Home Influence of the applied pressure of the transducer on the propagation speed of the ultrasonic wave in wood
Article
Licensed
Unlicensed Requires Authentication

Influence of the applied pressure of the transducer on the propagation speed of the ultrasonic wave in wood

  • Edgar V.M. Carrasco EMAIL logo , Rejane C. Alves , Mônica A. Smits , Vinnicius D. Pizzol , Ana Lucia C. Oliveira and Judy N. R. Mantilla
Published/Copyright: July 22, 2021
Become an author with De Gruyter Brill

Abstract

The non-destructive wave propagation technique is used to estimate the wood’s modulus of elasticity. The propagation speed of ultrasonic waves is influenced by some factors, among them: the type of transducer used in the test, the form of coupling and the sensitivity of the transducers. The objective of the study was to evaluate the influence of the contact pressure of the transducers on the ultrasonic speed. Ninety-eight tests were carried out on specimens of the species Eucalyptus grandis, with dimensions of 120 × 120 × 50 mm. The calibration of the pressure exerted by the transducer was controlled by a pressure gauge using a previously calibrated load cell. The robust statistical analysis allowed to validate the experimental results and to obtain consistent conclusions. The results showed that the wave propagation speed is not influenced by the pressure exerted by the transducer.


Corresponding author: Edgar V.M. Carrasco, School of Architecture, Federal University of Minas Gerais, Belo Horizonte, Brazil; and School of Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors are grateful for the financial support of Conselho Nacional de Desenvolvimento Científico e Tecnológico, (CNPq/Brazil), Finance Code 002 and Fundação de Amparo à Pesquisa de Minas Gerais, (FAPEMIG/Brazil).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Alves, R.C. and Carrasco, E.V.M. (2013). Estimativa das constantes de rigidez de madeiras tropicais ultra-duras orientadas nas três direções principais. Enciclopédia Biosfera 9: 1079–1087.Search in Google Scholar

Alves, R.C., Mantilla, J.N.R., Bremer, C.F., and Carrasco, E.V.M. (2015). Application of acoustic tomography and ultrasonic waves to estimate stiffness constants of Muiracatiara Brazilian wood. Bioresources 10: 1845–1856, https://doi.org/10.15376/biores.10.1.1845-1856.Search in Google Scholar

Bucur, V. (1987). Wood characterization through ultrasonic waves. In: Alippi, A. and Mayer, W.G. (Eds.), Ultrasonic methods in evaluation of inhomogeneous materials. NATO ASI Series, E: Applied Sciences 126. Dordrecht, Boston, Lancaster: Martinus Nijhoff, pp. 323–342.10.1007/978-94-009-3575-4_23Search in Google Scholar

Bucur, V. (1995). Acoustics of wood, 1st ed. New York: CRC Press.Search in Google Scholar

Bucur, V. and Bohnke, I. (1994). Factors affecting ultrasonic measurements in solid wood. Ultrasonics 32: 385–390, https://doi.org/10.1016/0041-624x(94)90109-0.Search in Google Scholar

Candian, M. and Sales, A. (2009). Aplicação das técnicas não-destrutivas de ultra-som, vibração transversal e ondas de tensão para avaliação de madeira. Ambiente. Construído 9: 83–98, https://doi.org/10.1590/s1678-86212009000400519.Search in Google Scholar

Carrasco, E.V.M. and Azevedo, J.A.P. (2003). Avaliação não destrutiva de propriedades mecânicas de madeiras através de ultra-som – fundamentos físicos e resultados experimentais. Engenharia Civil 17: 43–57.Search in Google Scholar

Cunha, A.B. and Matos, J.L.M. (2010). Determinação do módulo de elasticidade em madeira laminada colada por meio de ensaio não destrutivo (“stress wave timer”). Árvore 34: 345–354, https://doi.org/10.1590/s0100-67622010000200018.Search in Google Scholar

Del Menezzi, C.H.S., Silveira, R.R., and Souza, M.R. (2010). Estimativa das propriedades de flexão estática de seis espécies de madeiras amazônicas por meio da técnica não-destrutiva de ondas de tensão. Acta Amazonica 40: 325–332, doi:https://doi.org/10.1590/s0044-59672010000200011.Search in Google Scholar

Del Menezzi, C.H.S., Tomaselli, I., and Souza, M.R. (2007). Avaliação não-destrutiva de painéis OSB modificados termicamente: parte 1 - efeito do tratamento térmico sobre a velocidade de propagação de ondas de tensão. Sci. Forestalis 76: 67–75.Search in Google Scholar

Espinosa, L., Prieto, F., Brancheriau, L., and Lasaygues, P. (2019). Effect of wood anisotropy in ultrasonic wave propagation: a ray-tracing approach. Ultrasonics 91: 242–251, https://doi.org/10.1016/j.ultras.2018.07.015.Search in Google Scholar PubMed

Ettelaei, A., Layeghi, M., Hosseinabadi, H.Z., and Ebrahimi, G. (2019). Prediction of modulus of elasticity of poplar wood using ultrasonic technique by applying empirical correction factors. Measurement 135: 392–399, https://doi.org/10.1016/j.measurement.2018.11.076.Search in Google Scholar

Garcia, R.A., Carvalho, A.M., Latorraca, J.V.F., Matos, J.L.M., Santos, W.A., and Silva, R.F.M. (2012). Nondestructive evaluation of heat-treated Eucalyptus grandis Hill ex Maiden wood using stress wave method. Wood Sci. Technol. 46: 41–52, https://doi.org/10.1007/s00226-010-0387-6.Search in Google Scholar

Gatto, D.A. (2012). Estimativa da deterioração da madeira de assoalho de prédio histórico por meio de ondas ultrassônicas. Cerne 18: 651–656, https://doi.org/10.1590/s0104-77602012000400015.Search in Google Scholar

Gonçalves, R., Trinca, A.J., and Ferreira, G.C.S. (2011). Effect of coupling media on velocity and attenuation of ultrasonic waves. J. Wood Sci. 57: 282–287, https://doi.org/10.1007/s10086-011-1177-y.Search in Google Scholar

Haseli, M., Layeghi, M., and Hosseinabadi, H.Z. (2020). Evaluation of modulus of elasticity of date palm sandwich panels using ultrasonic wave velocity and experimental models. Measurement 149: 107016, https://doi.org/10.1016/j.measurement.2019.107016.Search in Google Scholar

Kruse, A., Stafilidis, S., and Tilp, M. (2017). Ultrasound and magnetic resonance imaging are not interchangeable to assess the Achilles tendon cross-sectional-area. Eur. J. Appl. Physiol. 117: 73–82, https://doi.org/10.1007/s00421-016-3500-1.Search in Google Scholar PubMed PubMed Central

Latorraca, J.V.F., Rodrigues, N.D., Vieira, M.C., Ohana, C.C., and Teixeira, J.G. (2011). Efeito da umidade da madeira na propagação de ondas mecânicas. Floram 18: 451–459, https://doi.org/10.4322/floram.2011.064.Search in Google Scholar

Llana, D.F., Íñiguez-González, G., Díez, M.R., and Arriaga, F. (2020). Nondestructive testing used on timber in Spain: a literature review. Maderas Cienc. Tecnol. 22: 133–156, https://doi.org/10.4067/s0718-221x2020005000201.Search in Google Scholar

Marhenke, T., Neuenschwander, J., Furrer, R., Zolliker, P., Twiefel, J., Hasener, J., Wallaschek, J., and Sanabria, S.J. (2020). Air-coupled ultrasound time reversal (ACU-TR) for subwavelength nondestructive imaging. IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. 67: 651–663, https://doi.org/10.1109/tuffc.2019.2951312.Search in Google Scholar

Mattos, B.D., Gatto, D.A., Missio, A.L., and Lourençon, T.V. (2012). Influência de tratamentos preservativos na propagação da onda ultrassônica na madeira de eucalipto. Sci. Plena. 8: 047306.Search in Google Scholar

Oliveira, F.G.R., Candian, M., Lucchette, F.F., Salgon, J.L., and Sales, A. (2005). Moisture content effect on ultrasonic velocity in Goupiaglabra. Mater. Res. 8: 11–14, https://doi.org/10.1590/s1516-14392005000100004.Search in Google Scholar

Oliveira, F.G.R., Sales, A., Lucchette, F.F., and Candian, M. (2006). Efeito do comprimento do corpo-de-prova na velocidade ultra-sônica em madeiras. Árvore 30: 141–145, https://doi.org/10.1590/s0100-67622006000100017.Search in Google Scholar

Ozyhar, T. (2013). Moisture and time-dependent orthotropic mechanical characterization of beech wood, Ph.D. thesis. ETH Zürich.Search in Google Scholar

Ozyhar, T., Hering, S., Sanabria, S.J., and Peter, N. (2013). Determining moisture-dependent elastic characteristics of beech wood by means of ultrasonic waves. Wood Sci. Technol. 47: 329–341, https://doi.org/10.1007/s00226-012-0499-2.Search in Google Scholar

Stangerlin, D.M., Gonçalez, J.C., Gonçalves, R., Santini, E.J., Calegari, L., Melo, R.R., and Gatto, D.A. (2008). Avaliação de alguns fatores influentes na velocidade ultra-sônica na madeira. Floresta 38: 607–615.10.5380/rf.v38i4.13156Search in Google Scholar

Stangerlin, D.M., Gonçalez, J.C., Gonçalves, R., Santini, E.J., Calegari, L., Melo, R.R., and Gatto, D.A. (2010). Avaliação de tipos de ondas geradas por dois modelos de transdutores para determinação do módulo de elasticidade dinâmico. Floresta 40: 691–700, https://doi.org/10.5380/rf.v40i4.20320.Search in Google Scholar

Trinca, A.J. and Gonçalves, R. (2009). Efeito das dimensões da seção transversal e da frequência do transdutor na velocidade de propagação de ondas de Ultra-som na madeira. Rer. Árvore. 33: 177–184, https://doi.org/10.1590/s0100-67622009000100019.Search in Google Scholar

Yang, H., Yu, L., and Wang, L. (2015). Effect of moisture content on the ultrasonic acoustic properties of wood. J. For. Res. 26: 753–757, https://doi.org/10.1007/s11676-015-0079-z.Search in Google Scholar

Yao, K. and Billard, A. (2020). An inverse optimization approach to understand human acquisition of kinematic coordination in bimanual fine manipulation tasks. Biol. Cybern. 114: 63–82, https://doi.org/10.1007/s00422-019-00814-9.Search in Google Scholar PubMed PubMed Central

Received: 2020-12-30
Accepted: 2021-06-08
Published Online: 2021-07-22
Published in Print: 2021-12-20

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 10.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hf-2020-0272/html
Scroll to top button