Scholar
39. Calle C, Campión J, García-Arencibia M, Maestro B, Dávila N. Transcriptional inhibition of the human insulin receptor gene by aldosterone. J Steroid Biochem Mol Biol 2003;84:543–53.10.1016/S0960-0760(03)00072-4Search in Google Scholar
40. Selvaraj J, Muthusamy T, Srinivasan C, Balasubramanian K. Impact of excess aldosterone on glucose homeostasis in adult male rat. Clin Chim Acta Int J Clin Chem 2009;407:51–7.10.1016/j.cca.2009.06.030Search in Google Scholar PubMed
41. Bentley-Lewis R, Adler GK, Perlstein T, Seely EW, Hopkins PN, Williams GH, Garg R. Body mass index predicts aldosterone production in normotensive adults on a high-salt diet. J Clin Endocrinol Metab 2007;92:4472–5.10.1210/jc.2007-1088Search in Google Scholar PubMed PubMed Central
42. Goodfriend TL, Kelley DE, Goodpaster BH, Winters SJ. Visceral obesity and insulin resistance are associated with plasma aldosterone levels in women. Obes Res 1999;7:355–62.10.1002/j.1550-8528.1999.tb00418.xSearch in Google Scholar PubMed
43. Sowers JR, Whaley-Connell A, Epstein M. Narrative review: the emerging clinical implications of the role of aldosterone in the metabolic syndrome and resistant hypertension. Ann Intern Med 2009;150:776–83.10.7326/0003-4819-150-11-200906020-00005Search in Google Scholar PubMed PubMed Central
44. Cancello R, Henegar C, Viguerie N, Taleb S, Poitou C, Rouault C, Coupaye M, Pelloux V, Hugol D, Bouillot JL, Bouloumié A, Barbatelli G, Cinti S, Svensson PA, Barsh GS, Zucker JD, Basdevant A, Langin D, Clément K. Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes 2005;54:2277–86.10.2337/diabetes.54.8.2277Search in Google Scholar PubMed
45. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003;112:1796–808.10.1172/JCI200319246Search in Google Scholar
46. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, Chen H. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 2003;112:1821–30.10.1172/JCI200319451Search in Google Scholar
47. Guo C, Ricchiuti V, Lian BQ, Yao TM, Coutinho P, Romero JR, Li J, Williams GH, Adler GK. Mineralocorticoid receptor blockade reverses obesity-related changes in expression of adiponectin, peroxisome proliferator-activated receptor-gamma, and proinflammatory adipokines. Circulation 2008;117:2253–61.10.1161/CIRCULATIONAHA.107.748640Search in Google Scholar PubMed PubMed Central
48. Hirata A, Maeda N, Hiuge A, Hibuse T, Fujita K, Okada T, Kihara S, Funahashi T, Shimomura I. Blockade of mineralocorticoid receptor reverses adipocyte dysfunction and insulin resistance in obese mice. Cardiovasc Res 2009;84:164–72.10.1093/cvr/cvp191Search in Google Scholar PubMed
49. Ehrhart-Bornstein M, Arakelyan K, Krug AW, Scherbaum WA, Bornstein SR. Fat cells may be the obesity-hypertension link: human adipogenic factors stimulate aldosterone secretion from adrenocortical cells. Endocr Res 2004;30:865–70.10.1081/ERC-200044122Search in Google Scholar PubMed
50. Lastra-Lastra G, Sowers JR, Restrepo-Erazo K, Manrique-Acevedo C, Lastra-González G. Role of aldosterone and angiotensin II in insulin resistance: an update. Clin Endocrinol (Oxf) 2009;71:1–6.10.1111/j.1365-2265.2008.03498.xSearch in Google Scholar PubMed
51. Mosso LM, Carvajal CA, Maiz A, Ortiz EH, Castillo CR, Artigas RA, Fardella CE. A possible association between primary aldosteronism and a lower beta-cell function. J Hypertens 2007;25:2125–30.10.1097/HJH.0b013e3282861fa4Search in Google Scholar PubMed
52. Hayden MR, Sowers JR. Pancreatic renin-angiotensin-aldosterone system in the cardiometabolic syndrome and type 2 diabetes mellitus. J Cardiometab Syndr 2008;3:129–31.10.1111/j.1559-4572.2008.00006.xSearch in Google Scholar PubMed
53. Luther JM, Luo P, Kreger MT, Brissova M, Dai C, Whitfield TT, Kim HS, Wasserman DH, Powers AC, Brown NJ. Aldosterone decreases glucose-stimulated insulin secretion in vivo in mice and in murine islets. Diabetologia 2011;54:2152–63.10.1007/s00125-011-2158-9Search in Google Scholar PubMed PubMed Central
54. Luo P, Dematteo A, Wang Z, Zhu L, Wang A, Kim H-S, Pozzi A, Stafford JM, Luther JM. Aldosterone deficiency prevents high-fat-feeding-induced hyperglycaemia and adipocyte dysfunction in mice. Diabetologia 2013;56:901–10.10.1007/s00125-012-2814-8Search in Google Scholar PubMed PubMed Central
55. Yamashita R, Kikuchi T, Mori Y, Aoki K, Kaburagi Y, Yasuda K, Sekihara H. Aldosterone stimulates gene expression of hepatic gluconeogenic enzymes through the glucocorticoid receptor in a manner independent of the protein kinase B cascade. Endocr J 2004;51:243–51.10.1507/endocrj.51.243Search in Google Scholar PubMed
56. Cooper SA, Whaley-Connell A, Habibi J, Wei Y, Lastra G, Manrique C, Stas S, Sowers JR. Renin-angiotensin-aldosterone system and oxidative stress in cardiovascular insulin resistance. Am J Physiol Heart Circ Physiol 2007;293:H2009–23.10.1152/ajpheart.00522.2007Search in Google Scholar PubMed
57. Zennaro MC, Le Menuet D, Viengchareun S, Walker F, Ricquier D, Lombès M. Hibernoma development in transgenic mice identifies brown adipose tissue as a novel target of aldosterone action. J Clin Invest 1998;101:1254–60.10.1172/JCI1915Search in Google Scholar PubMed PubMed Central
58. Penfornis P, Viengchareun S, Le Menuet D, Cluzeaud F, Zennaro MC, Lombès M. The mineralocorticoid receptor mediates aldosterone-induced differentiation of T37i cells into brown adipocytes. Am J Physiol Endocrinol Metab 2000;279:E386–94.10.1152/ajpendo.2000.279.2.E386Search in Google Scholar PubMed
59. Buyse M, Viengchareun S, Bado A, Lombès M. Insulin and glucocorticoids differentially regulate leptin transcription and secretion in brown adipocytes. Faseb J Off Publ Fed Am Soc Exp Biol 2001;15:1357–66.10.1096/fj.00-0669comSearch in Google Scholar PubMed
60. Viengchareun S, Penfornis P, Zennaro MC, Lombès M. Mineralocorticoid and glucocorticoid receptors inhibit UCP expression and function in brown adipocytes. Am J Physiol Endocrinol Metab 2001;280:E640–49.10.1152/ajpendo.2001.280.4.E640Search in Google Scholar PubMed
61. Caprio M, Fève B, Claës A, Viengchareun S, Lombès M, Zennaro M-C. Pivotal role of the mineralocorticoid receptor in corticosteroid-induced adipogenesis. Faseb J Off Publ Fed Am Soc Exp Biol 2007;21:2185–94.10.1096/fj.06-7970comSearch in Google Scholar PubMed
62. Rondinone CM, Rodbard D, Baker ME. Aldosterone stimulated differentiation of mouse 3T3-L1 cells into adipocytes. Endocrinology 1993;132:2421–6.10.1210/endo.132.6.8504747Search in Google Scholar PubMed
63. Caprio M, Antelmi A, Chetrite G, Muscat A, Mammi C, Marzolla V, Fabbri A, Zennaro MC, Fève B. Antiadipogenic effects of the mineralocorticoid receptor antagonist drospirenone: potential implications for the treatment of metabolic syndrome. Endocrinology 2011;152:113–25.10.1210/en.2010-0674Search in Google Scholar PubMed
64. Hoppmann J, Perwitz N, Meier B, Fasshauer M, Hadaschik D, Lehnert H, Klein J. The balance between gluco- and mineralo-corticoid action critically determines inflammatory adipocyte responses. J Endocrinol 2010;204:153–64.10.1677/JOE-09-0292Search in Google Scholar PubMed
65. Lastra G, Whaley-Connell A, Manrique C, Habibi J, Gutweiler AA, Appesh L, Hayden MR, Wei Y, Ferrario C, Sowers JR. Low-dose spironolactone reduces reactive oxygen species generation and improves insulin-stimulated glucose transport in skeletal muscle in the TG(mRen2)27 rat. Am J Physiol Endocrinol Metab 2008;295:E110–6.10.1152/ajpendo.00258.2007Search in Google Scholar PubMed PubMed Central
66. Liu G, Grifman M, Keily B, Chatterton JE, Staal F-W, Li Q-X. Mineralocorticoid receptor is involved in the regulation of genes responsible for hepatic glucose production. Biochem Biophys Res Commun 2006;342:1291–6.10.1016/j.bbrc.2006.02.065Search in Google Scholar PubMed
67. Matono T, Koda M, Tokunaga S, Sugihara T, Ueki M, Murawaki Y. The effects of the selective mineralocorticoid receptor antagonist eplerenone on hepatic fibrosis induced by bile duct ligation in rat. Int J Mol Med 2010;25:875–82.Search in Google Scholar
68. Wada T, Kenmochi H, Miyashita Y, Sasaki M, Ojima M, Sasahara M, Koya D, Tsuneki H, Sasaoka T. Spironolactone improves glucose and lipid metabolism by ameliorating hepatic steatosis and inflammation and suppressing enhanced gluconeogenesis induced by high-fat and high-fructose diet. Endocrinology 2010;151:2040–9.10.1210/en.2009-0869Search in Google Scholar PubMed
69. Luo W, Meng Y, Ji H-L, Pan C-Q, Huang S, Yu C-H, Xiao L-M, Cui K, Ni S-Y, Zhang Z-S, Li X. Spironolactone lowers portal hypertension by inhibiting liver fibrosis, ROCK-2 activity and activating NO/PKG pathway in the bile-duct-ligated rat. Plos One 2012;7:e34230.10.1371/journal.pone.0034230Search in Google Scholar PubMed PubMed Central
70. Gamliel-Lazarovich A, Raz-Pasteur A, Coleman R, Keidar S. The effects of aldosterone on diet-induced fatty liver formation in male C57BL/6 mice: comparison of adrenalectomy and mineralocorticoid receptor blocker. Eur J Gastroenterol Hepatol 2013;PMID:23524523.10.1097/MEG.0b013e328360554aSearch in Google Scholar PubMed
71. Le Menuet D, Isnard R, Bichara M, Viengchareun S, Muffat-Joly M, Walker F, Zennaro MC, Lombès M. Alteration of cardiac and renal functions in transgenic mice overexpressing human mineralocorticoid receptor. J Biol Chem 2001;276:38911–20.10.1074/jbc.M103984200Search in Google Scholar PubMed
72. Usher MG, Duan SZ, Ivaschenko CY, Frieler RA, Berger S, Schütz G, Lumeng CN, Mortensen RM. Myeloid mineralocorticoid receptor controls macrophage polarization and cardiovascular hypertrophy and remodeling in mice. J Clin Invest 2010;120:3350–64.10.1172/JCI41080Search in Google Scholar PubMed PubMed Central
73. Joëls M, Karst H, DeRijk R, de Kloet ER. The coming out of the brain mineralocorticoid receptor. Trends Neurosci 2008;31:1–7.10.1016/j.tins.2007.10.005Search in Google Scholar PubMed
74. Calhoun DA, Sharma K. The role of aldosteronism in causing obesity-related cardiovascular risk. Cardiol Clin 2010;28:517–27.10.1016/j.ccl.2010.04.001Search in Google Scholar PubMed PubMed Central
75. Lamounier-Zepter V, Ehrhart-Bornstein M, Bornstein SR. Mineralocorticoid-stimulating activity of adipose tissue. Best Pract Res Clin Endocrinol Metab 2005;19:567–75.10.1016/j.beem.2005.07.002Search in Google Scholar PubMed
76. Schinner S, Willenberg HS, Krause D, Schott M, Lamounier-Zepter V, Krug AW, Ehrhart-Bornstein M, Bornstein SR, Scherbaum WA. Adipocyte-derived products induce the transcription of the StAR promoter and stimulate aldosterone and cortisol secretion from adrenocortical cells through the Wnt-signaling pathway. Int J Obes 2007;31:864–70.10.1038/sj.ijo.0803508Search in Google Scholar PubMed
77. Briones AM, Nguyen Dinh Cat A, Callera GE, Yogi A, Burger D, He Y, Corrêa JW, Gagnon AM, Gomez-Sanchez CE, Gomez-Sanchez EP, Sorisky A, Ooi TC, Ruzicka M, Burns KD, Touyz RM. Adipocytes produce aldosterone through calcineurin-dependent signaling pathways: implications in diabetes mellitus-associated obesity and vascular dysfunction. Hypertension 2012;59:1069–78.10.1161/HYPERTENSIONAHA.111.190223Search in Google Scholar PubMed
78. Nguyen Dinh Cat A, Briones AM, Callera GE, Yogi A, He Y, Montezano AC, Touyz RM. Adipocyte-derived factors regulate vascular smooth muscle cells through mineralocorticoid and glucocorticoid receptors. Hypertension 2011;58:479–88.10.1161/HYPERTENSIONAHA.110.168872Search in Google Scholar PubMed
79. Schäfer N, Lohmann C, Winnik S, van Tits LJ, Miranda MX, Vergopoulos A, Ruschitzka F, Nussberger J, Berger S, Lüscher TF, Verrey F, Matter CM. Endothelial mineralocorticoid receptor activation mediates endothelial dysfunction in diet-induced obesity. Eur Heart J Apr 17 2013;PMID:23594590.10.1093/eurheartj/eht095Search in Google Scholar PubMed PubMed Central
80. Hwang M-H, Yoo J-K, Luttrell M, Kim H-K, Meade TH, English M, Segal MS, Christou DD. Mineralocorticoid receptors modulate vascular endothelial function in human obesity. Clin Sci Lond Engl 1979. Jun 20 2013;PMID:23786536.Search in Google Scholar
81. Bender SB, McGraw AP, Jaffe IZ, Sowers JR. Mineralocorticoid receptor-mediated vascular insulin resistance: an early contributor to diabetes-related vascular disease? Diabetes 2013;62:313–9.10.2337/db12-0905Search in Google Scholar PubMed PubMed Central
©2013 by Walter de Gruyter Berlin Boston
Articles in the same Issue
- Topic 2: Adipose Tissue and Corticosteroid Hormones
- Review Articles
- The role and regulation of 11β-hydroxysteroid dehydrogenase type 1 in obesity and the metabolic syndrome
- Obesity and cardiovascular disease: role of adipose tissue, inflammation, and the renin-angiotensin-aldosterone system
- The mineralocorticoid receptor: a new player controlling energy homeostasis
- Effects of energy restriction on activity of the hypothalamo-pituitary-adrenal axis in obese humans and rodents: implications for diet-induced changes in body composition
Articles in the same Issue
- Topic 2: Adipose Tissue and Corticosteroid Hormones
- Review Articles
- The role and regulation of 11β-hydroxysteroid dehydrogenase type 1 in obesity and the metabolic syndrome
- Obesity and cardiovascular disease: role of adipose tissue, inflammation, and the renin-angiotensin-aldosterone system
- The mineralocorticoid receptor: a new player controlling energy homeostasis
- Effects of energy restriction on activity of the hypothalamo-pituitary-adrenal axis in obese humans and rodents: implications for diet-induced changes in body composition