Home The effect of fermented soy (FSWW08) on blood hematology and cachexia in cancer patients
Article
Licensed
Unlicensed Requires Authentication

The effect of fermented soy (FSWW08) on blood hematology and cachexia in cancer patients

  • Uwe D. Rohr EMAIL logo , Wu Wen Li , Huang Ziqiang , Walter Wainright and Adolf Eduard Schindler
Published/Copyright: October 12, 2012

Abstract

In cancer patients, appetite and immune status are significantly weakened. Two experimental fermented formulations without (group A, named as FSWW08) and with (group B, FSWW08) an extract from yam root were investigated against a placebo formulation with casein (group C) in a clinical study conducted in six cancer hospitals where cancer patients underwent radio or chemotherapy (patients undergoing radiation therapy n=78, patients undergoing chemotherapy n=184, total 262). IgG and IgA were increased by formulation A in patients despite receiving radio- or chemotherapy. Group A experienced statistically significant increases in lymphocyte transformation rates, whereas group B and group C did not. Formulations A and B either inhibited or lessened statistically significant decreases in white blood counts, whereas the placebo group experienced substantial decreases. Hemoglobin and platelet decreases were inhibited in group A, although not statistically significantly. Patients in group A received no blood transfusions, whereas many patients from the placebo group received blood transfusions. Appetite loss was reduced in group A from 57.9% to 13.3% and in group B from 70% to 35.8%. In the placebo group, an increase in appetite loss was detected under chemo and radiation therapy from 41.8% to 70.9%.


Corresponding author: Dr. Uwe D. Rohr, The Vienna Stress Relief Clinic, Spiegelgasse 2a, A-1120, Vienna, Austria

References

1. Fonkych K, O’Leary JF, Melnick GA, Keeler EB. Medicare HMO impact on utilization at the end of life. Am J Manag Care 2008;14:505–12.Search in Google Scholar

2. Morley JE, Thomas DR, Wilson MM. Cachexia: pathophysiology and clinical relevance. Am J Clin Nutr 2006;83: 735–43.10.1093/ajcn/83.4.735Search in Google Scholar PubMed

3. Kotler DP. Cachexia. Ann Intern Med 2000;1333:622–34.10.7326/0003-4819-133-8-200010170-00015Search in Google Scholar PubMed

4. Mantovani G, Macciò A, Madeddu C, Gramignano G, Serpe R, Massa E, Dessì M, Tanca FM, Sanna E, Deiana L, Panzone F, Contu P, Floris C. Randomized phase III clinical trial of five different arms of treatment for patients with cancer cachexia: interim results. Nutrition 2008;24:305–13.10.1016/j.nut.2007.12.010Search in Google Scholar PubMed

5. Tassinari D, Santelmo C, Tombesi P, Sartori S. Thalidomide in the treatment of cancer cachexia. J Palliat Care 2008;24:187–9.10.1177/082585970802400309Search in Google Scholar

6. Seruga B, Zhang H, Bernstein LJ, Tannock IF. Cytokines and their relationship to the symptoms and outcome of cancer. Nat Rev Cancer 2008;8:887–99.10.1038/nrc2507Search in Google Scholar PubMed

7. Remer T, Boye KR, Hartmann MF, Wudy SA. Urinary markers of adrenarche: reference values in healthy subjects, aged 3–18 years. J Clin Endocrinol Metab 2005;90:2015–21.10.1210/jc.2004-1571Search in Google Scholar PubMed

8. Atanackovic D, Cao Y, Kim JW, Brandl S, Thom I, Faltz C, Hildebrandt Y, Bartels K, de Weerth A, Hegewisch-Becker S, Hossfeld DK, Bokemeyer C. The local cytokine and chemokine millieu within malignant effusions. Tumor Biol 2008;29: 93–104.10.1159/000135689Search in Google Scholar PubMed

9. Jacob U, Gocan A, Bachg D, Rohr UD. Applikation von fermentierter Soja bei Krebspatienten zur Verminderung von Kachexie und Erhöhung der Apoptose – eine prospektive Pilotstudie. J Gynecol Endokrinol 2009;19:18–28.Search in Google Scholar

10. Day RM. Genistein protects against biomarkers of delayed lung sequelae in mice surviving high doses of total body irradiation. Radiat Res 2008;46:361–72.10.1269/jrr.07121Search in Google Scholar PubMed PubMed Central

11. Sarkar FH, Li Y. NF-kappaB: a potential target for cancer chemoprevention and therapy. Front Biosci 2008;13:2950–9.10.2741/2900Search in Google Scholar PubMed

12. Raffoul JJ, Banerjee S, Singh-Gupta V, Knoll ZE, Fite A, Zhang H, Abrams J, Sarkar FH, Hillman GG. Down-regulation of apurinic/apyrimidinic endonuclease 1/redox factor-1 expression by soy isoflavones enhances prostate cancer radiotherapy in vitro and in vivo. Cancer Res 2007;67:2141–9.10.1158/0008-5472.CAN-06-2147Search in Google Scholar PubMed

13. Raffoul JJ, Wang Y, Kucuk O, Forman JD, Sarkar FH, Hillman GG. Genistein inhibits radiation-induced activation of NF-κB in prostate cancer cells promoting apoptosis and G2/M cell cycle arrest. Cancer Res 2007;67:2141–9.10.1158/0008-5472.CAN-06-2147Search in Google Scholar PubMed

14. Zhou Y, Mi MT. Genistein stimulates haematopoeis and increases survival of irradiated mice. J Radiat Res 2005;46:425–33.10.1269/jrr.46.425Search in Google Scholar PubMed

15. Gocan AG, Bachg D, Schindler AE, Rohr UD. Managing immunity in resistant cancer patients correlates to survival: results and discussion of a pilot study. Horm Mol Biol Clin Invest 2011;8:455–69.10.1515/HMBCI.2011.122Search in Google Scholar PubMed

16. Rohr UD, Gocan AG, Bachg D, Schindler AE. Cancer protection of soy resembles cancer protection during pregnancy. Horm Mol Biol Clin Invest 2010;3:391–409.10.1515/hmbci.2010.063Search in Google Scholar PubMed

17. Shu D, Qing Y, Tong Q, He Y, Xing Z, Zhao Y, Li Y, Wei Y, Huang W, Wu X. Deltonin isolated from Dioscorea zingiberensis inhibits cancer cell growth through inducing mitochondrial apoptosis and suppressing Akt and mitogen activated protein kinase signals. Biol Pharm Bull 2011;34:1231–9.10.1248/bpb.34.1231Search in Google Scholar PubMed

18. Saekoo J, Dechsukum C, Graidist P, Itharat A. Cytotoxic effect and its mechanism of dioscorealide B from Dioscorea membranacea against breast cancer cells. J Med Assoc Thai 2010;93(Suppl 7):S277–82.Search in Google Scholar

19. Jaiaree N, Itharat A, Kumapava K. Cytotoxic saponin against lung cancer cells from Dioscorea birmanica Prain & Burkill. J Med Assoc Thai 2010;93(Suppl 7):S192–7.10.1055/s-0030-1264438Search in Google Scholar

20. Liu H, Chou GX, Wang JM, Ji LL, Wang ZT. Steroidal saponins from the rhizomes of Dioscorea bulbifera and their cytotoxic activity. Planta Med 2010;77:845–8.10.1055/s-0030-1250633Search in Google Scholar PubMed

21. Kumar A, Takada Y, Boriek AM, Aggarwal BB. Nuclear factor-kappaB: its role in health and disease. J Mol Med 2004;82:434–48.10.1007/s00109-004-0555-ySearch in Google Scholar PubMed

22. Baldwin AS, Jr. Series introduction: the transcription factor NF-kappaB and human disease. J Clin Invest 2001;107:3–6.10.1172/JCI11891Search in Google Scholar PubMed PubMed Central

23. Liu S, Ginestier C, Ou SJ, Clouthier SG, Patel SH, Monville F, Korkaya H, Heath A, Dutcher J, Kleer CG, Jung Y, Dontu G, Taichman R, Wicha MS. Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res 2011;71:614–24.10.1158/0008-5472.CAN-10-0538Search in Google Scholar PubMed PubMed Central

24. Baker M. Stem cells: fast and furious. Nature 2009;458:962–5.10.1038/458962aSearch in Google Scholar PubMed

25. Nogueira L, Ruiz-Ontañon P, Vazquez-Barquero A, Moris F, Fernandez-Luna JL. The NFκB pathway: a therapeutic target in glioblastoma. Oncotarget 2011;2:646–53.10.18632/oncotarget.322Search in Google Scholar PubMed PubMed Central

26. Hayden MS, Ghosh S. NF-κB in immunobiology. Cell Research 2011;21:223–44.10.1038/cr.2011.13Search in Google Scholar PubMed PubMed Central

27. Tang M, Wei X, Guo Y, Breslin P, Zhang S, Zhang S, Wei W, Xia Z, Diaz M, Akira S, Zhang J. TAK1 is required for the survival of hematopoietic cells and hepatocytes in mice. J Exp Med 2008;205:1611–9.10.1084/jem.20080297Search in Google Scholar PubMed PubMed Central

28. Goudeau B, Huetz F, Samson S. IkappaBalpha/Ikappa-Bepsilon deficiency reveals that a critical NF-kappaB dosage is required for lymphocyte survival. Proc Natl Acad Sci USA 2003;100:15800–5.10.1073/pnas.2535880100Search in Google Scholar PubMed PubMed Central

29. Liu K, Victora GD, Schwickert TA. In vivo analysis of dendritic cell development and homeostasis. Science 2009;324:392–7.10.1126/science.1170540Search in Google Scholar PubMed PubMed Central

30. Li Y, Wicha MS, Schwartz SJ, Sun D. Implications of cancer stem cell theory for cancer chemoprevention by natural dietary compounds. J Nutr Biochem 2011;22:799–806.10.1016/j.jnutbio.2010.11.001Search in Google Scholar PubMed PubMed Central

31. Xiao M, Inal CE, Parekh VI, Chang CM, Whitnall MH. 5-androstenediol promotes survival of gamma-irradiated human hematopoetic progenitors through induction of nuclear factor-kappaB activation and granulocyte colony-stimulating factor expression. Mol Pharmacol 2007;72:370–9.10.1124/mol.107.035394Search in Google Scholar PubMed

32. Loria RM. Beta-androstenes and resistance to viral and bacterial infections. Neuroimmunomodulation 2009;16:88–95.10.1159/000180263Search in Google Scholar PubMed

33. Gocan AG, Bachg D, Schindler AE, Rohr UD. Balancing steroidal hormone cascade in treatment-resistant veteran soldiers with PTSD using a fermented soy product (FSWW08): a pilot study. Horm Mol Biol Clin Invest 2012;10:301–14.10.1515/hmbci-2011-0135Search in Google Scholar PubMed

34. Roth TM, Ramamurthy P, Muir D, Wallace MR, Zhu Y, Chang L, Barald KF. Influence of hormones and hormone metabolites on the growth of Schwann cells derived from embryonic stem cells and on tumor cell lines expressing variable levels of neurofibromin. Dev Dyn 2008;237:513–24.10.1002/dvdy.21430Search in Google Scholar

35. Szalay L, Shimizu T, Suzuki T, Hsieh YC, Choudhry MA, Schwacha MG, Bland KI, Chaudry IH. Androstenediol administration after trauma-hemorrhage attenuates inflammation response, reduces organ damage, and improves survival following sepsis. Am J of Physiol Gastrointest Liver Physiol 2006;291:G260–6.10.1152/ajpgi.00390.2005Search in Google Scholar

36. Singh VK, Grace MB, Jacobsen KO, Chang CM, Parekh VI, Inal CE, Shafran RL, Whitnall AD, Kao TC, Jackson WE 3rd, Whitnall MH. Administration of 5-androstenediol to mice: pharmacokinetics and cytokine gene expression. Exp Mol Pathol 2008;84:178–88.10.1016/j.yexmp.2007.12.001Search in Google Scholar

37. Kennedy AR. Chemopreventive agents: protease inhibitors. Pharmacol Ther 1988;78:167–209.10.1016/S0163-7258(98)00010-2Search in Google Scholar

38. Sakai T, Kogiso M. Soy isoflavones and immunity. J Med Invest 2008;55:167–73.10.2152/jmi.55.167Search in Google Scholar PubMed

39. Fuhrman BJ, Pfeiffer, Xu X, Wu AH, Korde L, Gail MH, Keefer LK, Veenstra TD, Hoover RN, Ziegler RG. Soy intake is associated with an increased 2-hydroxylation and decreased 16α-hydroxylation of estrogens in Asian-American women. Cancer Epidemiol Biomarkers Prev 2009;18:2751–60.10.1158/1055-9965.EPI-09-0388Search in Google Scholar PubMed PubMed Central

40. Haddad PS, Azar GA, Groom S, Boivin M. Natural health products, modulation of immune function and prevention of chronic diseases. Evid Based Complement Alternat Med 2005;2;513–20.10.1093/ecam/neh125Search in Google Scholar PubMed PubMed Central

41. Tagawa N, Hidaka Y, Takano T, Shimaoka Y, Kobayashi Y, Amino N. Serum concentration of androstenediol and androstenediol sulfate, and their relation to cytokine production during and after normal pregnancy. Steroids 2004;69:675–80.10.1016/j.steroids.2004.06.003Search in Google Scholar PubMed

42. Boye KR. Physiologischer Einfluss adrenaler Androgene und Glucocorticoide auf den Unterarmknochen im Wachstumsalter bei gesunden Kindern. Dissertation. FU Berlin. Available at http://www.diss.fu-berlin.de/2006/4/.Search in Google Scholar

43. Imin N, Nizamidin M, Wu T, Rolfe BG. Factors involved in root formation in Medicago truncatula. J Exp Bot 2007;58:439–51.10.1093/jxb/erl224Search in Google Scholar PubMed

Received: 2012-4-19
Accepted: 2012-8-30
Published Online: 2012-10-12
Published in Print: 2012-12-01

©2012 by Walter de Gruyter Berlin Boston

Downloaded on 20.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hmbci-2012-0028/html
Scroll to top button