Characterization of the bark of Protium tenuifolium Engl. from the Amazonian biome as a source of natural antioxidants
-
Laise de Jesus dos Santos
, Elesandra da Silva Araujo
, Mário Sérgio Lorenço
, Bianca Bueno Rosário
, Sabrina Benmuyal Vieira , Agust Sales , Marco Antonio Siviero , Luiz Eduardo de Lima Melo , Graciene da Silva Mota, Gabriela Aguiar Campolina
und Fabio Akira Mori
Abstract
The bark anatomy was analysed, as was the overall chemical composition (extractives, lignin, suberin, ash and polysaccharides), and a quantitative elemental analysis was performed of the bark and two tannin extracts (extracted with water only and with a mixture of water and Na2SO3). The phenolic composition and antioxidant activity of the bark extracts were quantified. The results indicated that the bark is composed of conductive phloem, nonconductive phloem, rhytidome, crystals and secretory cells. The average chemical composition was 15.9 % extractives, 35.3 % total lignin, 1.9 % suberin, 15.4 % ash and 31.5 % polysaccharides. The condensed tannin yield in the extract obtained with water alone was 5.1 %, and that in the treatment with water and Na2SO3 was 8.1 %. The ethanol-water extract had a high phenolic content (112.6 mg GAE g−1 extract). The bark extract showed strong antioxidant activity, reaching 83.5 % inhibition of DPPH free radicals, which was higher than the value of 75.0 % for the commercial antioxidant BHT at the same concentration. These results demonstrate that Protium tenuifolium is a potential natural Amazonian source of phenolic compounds and antioxidants and can be used for medicinal purposes and the production of various sustainable products, such as cosmetics.
Funding source: Brazilian Federal Agency for Support and Evaluation of Post-graduate Education (CAPES, Funding Code 001).
Acknowledgments
The authors thank the National Council for Scientific and Technological Development – CNPq, Support Foundation of Minas Gerais (FAPEMIG) and the Arboris Business Group for the support in collecting the bark in the field.
-
Research ethics: Not applicable.
-
Author contributions: The author(s) have (has) accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The author(s) state(s) no conflict of interest.
-
Research funding: Brazilian Federal Agency for Support and Evaluation of Post-graduate Education (CAPES, Funding Code 001).
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
Abdalla, S., Pizzi, A., Ayed, N., Charrier, F., Charrier, B., Bahabri, F., and Ganash, A. (2014). MALDI-TOF analysis of Aleppo pine (Pinus halepensis) bark tannin. Bioresources 9: 3396–3406, https://doi.org/10.15376/biores.9.2.3396-3406.Suche in Google Scholar
Amparo, T.R., Djeujo, F.M., Silva, D.S., Seibert, J.B., Rodrigues, I.V., Santos, O.D.H., Brandão, G.C., Vieira, P.M.A., and Froldi, G. (2021). New potential use of Protium spruceanum in hyperglycemia: α-glucosidase inhibition and protection against oxidative stress. J. Braz. Chem. Soc. 32: 1988–1996, https://doi.org/10.21577/0103-5053.20210090.Suche in Google Scholar
Angyalossy, V., Pace, M.R., Evert, R.F., Marcati, C.R., Oskolski, A.A., Terrazas, T., Kotina, E., Lens, F., Mazzoni-Viveiros, S.C., Angeles, G., et al.. (2016). IAWA list of microscopic bark features. IAWA J. 37: 517–615, https://doi.org/10.1163/22941932-20160151.Suche in Google Scholar
Araujo, E.S., Mota, G.S., Lorenço, M.S., Zidanes, U.L., Silva, L.R., Silva, E.P., Ferreira, V.R.F., Cardoso, M.G., and Mori, F.A. (2020). Characterisation and valorisation of the bark of Myrcia eximia DC. trees from the Amazon rainforest as a source of phenolic compounds. Holzforschung 74: 989–998, https://doi.org/10.1515/hf-2019-0294.Suche in Google Scholar
Araujo, E.S., Lorenço, M.S., Zidanes, U.L., Sousa, T.B., Mota, G.S., Reis, V.O., Silva, M.G., and Mori, F.A. (2021a). Quantification of the bark Myrcia eximia DC tannins from the Amazon rainforest and its application in the formulation of natural adhesives for wood. J. Clean. Prod. 280, https://doi.org/10.1016/j.jclepro.2020.124324.Suche in Google Scholar
Araujo, F.F., Farias, D.P., Neri-Numa, I.A., and Pastore, G.M. (2021b). Polyphenols and their applications: an approach in food chemistry and innovation potential. Food Chem. 338, https://doi.org/10.1016/j.foodchem.2020.127535.Suche in Google Scholar PubMed
Badhani, B., Sharma, N., and Kakka, R. (2015). Gallic acid: a versatile antioxidant with promising therapeutic and industrial applications. RSC Adv. 5: 27540–27557, https://doi.org/10.1039/c5ra01911g.Suche in Google Scholar
Bandeira, P.N., Fonseca, A.M., Costa, S.M.O., Lins, M.U.D.S., Pessoa, O.D.L., Monte, F.J.Q., Nogueira, N.A.P., and Lemosa, T.L.G. (2005). Antimicrobial and antioxidant activities of the essential oil of resin of Protium heptaphyllum. Nat. Prod. Commun. 1, https://doi.org/10.1177/1934578x0600100207.Suche in Google Scholar
Banerjee, G. and Chattopadhyay, P. (2018). Vanillin biotechnology: the perspectives and future. J. Sci. Food Agric. 99: 499–506, https://doi.org/10.1002/jsfa.9303.Suche in Google Scholar PubMed
Baptista, I., Miranda, I., Quilhó, T., Gominho, J., and Pereira, H. (2013). Characterisation and fractioning of Tectona grandis bark in view of its valorisation as a biorefinery raw-material. Ind. Crop. Prod. 50: 166–175, https://doi.org/10.1016/j.indcrop.2013.07.004.Suche in Google Scholar
Bello, A., Virtanen, V., Salminen, J.P., and Leiviska, T. (2020). Aminomethylation of spruce tannins and their application as coagulants for water clarification. Sep. Purif. Technol. 242: 116765, https://doi.org/10.1016/j.seppur.2020.116765.Suche in Google Scholar
Bhadange, Y.A., Saharan, V.K., Sonawane, S.H., and Boczkaj, G. (2022). Intensification of catechin extraction from the bark of Syzygium cumini using ultrasonication: optimization, characterization, degradation analysis and kinetic studies. Chem. Eng. Process. 181, https://doi.org/10.1016/j.cep.2022.109147.Suche in Google Scholar
Botterweck, A., Verhagen, H., Goldbohm, R., Kleinians, J., and Brandt, P.A.V.D. (2000). Intake of butylated hydroxyanisole and butylated hydroxytoluene and stomach cancer risk: results from analyses in The Netherlands Cohort Study. Food Chem. Toxicol. 38: 599–605, https://doi.org/10.1016/S0278-6915(00)00042-9.Suche in Google Scholar
Boz, H. (2015). p-Coumaric acid in cereals: presence, antioxidant and antimicrobial effects. Int. J. Food Sci. Technol. 50: 2323–2328, https://doi.org/10.1111/ijfs.12898.Suche in Google Scholar
Carmo, J., F., Miranda, I., Quilhó, T., Sousa, V.B., Cardoso, S., Carvalho, A.M., Fábio, H.D.J.C., Latorraca, J.V.F, and Pereira, H. (2016a). Copaifera langsdorffii bark as a source of chemicals: structural and chemical characterization. J. Wood Chem. Technol.: 1532–2319, https://doi.org/10.1080/02773813.2016.1140208.Suche in Google Scholar
Carmo, J.F., Miranda, I., Quilhó, T., Sousa, V.B., Carmo, F.H.D.J., Latorraca, J.V.F., and Pereira, H. (2016b). Chemical and structural characterization of the bark of Albizia niopoides trees from the Amazon. Wood Sci. Technol. 50: 677–692, https://doi.org/10.1007/s00226-016-0807-3.Suche in Google Scholar
Carmo, J.F., Miranda, I., Quilhó, T., Carvalho, A.M., Carmo, F.H.D.J., Latorraca, J.V.F., and Pereira, H. (2016c). Characterization of the bark of the Brazilian hardwood Goupia glabra in terms of its valorization. BioResources 11: 4794–4807, https://doi.org/10.15376/biores.11.2.4794-4807.Suche in Google Scholar
Carocho, M., Morales, P., and Ferreira, I.C.F.R. (2018). Antioxidants: reviewing the chemistry, food applications, legislation and role as preservatives. Trends Food Sci. Technol. 71: 107–120, https://doi.org/10.1016/j.tifs.2017.11.008.Suche in Google Scholar
Chen, X., Li, J., Xi, X., Pizzi, A., Zhou, X., Fredon, E., Du, G., and Gerardin, C. (2020). Condensed tannin-glucose-based NIPU bio-foams of improved fire retardancy. Polym. Degrad. Stab. 175, https://doi.org/10.1016/j.polymdegradstab.2020.109121.Suche in Google Scholar
Chio, C., Sain, M., and Qin, W. (2019). Lignin utilization: a review of lignin depolymerization from various aspects. Renewable Sustainable Energy Rev. 107: 232–249, https://doi.org/10.1016/j.rser.2019.03.008.Suche in Google Scholar
Chupin, L., Motillon, C., Bouhtoury, F.C., Pizzi, A., and Charrier, B. (2013). Characterisation of maritime pine (Pinus pinaster) bark tannins extracted under different conditions by spectroscopic methods, FTIR and HPLC. Ind. Crops Prod. 49: 897–903, https://doi.org/10.1016/j.indcrop.2013.06.045.Suche in Google Scholar
Converti, A., Aliakbarian, B., Dominguez, J.M., Vázquez, G.B., and Perego, P. (2010). Microbial production of biovanillin. Braz. J. Microbiol. 41: 519–530, https://doi.org/10.1590/S1517-83822010000300001.Suche in Google Scholar PubMed PubMed Central
Daly, D.C. (1989). Studies in neotropical Burseraceae II. Generic limits in neotropical protieae and canarieae. Brittonia 41: 17–27, https://doi.org/10.2307/2807583.Suche in Google Scholar
Deineko, I.P. and Faustova, N.M. (2015). Element and group chemical composition of aspen bark and wood. Chem. Plant Raw Mater. 1: 51–62, https://doi.org/10.14258/jcprm.201501461.Suche in Google Scholar
do Brasil, F. (2022). Protium tenuifolium, Available at: http://servicos.jbrj.gov.br (Accessed 21 March, 2022) Dec. 2021.Suche in Google Scholar
Engin, A.B., Bukan, N., Kurukahvecioglu, O., Memis, L., and Engin, A. (2011). Effect of butylated hydroxytoluene (E321) pretreatment versus l-arginine on liver injury after sub-lethal dose of endotoxin administration. Environ. Toxicol. Pharmacol. 32: 457–464, https://doi.org/10.1016/j.etap.2011.08.014.Suche in Google Scholar PubMed
Farias, K.S., Santos, T.S.N., Paiva, M.R.A.B., Almeida, S.M.L., Guedes, P.T., Viana, A.C.A., Favaro, S.P., Bueno, N., and Castilho, R. (2013). Antioxidant properties of species from the Brazilian cerrado by different assays. Rev. Bras. Plantas Med. 15: 4, https://doi.org/10.1590/S1516-05722013000400008.Suche in Google Scholar
Ferreira, J.P.A., Miranda, I., Sousa, V.B., and Pereira, H. (2018). Chemical composition of barks from Quercus faginea trees and characterization of their lipophilic and polar extracts. PLoS One 13: 1–18, https://doi.org/10.1371/journal.pone.0197135.Suche in Google Scholar PubMed PubMed Central
Ferreira, R.G.S., Guilhon-Simplici, F., Yamaguchi, K.K.L., Lira, P.D., Machado, T.M., Ferreira, M.A.C., Veiga-Junior, V.F., and Lima, E.S. (2020). The selective obtaining of amyrins from Amazonian Protium oleoresins. Rev. Colomb. Cienc. Quím. Farm. 49: 482–497, https://doi.org/10.15446/rcciquifa.v49n2.89923.Suche in Google Scholar
Fradinho, D.M., Pascoal Neto, C., Evtuguin, D., Jorge, F.C., Irle, M.A., Gil, M.H., and Jesus, J.P. (2002). Chemical characterisation of bark and of alkaline bark extracts from maritime pine grown in Portugal. Ind. Crops Prod. 16: 23–32, https://doi.org/10.1016/S0926-6690(02)00004-3.Suche in Google Scholar
Franklin, G.L. (1945). Reparation of thin sections of synthetic resins and wood-resins composites, and a new macerating method for wood. Nature 155: 51, https://doi.org/10.1038/155051a0.Suche in Google Scholar
Gominho, J., Costa, R., Lourenço, A., Quilhó, T., and Pereira, H. (2020). Eucalyptus globulus stumps bark: chemical and anatomical characterization under a valorisation perspective. Waste and Biomass Valorization 12: 1253–1265, https://doi.org/10.1007/s12649-020-01098-y.Suche in Google Scholar
Harman-Ware, A., Sparks, S., Addison, B., and Kalluri, U. (2021). Importance of suberin biopolymer in plant function, contributions to soil organic carbon and in the production of bio-derived energy and materials. Biotechnol. Biofuels 14: 1–21, https://doi.org/10.1186/s13068-021-01892-3.Suche in Google Scholar PubMed PubMed Central
Hoong, Y.B., Paridaha, M.T., Luqman, C.A., Koh, M.P., and Loh, Y. (2009). Fortification of sulfited tannin from the bark of Acacia mangium with phenoleformaldehyde for use as plywood adhesive. Ind. Crop. Prod. 30: 416–421, https://doi.org/10.1016/j.indcrop.2009.07.012.Suche in Google Scholar
Jansone, Z., Muizniece, I., and Blumberga, D. (2017). Analysis of wood bark use opportunities. Energy Procedia 128: 268–274, https://doi.org/10.1016/j.egypro.2017.09.070.Suche in Google Scholar
Kiliç, I. and Yesiloglu, Y. (2013). Spectroscopic studies on the antioxidant activity of p-coumaric acid. Spectrochim. Acta, Part A 115: 719–724, https://doi.org/10.1016/j.saa.2013.06.110.Suche in Google Scholar PubMed
Köppen, W. (1900). Versuch einer Klassifikation der Klimate, vorzugweise nach ihren Beziehungen zur Pflanzenwelt. Geogr. Z. 6: 657–679.Suche in Google Scholar
Kornienko, J.S., Smirnova, I.S., Pugovkina, N.A., Ivanova, J.S., Shilina, M.A., Grinchuk, T.M., Shatrova, A.N., Aksenov, N.D., Zenin, V.V., Nikolsky, N.N., et al.. (2019). High doses of synthetic antioxidants induce premature senescence in cultivated mesenchymal stem cells. Sci. Rep. 9: 1296, https://doi.org/10.1038/s41598-018-37972-y.Suche in Google Scholar PubMed PubMed Central
Kraus, J.E. and Arduin, M. (1997). Basic manual of methods in plant morphology. Editora da Universidade Federal Rural do Rio de Janeiro, Seropedica.Suche in Google Scholar
Leite, C. and Pereira, H. (2017). Cork-containing barks: a review. Front. Mater. 3: 1–19, https://doi.org/10.3389/fmats.2016.00063.Suche in Google Scholar
Li, D., Yi-xin, R., Guo, S., Luan, F., Liu, R., and Zeng, N. (2021). Ferulic acid: a review of its pharmacology, pharmacokinetics and derivatives. Life Sci. 284, https://doi.org/10.1016/j.lfs.2021.119921.Suche in Google Scholar PubMed
Lins, T.R.S., Braz, R.L., Silva, T.C., Araujo, E.C.G., Medeiros, J., and Reis, C.A. (2019). Tannin content of the bark and branch of Caatinga species. J. Exp. Agric. Int. 31: 1–8, https://doi.org/10.9734/jeai/2019/v31i130061.Suche in Google Scholar
Lourenço, S.C., Moldão-Martins, M., and Alves, V.D. (2019). Antioxidants of natural plant origins: from sources to food industry applications. Molecules 22: 4132, https://doi.org/10.3390/molecules24224132.Suche in Google Scholar PubMed PubMed Central
Mathur, M. and Kamal, R. (2012). Studies on trigonelline from Moringa oleifera and its in vitro regulation by feeding precursor in cell cultures. Rev. Bras. Farmacogn. 22, https://doi.org/10.1590/S0102-695X2012005000041.Suche in Google Scholar
Medeiros, J.X., Calegari, L., Silva, G., Oliveira, E., and Pimenta, A. (2018). Measurement of tannic substances in forest species. Floresta e Ambiente 25: 1–8, https://doi.org/10.1590/2179-8087.058916.Suche in Google Scholar
Mendonza, F., Pina, N., Brasílio, M., Guimarães, M., de Freitas, V., and Cruz, L. (2018). Extending the stability of red and blue colors of malvidin-3-glucoside-lipophilic derivatives in the presence of SDS micelles. Dyes Pigm. 151: 321–326, https://doi.org/10.1016/J.DYEPIG.2018.01.007.10.1016/j.dyepig.2018.01.007Suche in Google Scholar
Menezes Filho, A.C.P., Cristofoli, M., Ventura, M.V.A., Taques, A.S., Alvez, I., and Castro, C.F.S. (2022). Óleo essencialdos pecíolos de Protium ovatum Engl. (Burseraceae) apresenta atividade bioativa e antifúngica? Braz. J. of Sci. 7: 26–36.10.14295/bjs.v1i7.151Suche in Google Scholar
Metcalfe, C.R. and Chalk, L. (1950). Anatomy of the dicotyledons leaves, stem and wood in relation to taxonomy with notes on economy uses. Clarendon Press, Oxford.Suche in Google Scholar
Moniz, P., Lino, J., Duarte, L.C., Roseiro, L.B., Boeriu, C.G., Pereira, H., and Carvalheiro, F. (2015). Fractionation of hemicelluloses and lignin from rice straw by combining autohydrolysis and optimised mild organosolv delignification. BioResources 10: 2626–2641, https://doi.org/10.15376/biores.10.2.2626-2641.Suche in Google Scholar
Mori, F.A., Claudia Lopes, S.O., Mendes, L.M., Silva, J.R.M., Melo, V.M. (2003). Influence of sulfite and sodium hydroxide on the quantification in tannins of the bark of barbatimão (Stryphnodendron adstringens). Floresta e Ambiente 10: 86e92.Suche in Google Scholar
Mota, G.S., Sartori, C.J., Miranda, I., Quilhó, T., Mori, F.A., and Pereira, H. (2017). Bark anatomy, chemical composition and ethanol–waterextract composition of Anadenanthera peregrina and Anadenanthera colubrina. PLoS One 12: 1–14, https://doi.org/10.1371/journal.pone.0189263.Suche in Google Scholar PubMed PubMed Central
Mota, G.S., Araujo, E.S., Mário Lorenço, M., de Abreu, J.L.L., Mori, C.L.S.O., Ferreira, C.A., Silva, M.G., Akira Mori, F., and Ferreira, G.C. (2021a). Bark of Astronium lecointei Ducke trees from the Amazon: chemical and structural characterization. Eur. J. Wood Wood Prod., https://doi.org/10.1007/s00107-021-01670-w.Suche in Google Scholar
Mota, G.S., Sartori, C.J., Ribeiro, A.O., Quilhó, T., Miranda, I., Ferreira, G.C., Perreira, H., and Pereira, H. (2021b). Bark characterization of Tachigali guianensis and Tachigali glauca from the Amazon under a valorization perspective. BioResources 16: 2953–2970, https://doi.org/10.15376/biores.16.2.2953-2970.Suche in Google Scholar
Murthy, K.S.R., Reddy, M.C, Rani, S.S., and Pullaiah, T (2016). Bioactive principles and biological properties of essential oils of Burseraceae: A review. J. pharmacogn. phytochem. 5: 247–258.Suche in Google Scholar
Palermo, F.H., Rodrigues, M.I.A., Nicolai, J., Machado, S.R., and Rodrigues, T.M. (2018). Resin secretory canals in Protium heptaphyllum (Aubl.) Marchand. (Burseraceae): a tridimensional branched and anastomosed system. Protoplasma 255: 899–910, https://doi.org/10.1007/s00709-017-1197-6.Suche in Google Scholar PubMed
Patias, N.S., Sinhorin, V.D.G., Moura, F.R., Cunha, A.P.S., Lima, R.R.S., Costa, R.J.C., Costa, T.B., Cavalheiro, L., Bicudo, R.C., and Sinhorin, A.P.S.P. (2021). Identification of flavonoids by LC-MS/MS in leaves extract from Protium heptaphyllum (Aubl.) march and antioxidant activity in mice. Nat. Prod. J. 11: 715–727, https://doi.org/10.2174/2210315510999200817165311.Suche in Google Scholar
Pereira, H. (1988). Chemical composition and variability of cork form Quercus suber L. Wood Sci. Technol. 22: 211–218, https://doi.org/10.1007/BF00386015.Suche in Google Scholar
Pizzi, A. and Mittal, K.L. (1994). Handbook of Adhesive Technology. Marcell Dekker.Suche in Google Scholar
Rafie, S.A., Farhoosh, R., and Sharif, A. (2018). Antioxidant activity of gallic acid as affected by an extra carboxyl group than pyrogallol in various oxidative environments. Eur. J. Lipid Sci. Technol. 120, https://doi.org/10.1002/ejlt.201800319.Suche in Google Scholar
Saad, B., Sing, Y.Y., Nawi, M.A., Hashim, N., Ali, A.S.M., Saleh, M.I., Sulaiman, S.F., Talib, K.M., and Ahmad, K. (2007). Determination of synthetic phenolic antioxidants in food items using reversed-phase HPLC. Food Chem. 105: 389–394, https://doi.org/10.1016/j.foodchem.2006.12.025.10.1016/j.foodchem.2006.12.025Suche in Google Scholar
Sanchez-Martin, J., Beltran-Heredia, J., and Solera-Hernandez, C. (2010). Surface water and wastewater treatment using a new tannin-based coagulant. Pilot Plant Trials J. Environ. Manag. 91: 2051–2058, https://doi.org/10.1016/j.jenvman.2010.05.013.Suche in Google Scholar PubMed
Santana, R.C., Rosa, A.S., Mateus, M.H.S., Soares, D.C., Atella, G., Guimarães, A.C., Siani, A.C., Ramos, M.F.S., Saraiva, E.M., and Silva, L.H.P. (2020). In vitro leishmanicidal activity of monoterpenes present in two species of Protium (Burseraceae) on Leishmania amazonensis. J. Ethnopharmacol. 259, https://doi.org/10.1016/j.jep.2020.112981.Suche in Google Scholar PubMed
Santos, D.S. and Rodrigues, M.M.F. (2017). Atividades farmacológicas dos flavonoides: um estudo de revisão. Estação Científica 7: 29–35, https://doi.org/10.18468.10.18468/estcien.2017v7n3.p29-35Suche in Google Scholar
Santos, H.C., Silva, S.J., and Nascimento, C.C. (2021). Hemical investigation, antifungal activity and anatomical aspects of Protium puncticulatum J.F. Macbr. and Protium tenuifolium (Engl.) Engl. Int. J. Innov. Educ. Res. 9.10.31686/ijier.vol9.iss5.3098Suche in Google Scholar
Sartori, C.J., Mota, G.S., Ferreira, J., Miranda, I., Mori, F.A., and Pereira, H. (2016). Chemical characterization of the bark of Eucalyptus urophylla hybrids in view of their valorization in biorefineries. Holzforschung 70: 819–828, https://doi.org/10.1515/hf-2015-0258.Suche in Google Scholar
Sartori, C.J., Mota, G.S., Miranda, I., Mori, F.A., and Pereira, H. (2018). Tannin extraction and characterization of polar extracts from the barks of two Eucalyptus urophilla hybrids. BioResources 13: 4820–4831, https://doi.org/10.15376/biores.13.3.4820-4831.Suche in Google Scholar
Serra, O. and Geldner, N. (2022). The making of suberin. New Phytol. 3: 848–866, https://doi.org/10.1111/nph.18202.Suche in Google Scholar PubMed PubMed Central
Sillero, L., Prado, R., Andrés, M.A., and Labidi, J. (2019). Characterisation of bark of six species from mixed Atlantic forest. Ind. Crop Prod. 137: 276–284, https://doi-org.ez26.periodicos.capes.gov.br/10.1016/j.indcrop.2019.05.033.10.1016/j.indcrop.2019.05.033Suche in Google Scholar
Silva, E.R., Oliveira, D.R., Fernandes, P.D., Bizzo, H.R., and Leitão, S.G. (2017). Ethnopharmacological evaluation of Breu essential oils from Protium species administered by inhalation. Hindawi 2017, https://doi10.1155/2017/2924171.10.1155/2017/2924171Suche in Google Scholar PubMed PubMed Central
Silva, B.C.E., Arruda, L.C.P., Vieira, J.I.T., Soares, P.C., and Guerra, M.M.P. (2019). (+)-Catechin and (-)-epigallocatechin gallate: are these promising antioxidant therapies for frozen goat semen? Arq. Bras. Med. Vet. Zootec. 71: 521–528, https://doi.org/10.1590/1678-4162-10539.Suche in Google Scholar
Singleton, V.L. and Rossi Junior, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagentes. Am. J. Enol. Vitic. 16: 144–158, https://doi.org/10.5344/ajev.1965.16.3.144.Suche in Google Scholar
Song, Q., Wang, Y., Huang, L., Shen, M., Yu, Y., Yu, G., Chen, Y., and Xie, J. (2021). Review of the relationships among polysaccharides, gut microbiota, and human health. Food Res. Int. 140, https://doi.org/10.1016/j.foodres.2020.109858.Suche in Google Scholar PubMed
Sousa, T.B., Mota, G.S., Araujo, E.S., Carréra, J.C., Silva, E.P., Souza, S.G., Lorenço, M.S., and Mori, F.A. (2020). Chemical and structural characterization of Myracrodruon urundeuva barks aiming at their potential use and elaboration of a sustainable management plan. Biomass Convers. Biorefin. 12: 1583–1593, https://doi-org.ez26.periodicos.capes.gov.br/10.1007/s13399-020-01093-2.10.1007/s13399-020-01093-2Suche in Google Scholar
Souza, D.G., Campos, D.B.P., Ucella Filho, J.G.M., Gomes, J.P., and Azêvedo, T.K.B. (2019). Quantificação de taninos presentes na casca da Mimosa caealpiniifolia Benth. e sua utilização no tratamento de efluentes. Nativa 7: 789–793, https://doi.org/10.31413/nativa.v7i6.8631.Suche in Google Scholar
Souza, T.B., Mota, G.S., Araujo, E.S., Carréra, J.C., Silva, E.P., Souza, S.G., Lorenço, M.S., Ferreira, V.R.F., and Mori, F.A. (2021). The bark of Stryphnodendron rotundifolium as a source of phenolic extracts with antioxidant properties. Wood Sci. Technol. 55: 1057–1074, https://doi.org/10.1007/s00226-021-01293-7.Suche in Google Scholar
Teixeira, M.L. (2012). Citrumelo Swingle: caracterização química, atividade antioxidante e antifúngica dos óleos essenciais das cascas frescas e secas. Magistra 24: 194–203.Suche in Google Scholar
Yazaki, Y. and Collins, P.J. (1994). Wood adhesives based on tannin extracts from barks of some pine and spruce species. Holz als Roh- und Werkstoff 52: 307–310.10.1007/BF02621420Suche in Google Scholar
Yazaki, Y., Guangcheng, Z., and Searle, S.D. (1991). Extractive yields, Stiasny values and polyflavonoid contents in barks from six acacia species in Australia. Aust. For. 554: 154–156, https://doi.org/10.1080/00049158.1991.10674572.Suche in Google Scholar
Zhishen, J., Mengcheng, T., and Jinming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64: 555–559, https://doi.org/10.1016/S0308-8146(98)00102-2.Suche in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Wood Growth/Morphology
- The impact of site on tree form, wood properties, and lumber quality of plantation-grown Pinus patula
- Wood Chemistry
- Characterization of the bark of Protium tenuifolium Engl. from the Amazonian biome as a source of natural antioxidants
- Wood Technology/Products
- Effects of molecule weight on the emulsifying properties of dodecenyl succinic anhydride modified glucuronoxylans
- Impact of a conditioning step during the treatment of wood with melamine-formaldehyde resin on dimensional stabilisation
- The feasibility and properties of wood used as filler in artificial turf to reduce environment pollution
- Wood modification with trimethoxyphenylsilane via supercritical carbon dioxide for enhanced weathering resistance
- Wood Science — Non-Tree Plants
- Analyzing the structure of bamboo culms using computer vision and mechanical simulation
- Annual Reviewer Acknowledgement
- Reviewer acknowledgement Holzforschung volume 77 (2023)
Artikel in diesem Heft
- Frontmatter
- Wood Growth/Morphology
- The impact of site on tree form, wood properties, and lumber quality of plantation-grown Pinus patula
- Wood Chemistry
- Characterization of the bark of Protium tenuifolium Engl. from the Amazonian biome as a source of natural antioxidants
- Wood Technology/Products
- Effects of molecule weight on the emulsifying properties of dodecenyl succinic anhydride modified glucuronoxylans
- Impact of a conditioning step during the treatment of wood with melamine-formaldehyde resin on dimensional stabilisation
- The feasibility and properties of wood used as filler in artificial turf to reduce environment pollution
- Wood modification with trimethoxyphenylsilane via supercritical carbon dioxide for enhanced weathering resistance
- Wood Science — Non-Tree Plants
- Analyzing the structure of bamboo culms using computer vision and mechanical simulation
- Annual Reviewer Acknowledgement
- Reviewer acknowledgement Holzforschung volume 77 (2023)