Home Surface properties of eucalyptus pulp fibres as reinforcement of cement-based composites
Article
Licensed
Unlicensed Requires Authentication

Surface properties of eucalyptus pulp fibres as reinforcement of cement-based composites

  • Gustavo Henrique Denzin Tonoli , Alessandra Etuko Feuzicana de Souza Almeida , Marcelo Assumpção Pereira-da-Silva , Alexandre Bassa , Danilo Oyakawa and Holmer Savastano
Published/Copyright: June 30, 2010
Become an author with De Gruyter Brill
Holzforschung
From the journal Volume 64 Issue 5

Abstract

The objective of the present work is to evaluate the effects of the surface properties of unrefined eucalyptus pulp fibres concerning their performance in cement-based composites. The influence of the fibre surface on the microstructure of fibre-cement composites was evaluated after accelerated ageing cycles, which simulate natural weathering. The surface of unbleached pulp is a thin layer that is rich in cellulose, lignin, hemicelluloses, and extractives. Such a layer acts as a physical and chemical barrier to the penetration of low molecular components of cement. The unbleached fibres are less hydrophilic than the bleached ones. Bleaching removes the amorphous lignin and extractives from the surface and renders it more permeable to liquids. Atomic force microscopy (AFM) helps in understanding the fibre-cement interface. Bleaching improved the fibre-cement interfacial bonding, whereas fibres in the unbleached pulp were less susceptible to the re-precipitation of cement hydration products into the fibre cavities (lumens). Therefore, unbleached fibres can improve the long-term performance of the fibre-cement composite owing to their delayed mineralization.


Corresponding author. Department of Structural Engineering, Escola de Engenharia de São Carlos, Universidade de São Paulo, Avenida Trabalhador São Carlense, 400, 13566-590, São Carlos, São Paulo, Brazil

Received: 2010-1-12
Accepted: 2010-3-11
Published Online: 2010-06-30
Published Online: 2010-06-30
Published in Print: 2010-08-01

©2010 by Walter de Gruyter Berlin New York

Articles in the same Issue

  1. Original papers
  2. Side reactions of 4-acetamido-TEMPO as the catalyst in cellulose oxidation systems
  3. Reactions of aldehydes with chlorous acid and chlorite in chlorine dioxide bleaching
  4. Using cationic polyvinyl alcohol (C-PVA) to improve the strength of wood-free papers containing high-yield pulp (HYP)
  5. A new phenolic glucoside and flavonoids from the bark of Eucommia ulmoides Oliv.
  6. Decomposition of a phenolic lignin model compound over organic N-bases in an ionic liquid
  7. Investigation on wax-impregnated wood. Part 1: Microscopic observations and 2D X-ray imaging of distinct wax types
  8. Investigation on wax-impregnated wood. Part 2: Study of void spaces filled with air by He pycnometry, Hg intrusion porosimetry, and 3D X-ray imaging
  9. Surface properties of eucalyptus pulp fibres as reinforcement of cement-based composites
  10. Cure kinetics of PF/PVAc hybrid adhesive for manufacturing profiled wood-strand composites
  11. Moisture induced stresses perpendicular to the grain in glulam: Review and evaluation of the relative importance of models and parameters
  12. Three-dimensional modeling of the structure formation and consolidation of wood composites
  13. Observation of cell shapes in wood cross-sections during water adsorption by confocal laser-scanning microscopy (CLSM)
  14. A single cell model for pretreatment of wood by microwave explosion
  15. Pore space analysis of beech wood: The vessel network
  16. Quantification of fungal colonization in modified wood: Quantitative real-time PCR as a tool for studies on Trametes versicolor
  17. Copper monoethanolamine adsorption in wood and its relation with cation exchange capacity (CEC)
  18. Effect of amine ligand, copper/amine ratio, and pH on copper adsorption into wood
  19. Effect of different soils and pH amendments on brown-rot decay activity in a soil block test
  20. A proposed accelerated field stake test for rapid assessment of wood preservative systems
  21. Meetings
  22. Meetings
Downloaded on 2.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hf.2010.073/pdf
Scroll to top button