Home Natural durability of four Tunisian Eucalyptus spp. and their respective compositions in extractives
Article
Licensed
Unlicensed Requires Authentication

Natural durability of four Tunisian Eucalyptus spp. and their respective compositions in extractives

  • Mohamed Tahar Elaieb , Sarra Ben Ayed , Stéphane Dumarçay , Bruno De Freitas Homen De Faria , Marie-France Thévenon , Philippe Gérardin and Kévin Candelier EMAIL logo
Published/Copyright: September 7, 2019
Become an author with De Gruyter Brill

Abstract

Eucalyptus trees have been adapted to the Tunisian climate. Now, they need to be economically valued. Tunisian Eucalyptus have great technological properties allowing us to use them as wooden material. However, there is large variability in the natural durability between heartwood Eucalyptus spp. The wood sustainability assessment provides reliable parameters to predict the service life of wood-based products. This study aimed to evaluate the wood deterioration of four North Tunisian fast-growing Eucalyptus spp. (Eucalyptus maidenii, Eucalyptus saligna, Eucalyptus camaldulensis and Eucalyptus gomphocephala) exposed to basidiomycetes (Coniophora puteana and Trametes versicolor) and termite (Reticulitermes flavipes) attacks. Among the four Eucalyptus woods, Eucalyptus gomphocephala presents the highest decay and termite resistance. The four Eucalyptus wood species are classified as very durable against fungal degradation and durable against termite attacks, expect for Eucalyptus saligna which is classified as sensible against termites. The natural durability of Eucalyptus seems to be mainly caused by extractives, and a lot of compounds are involved. Antifungal and anti-termite properties of these compounds were put in perspective with the natural durability of wood. Gas chromatography-mass spectrometry (GC-MS) analyses highlighted that Eucalyptus durability is mostly governed by gallic acid, fatty acid glycerides, fatty acid esters, phenolic compounds, sitosterol, catechin and ellagic acid.

Acknowledgments

The authors gratefully acknowledge the National Institute of Agricultural Engineering Research, Water and Forest (INRGREF) and the General Direction of Forestry (DGF) for their implications on this project.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors gratefully thank the GDR 3544 Science du bois for its financial support allowing the dissemination of these scientific results.

  3. Employment or leadership: None declared.

  4. Honorarium: None declared.

References

Afzal, M., Qureshi, N.A., Rasib, K.Z., Hussain, I. (2017) Resistance of Commercial and Non-commercial Woods against Heterotermes indicola Wasmann (Blattodea: Rhinotermitidae) in laboratory and field conditions. Pakistan J. Zool. 49:785–792.10.17582/journal.pjz/2017.49.3.785.792Search in Google Scholar

Antwie-Boasiako, C., Allotey, A. (2010) The effect of stake dimension on the field performance of two hardwoods with different durability classes. Int. Biodeter. Biodegr. 64:267–273.10.1016/j.ibiod.2009.11.004Search in Google Scholar

Arango, R.A., Green, F., Hintz, K., Lebow, P., Miller, R. (2006) Natural durability of tropical and native woods against termite damage by Reticulitermes flavipes (Kollar). Int. Biodeter. Biodegr. 57:146–150.10.1016/j.ibiod.2006.01.007Search in Google Scholar

Ben Ayed, S. (2018) Study of physico-mechanical properties and natural durability of Eucalyptus maidenii wood in the arboretum of Souiniet [In French]. Master Thesis report, Institut National Agronomique De Tunisie. p. 142.Search in Google Scholar

Benouadah, N., Pranovich, A., Aliouche, D., Hemming, J., Smeds, A., Willför, S. (2018) Analysis of extractives from Pinus halepensis and Eucalyptus camaldulensis as predominant trees in Algeria. Holzforschung 72:97–104.10.1515/hf-2017-0098Search in Google Scholar

Boland, D.J., Brooker, M.I.H., Chippendale, G.M., Hall, N., Hyland, B.P.M., Johnston, R.D., Kleinig, D.A., Turner, J.D. (1992) Forest Trees of Australia over 200 of Australia’s Most Important Native Trees. Described & Illustrated. Commonwealth Scientific and Industrial Research Organization (CSIRO), Australia. Published by Intl Specialized Book Service Inc., (1985), pp. 687. ISBN 10: 0170062643 ISBN 13: 9780170062640.Search in Google Scholar

Boué, S.M., Raina, A.K. (2003) Effects of plant flavonoids on fecundity, survival, and feeding of the Formosan subterranean termite. J. Chem. Ecol. 29:2575–2584.10.1023/A:1026318203775Search in Google Scholar

Bush, D., McCarthy, K., Meder, R. (2011) Genetic variation of natural durability traits in Eucalyptus cladocalyx (sugar gum). Ann. Forest Sci. 68:1057–1066.10.1007/s13595-011-0121-zSearch in Google Scholar

Chafe, S.C. (1990) Effect of brief presteaming on shrinkage, collapse and other wood-water relationships in Eucalyptus regnans E Muell. Wood Sci. Technol. 24:311–326.10.1007/BF00227052Search in Google Scholar

Chave, J., Coomes, D., Jansen, S., Lewis, S.L., Swenson, N.G., Zanne, A.E. (2009) Towards a worldwide wood economics spectrum. Ecol. Lett. 12:351–366.10.1111/j.1461-0248.2009.01285.xSearch in Google Scholar PubMed

Chen, K., Ohmura, W., Doi, S., Aoyama, M. (2004) Termite feeding deterrent from Japanese larch wood. Bioresour. Technol. 95:129–134.10.1016/j.biortech.2004.02.014Search in Google Scholar PubMed

Conde, E., Cadahia, E., Garcia-Vallejo, M.C., Tomas-Barberan, F. (1995) Low molecular weight polyphenols in wood and bark of eucalyptus globulus. Wood Fiber Sci. 27:379–383.Search in Google Scholar

Deroy, A., Saiag, F., Kebbi-Benkeder, Z., Touahri, N., Hecker, A., Morel-Rouhier, M., Colin, F., Dumarcay, S., Gérardin, P., Gelhaye, E. (2015) The GSTome reflects the chemical environment of white-rot fungi. PLoS One 10:e0137083.10.1371/journal.pone.0137083Search in Google Scholar PubMed PubMed Central

Elaieb, M.T., Ben Ayed, S., Ouellani, S., Khouja, M.L., Issam, T., Candelier, K. (2019) Collapse and physical properties of native and pre-steaming Eucalyptus camaldulensis and Eucalyptus saligna woods from Tunisia. J. Trop. For. Sci. 31:162–174.10.26525/jtfs2019.31.2.162174Search in Google Scholar

EN 117 (2013) Wood preservatives – Determination of toxic values against Reticulitermes species (European termites) (laboratory method). European committee for standardization. https://www.cen.eu.Search in Google Scholar

EN 350 (2016) Durability of wood and wood-based products – testing and classification of the durability to biological agents of wood and wood-based materials. European committee for standardization. https://www.cen.eu.Search in Google Scholar

Esteves, B., Graça, J., Pereira, H. (2008) Extractive composition and summative chemical analysis of thermally treated eucalypt wood. Holzforschung 62:344–351.10.1515/HF.2008.057Search in Google Scholar

FAO (2012) Food and Agriculture Organisation of the United Nations, Les ressources génétiques forestières en Tunisie, Projet tcp/rab/3303-baby 2, rapport annuel, Etat des Ressources Génétiques Forestières en Afrique du Nord, 2012. [Forest genetic resources in Tunisia, Project tcp/rab/3303-baby 2, annual report, State of Genetic Resources Forestry in North Africa 2012].Search in Google Scholar

Fengel, D., Wegener, G. (1989) Wood: Chemistry, Ultrastructure, Reactions. De Gruyter, Berlin, New York. pp. 182–226.Search in Google Scholar

Ferreira, P.J.T., Gamelas, J.A.F., Carvalho, M.G.V.S., Duarte, G.V., Canhoto, J.M.P.L., Passas, R. (2013) Evaluation of the papermaking potential of Ailanthus altissima. Ind. Crop. Prod. 42:538–542.10.1016/j.indcrop.2012.06.030Search in Google Scholar

Fkiri, S., Guibal, F., Fady, B., El Khorchani, A., Khaldi, A., Khouja, M.L, Nasr, Z. (2018) Tree-rings to climate relationships in nineteen provenances of four black pines sub-species (Pinus nigra Arn.) growing in a common garden from Northwest Tunisia. Dendrochronologia 50:44–51.10.1016/j.dendro.2018.05.001Search in Google Scholar

Foelkel, C. (2009) Papermaking Properties of Eucalyptus Trees, Woods, and Pulp Fibers. Eucalyptus Online Books & Newsletter. Associação Brasileira Técnica de Papel e Celulose (ABTCP), 110 pages. http://www.eucalyptus.com.br/eucaliptos/ENG14.pdf.Search in Google Scholar

Forrester, D.I., Medhurst, J.L., Wood, M., Beadle, C.L., Valencia, J.C. (2010) Growth and physiological response to silviculture for producing solid-wood products form Eucalyptus plantations: an Australian perspective. Forest Ecol. Manag. 259:1819–1835.10.1016/j.foreco.2009.08.029Search in Google Scholar

França, F.J.N., Francça, T.S.F.A., Arango, R.A., Woodward, B.M., Vidaurre, G.B. (2017) Variation in natural durability of seven Eucalyptus grandis x Eucalyptus urophylla hybrid clones. Forest Prod. J. 67:230–235.10.13073/FPJ-D-16-00029Search in Google Scholar

Freire, C., Silvestre, A., Pascoal Neto, C. (2002) Identification of new hydroxy fatty acids and ferulic acid esters in the wood of Eucalyptus globulus. Holzforschung 56:143–149.10.1515/HF.2002.024Search in Google Scholar

Freire, C., Silvestre, A., Pascoal Neto, C. (2006) Lipophilic extractives in Eucalyptus globulus kraft pulps. Behavior during ECF bleaching. J. Wood Chem. Technol. 2:67–80.10.1081/WCT-200058241Search in Google Scholar

Galinanes, C., Freire, M.S., Gonzales-Alvarez, J. (2015) Antioxidant activity of phenolic extracts from chesnut fruit and forest industries residues. Eur. J. Wood Wood Prod. 73:651–659.10.1007/s00107-015-0936-7Search in Google Scholar

Gonzalez, R., Treasure, T., Wright, J., Saloni, D., Phillips, R., Abt, R., Jameel, H. (2011) Exploring the potential of Eucalyptus for energy production in the Southern United States: financial analysis of delivered biomass. Part I. Biomass Bioenerg. 35:755–766.10.1016/j.biombioe.2010.10.011Search in Google Scholar

Guo, L., Sims, R., Horne, D. (2002) Biomass production and nutrient cycling in Eucalyptus short rotation energy forests in New Zeland. I: biomass and nutrient accumulation. Bioresour. Technol. 85:273–283.10.1016/S0960-8524(02)00118-9Search in Google Scholar

Gutiérrez, A., del Rio, J., Martinez, M., Martinez, A. (1999) Fungal degradation of lipophilic extractives in eucalyptus globulus wood. Appl. Environ. Microbiol. 65:1367–1371.10.1128/AEM.65.4.1367-1371.1999Search in Google Scholar PubMed PubMed Central

Gutiérrez, A., Romero, J., Del Río, J.C. (2001) Lipophilic extractives from Eucalyptus globulus pulp during Kraft cooking followed by TCF and ECF bleaching. Holzforschung 55:260–264.10.1515/HF.2001.043Search in Google Scholar

Harju, A.M., Venäläinen, M., Anttonen, S., Viitanen, H., Kainulainen, P., Saranpää, P., Vapaavuori, E. (2003) Chemical factors affecting the brown-rot decay resistance of Scots pine heartwood. Trees 17:263–268.10.1007/s00468-002-0233-zSearch in Google Scholar

Haygreen, J.G., Bowyer, J.L. (1996) Forest Products and Wood Science., USA, Iowa State University Press. Published by Wiley & Sons, Incorporated, John, pp. 495. ISBN 10: 0813818001 ISBN 13: 9780813818009.Search in Google Scholar

Hillis, W.E. (1972) Review article: formation and properties of some wood extractives. Phytochemistry 11:1207–1218.10.1016/S0031-9422(00)90067-0Search in Google Scholar

Ilic, J. (1999) Shrinkage-related degrade and its association with some physical properties in Eucalyptus regnans F Muell. Wood Sci. Technol. 33:425–437.10.1007/s002260050127Search in Google Scholar

Ilic, J., Boland, D., McDonald, M., Downes, G., Blakemore, P. (2012) Woody Density Phase 1 – State of Knowledge, NCAS technical 2012, report no18, 2012. http://www.fullcam.com/FullCAMServer/Help/reps/TR18%20Woody%20Density%20Phase%201%20-%20State%20of%20Knowledge.pdf.Search in Google Scholar

ISO 4471 (1982) Wood – Sampling sample trees and logs for determination of physical and mechanical properties of wood in homogeneous stands. International Organization for Standardization.Search in Google Scholar

Jacobs, M.R. (1955) Growth habits of the Eucalypts. Commonwealth Forestry and Timber Bureau, Canbrra, Australia, Record Number 19550602567, pp. 262.Search in Google Scholar

Kilulya, K.F., Msagati, T.A.M., Mamba, B.B., Ngila, J.C., Busch, T. (2014) Effect of site, species and tree size on the quantitative variation of lipophilic extractives in eucalyptus woods used for pulping in South Africa. Ind. Crops Prod. 56:166–174.10.1016/j.indcrop.2014.02.017Search in Google Scholar

Kishino, M., Ohi, H., Yamaguchi, A. (1995) Characteristics of methanol extractives from chengal wood and their antifungal properties. Mokuzai Gakkaishi 41:444–447.Search in Google Scholar

Knapic, S., Pirralho, M., Louzada, J.L., Pereira, H. (2014) Early assessment of density features for 19 Eucalyptus species using X-ray microdensitometry in a perspective of potential biomass production. Wood Sci. Technol. 48:37–49.10.1007/s00226-013-0579-ySearch in Google Scholar

Kumar, A., Luma, R.K., Parveen Kumar, V. (2010) Variability in growth characteristics for different genotypes of Eucalyptus tereticornis (SM.). Jpn. J. Appl. Phys. 21:487–491.10.1007/s11676-010-0103-2Search in Google Scholar

Lall, N., Weiganand, O., Hussein, A.A., Meyer, J.J.M. (2006) Antifungal activity of naphthoquinones and triterpenes isolated from the root bark of Euclea natalensis. S. Afr. J. Bot. 72:579–583.10.1016/j.sajb.2006.03.005Search in Google Scholar

Latorraca, J.V.F., Dünisch, O., Koch, G. (2011) Chemical composition and natural durability of juvenile and mature heartwood of Robinia pseudoacacia L. An. Braz. Acad. Sci. 83:1059–1068.10.1590/S0001-37652011005000016Search in Google Scholar PubMed

Liswidowati, B.H., Karina, M., Syafii, W., Suzuki, S., Umezawa, T., Shimada, M. (2001) Isolation of Syringaresinol from Paraseranthes Falcataria (L.) Nielsen. Departmental Bulletin Paper. Wood Research Institute, Kyoto University. http://hdl.handle.net/2433/53137.Search in Google Scholar

Magalhães, W.L.E., Mattos, B.D., Missio, A.L. (2012) Field testing of CCA-treated Brazilian spotted gum. Int. Biodeter. Biodegr. 74:124–128.10.1016/j.ibiod.2012.05.024Search in Google Scholar

Malan, F.S. (1984) Studies on the phenotypic variation in growth stress intensity and its association with tree and wood properties of South African grown Eucalyptusgrandis (Hill ex Maiden). Dissertation, University of Stellenbosch. http://hdl.handle.net/10019.1/64868.Search in Google Scholar

Malan, F.S. (2003) The wood quality of the South African timber resource for high-value solid wood products and its role in sustainable forestry. S. Afri. Forest. J. 198:53–62.10.1080/20702620.2003.10431735Search in Google Scholar

Mathieu, Y., Prosper, P., Buee, M., Dumarcay, S., Favier, F., Gelhaye, E., Gerardin, P., Harvengt, L., Jacquot, J.P., Lamant, T., Meux, E., Mathiot, S., Didierjean, C., Morel, M. (2012) Characterization of a Phanerochaete chrysosporium glutathione transferase reveals a novel structural and functional class with ligandin properties. J. Biol. Chem. 287:39001–39011.10.1074/jbc.M112.402776Search in Google Scholar PubMed PubMed Central

Mathieu, Y., Prosper, P., Favier, F., Harvengt, L., Didierjean, C., Jacquot, J.-P., Morel-Rouhier, M., Gelhaye, E. (2013) Diversification of fungal specific class a glutathione transferases in saprotrophic fungi. PLoS One 8:e80298.10.1371/journal.pone.0080298Search in Google Scholar PubMed PubMed Central

Mbambo, B., Odhav, B., Mohanlall, V. (2012) Antifungal activity of stigmasterol, sitosterol and ergosterol from Bulbine natalensis Baker (Asphodelaceae). J. Med. Plants Res. 6:5135–5141.10.5897/JMPR12.151Search in Google Scholar

McPherson, B.A., Mori, S.R., Opiyo, S.O., Conrad, A.O., Wood, D.L., Bonello, P. (2014) Association between resistance to an introduced invasive pathogen and phenolic compounds that may serve as biomarkers in native oaks. For. Ecol. Manage 312:154–160.10.1016/j.foreco.2013.10.009Search in Google Scholar

Metsämuuronen, S., Siren, H. (2014) Antibacterial compounds in predominant trees in Finland: review. J. Bioproc. Biotech 4:167, 13 pages.Search in Google Scholar

Mishra, T., Pal, M., Kumar, A., Rai, D., Tewar, S.K. (2017) Termiticidal Activity of Punica granatum fruit rind fractions and its compounds against Microcerotermes beesoni. Ind. Crop. Prod. 107:320–325.10.1016/j.indcrop.2017.05.030Search in Google Scholar

Mohareb, A.S.O., Hassanin, A.H., Candelier, K., Thévenon, M.F., Candan, Z. (2017) Developing biocomposites panels from food packaging and textiles wastes: physical and biological performance. J. Polym. Environ. 25:126–135.10.1007/s10924-016-0791-6Search in Google Scholar

Morimoto, M., Fukumoto, H., Hiratani, M., Chavasiri, W., Komai, K. (2006) Insect antifeedants, pterocarpans and pterocarpol, in heartwood of Pterocarpus macrocarpus Kruz. Biosci. Biotechnol. Biochem. 70:1864–1868.10.1271/bbb.60017Search in Google Scholar PubMed

Nascimento, M.S., Santana, A.L.B.D., Maranhão, C.A., Oliveira, L.S., Bieber, L. (2013) Phenolic Extractives and Natural Resistance of Wood, Biodegradation – Life of Science, Rolando Chamy and Francisca Rosenkranz, IntechOpen, DOI: 10.5772/56358.10.5772/56358Search in Google Scholar

Neiva, D., Fernandes, L., Araújo, S., Lourenço, A., Gominho, J., Simões, R., Pereira, H. (2015) Chemical composition and kraft pulping potential of 12 eucalypt species. Ind. Crops Prod. 66:89–95.10.1016/j.indcrop.2014.12.016Search in Google Scholar

Nguyen, M., Leicester, R., Cookson, L. (2005) CMIT(C)-2005-388: Timber Durability Classifications, August 2005 CSIRO, pp. 33. https://publications.csiro.au/rpr/download?pid=procite:6457a1de-cad1-4556-8673-e2101b49339c&dsid=DS1.Search in Google Scholar

Oberdorster, E., Clay, M.A., Cottam, D.M., Wilmot, F.A., Mclachlan, J.A., Milner, M.J. (2001) Common phytochemicals are ecdysteroid agonists and antagonists: a possible evolutionary link between vertebrate and invertebrate steroid hormones. J. Steroid Biochem. Mol. Biol. 77:229–238.10.1016/S0960-0760(01)00067-XSearch in Google Scholar

Ockels, F.S., Eyles, A., McPherson, B.A., Wood, D.L., Bonello, P. (2007) Phenolic chemistry of coast live oak response to Phytophthora ramorum infection. J. Chem. Ecol. 33:1721–1732.10.1007/s10886-007-9332-zSearch in Google Scholar PubMed

Oger, R., Leclercq, A. (1977) L’échantillonnage appliqué à la détermination des propriétés physiques et mécaniques du bois. [The sampling applied to the determination of physical and mechanical properties of wood]. Bulletin de la Recherche Agronomique de Gembloux 12:331–338.Search in Google Scholar

Ohmura, W., Doi, S., Aoyama, M., Ohara, S. (2000) Antifeedant activity of flavonoids and related compounds against the subterranean termite Coptotermes formosanus Shiraki. J. Wood Sci. 46:149–153.10.1007/BF00777362Search in Google Scholar

Overend, R., Milne, T., Mudge, L. (1985) Fundamentals of Thermochemical Biomass Conversion. Springer, Berlin, 1985.10.1007/978-94-009-4932-4Search in Google Scholar

Palanti, S., Susco, D., Feci, E. (2010) Natural durability of Eucalypt from Italian plantations against fungi and cerambicid Trichoferus holosericeus Rossi. Eur. J. Wood Wood Prod. 68:59–62.10.1007/s00107-009-0348-7Search in Google Scholar

Rizanti, D.E., Darmawan, W., George, B., Merlin, A., Dumarcay, S., Chapuis, H., Gérardin, C., Gelhaye, E., Raharivelomanana, P., Sari, R.K., Syafii, W., Mohamed, R., Gerardin, P. (2018) Comparison of teak wood properties according to forest management: short versus long rotation. Ann. Forest Sci. 75:39–12.10.1007/s13595-018-0716-8Search in Google Scholar

Rockwood, L.D., Rudie, W.A., Ralph, S.A., Zhu, Y.J., Winandy, E.J. (2008) Energy product options for Eucalyptus species grown as short rotation woody crops. Int. J. Mol. Sci. 9:1361–1378.10.3390/ijms9081361Search in Google Scholar PubMed PubMed Central

Rosdiana, N.A., Dumarçay, S., Gérardin, C., Chapuis, H., Santiago-Medina, F.J., Sari, R.K., Syafii, W., Gelhaye, E., Raharivelomanana, P., Mohammed, R., Gérardin, P. (2017) Characterization of bark extractives of different industrial Indonesian wood species for potential valorization. Ind. Crops Prod. 108:121–127.10.1016/j.indcrop.2017.06.034Search in Google Scholar

Rouvier, H. (1977) Geology of the Far North of Tunisia: tectonics and paleogeography superimposed on the eastern end of the North Maghrebian chain [In French]. Ann. Min et Géo., Tunisie, No. 29, pp. 427.Search in Google Scholar

Rudman, P. (1959) The causes of natural durability in Timber. III. Some conspicuous phenolic components in the heartwood of Eucalypts and their Relationship to Decay Resistance. Holzforschung 13:112–115.10.1515/hfsg.1959.13.4.112Search in Google Scholar

Rudman, P. (1962) The causes of natural durability in Timber. VIII. The Causes of Decay Resistance in Tallowwood (Eucalyptus microscorys F. Muell.), White Mahogany (Eucalyptus triantha Link.) and Mountain Ash (Eucalyptus regnans F. Muell.). Holzforschung 16:56–61.10.1515/hfsg.1962.16.2.56Search in Google Scholar

Rudman, P. (1964) Durability in the genus Eucalyptus. Aust. Forestry 28:242–257.10.1080/00049158.1964.10675949Search in Google Scholar

Rudman, P., Da Costa, E. (1961) The Cause of Natural Durability in Timber, IV, Variation in the role of toxic extractives in the resistance of durable eucalypts to decay. Holzforschung 15:10–15.10.1515/hfsg.1961.15.1.10Search in Google Scholar

Salman, S., Thévenon, M.F., Pétrissans, A., Dumarçay, S., Candelier, K, Gérardin, P. (2017) Improvement of the durability of heat-treated wood against termites. Maderas Cienc. Tecnol. 19:317–328.10.4067/S0718-221X2017005000027Search in Google Scholar

Sjöström, E., Alén, R. (Eds.). Analytical Methods in Wood Chemistry, Pulping, and Papermaking. Springer Series in Wood Science. Springer, Berlin, 1998.10.1007/978-3-662-03898-7Search in Google Scholar

Southam, C.M., Ehrlich, J. (1943) Decay Resistance and Physical Characteristics of Wood. J. Forestry Res. 41:666–673.Search in Google Scholar

Speranza, M., Gutiérrez, A., Carlos del Rio, J., Bettucci, L., Martinez, A.T., Martinez, M.J. (2009) Sterols and lignin in Eucalyptus globulus Labill. wood: spatial distribution and fungal removal as revealed by microscopy and chemical analyses. Holzforschung 63:362–370.10.1515/HF.2009.041Search in Google Scholar

Tascioglu, C., Yalcin, M., de Troya, T., Sivrikaya, H. (2012) Termicidal properties of some wood and bark extracts used as woo preservatives. BioRessources 7:2960–2969.10.15376/biores.7.3.2960-2969Search in Google Scholar

Taylor, A.M., Gartner, B.L., Morrell, J.J. (2006) Effects of heartwood extractive fractions of Thuja plicata and Chamaecyparis nootkatensis on wood degradation by termites or fungi. J. Wood Sci. 52:147–153.10.1007/s10086-005-0743-6Search in Google Scholar

Terdwongworakul, A., Punsuwan, V., Thanapase, W., Tsuchikawa, S. (2005) Rapid assessment of wood chemical properties and pulp yield of Eucalyptus camaldulensis in Thailand tree plantations by near infrared spectroscopy for improving wood selection for high quality pulp. J. Wood Sci. 51:167–171.10.1007/s10086-004-0633-3Search in Google Scholar

Vermaas, H.F., Bariska, M. (1994) Collapse during low temperature drying of Eucalyptus grandis W. Hill and Pinus silvestris L. In: Proceedings IUFRO Wood Drying Conference, Rotorua, New Zealand. pp. 141–150.Search in Google Scholar

Wong, A.H.H., Wilkes, J., Heather, W.A. (1983) Influence of wood density and extractives content on the decay resistance of the heartwood of Eucalyptus degatensis R.T. Baker. J. I. Wood Sci. 9:261–263.Search in Google Scholar

XP CEN/TS 15083-1 (2006) Durability of wood and wood-based products-Determination of the natural durability of solid wood against wood-destroying fungi – Test methods – Part 1: Basidiomycetes. European Committee for Standardization.Search in Google Scholar

Received: 2019-04-01
Accepted: 2019-08-16
Published Online: 2019-09-07
Published in Print: 2020-02-25

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 17.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hf-2019-0090/html?lang=en
Scroll to top button