Home Influence of tree height on the hydrophilic and lipophilic composition of bark extracts from Eucalyptus globulus and Eucalyptus nitens
Article
Licensed
Unlicensed Requires Authentication

Influence of tree height on the hydrophilic and lipophilic composition of bark extracts from Eucalyptus globulus and Eucalyptus nitens

  • Katherina Fernández EMAIL logo , Tomás Kappes , Nicolás González and César Gutiérrez
Published/Copyright: April 4, 2019
Become an author with De Gruyter Brill

Abstract

The influence of tree height on the composition of bark extractives from Eucalyptus globulus and Eucalyptus nitens was investigated for its potential in the sourcing of valuable compounds. The bark of these trees was extracted at different heights to obtain lipophilic and hydrophilic compounds, which were chemically characterized. The extraction yield of lipophilic compounds was higher for E. globulus than for E. nitens. The type and proportion of the compounds changed with the tree variety and height. The main compounds detected were triterpenic acid derivatives, such as lupane, oleanane and ursane types, followed by fatty acids. The yield extraction of the hydrophilic compounds was higher for E. nitens than E. globulus. The total phenolic content, proanthocyanidins and antioxidant activity of the extracts increased with the tree height in both cases. However, the E. globulus extracts [half maximal inhibitory concentration (IC50) = 13.8 ± 0.2 μg ml−1] showed higher antioxidant activity than did the E. nitens extracts (IC50 = 22.8 ± 0.2 μg ml−1). Differences in the extract composition and the spatial conformation of the molecules (steric effect) could also help to obtain a higher antioxidant capacity from E. globulus extracts. These results show that differentiation by tree height can contribute to the selective enrichment of these valuable compounds.

Funding source: FONDEF

Award Identifier / Grant number: N° ID15I10100

Funding statement: The authors thank Project FONDEF, Funder Id: 10.13039/501100008736, N° ID15I10100 for the financial support of this research and the Comaco Forest Company for the donation of the tree.

  1. Author contributions: All of the authors have accepted responsibility for the entire content of this submitted manuscript and approved its submission.

  2. Employment or leadership: None declared.

  3. Honorarium: None declared.

References

Andrade, M.C.N.d., Minhoni, M.T.d.A., Sansígolo, C.A., Zied, D.C. (2010) Análise química da madeira e casca de diferentes tipos de eucalipto antes e durante o cultivo de shiitake em toras. [Chemical analysis of the wood and bark of different eucalyptus types before and during the shiitake cultivation]. Revista Árvore 34:165–175.10.1590/S0100-67622010000100018Search in Google Scholar

Aspe, E., Fernandez, K. (2011) The effect of different extraction techniques on extraction yield, total phenolic, and anti-radical capacity of extracts from Pinus radiata Bark. Ind. Crops Prod. 34:838–844.10.1016/j.indcrop.2011.02.002Search in Google Scholar

Benouadah, N., Pranovich, A., Aliouche, D., Hemming, J., Smeds, A., Willfor, S. (2018) Analysis of extractives from Pinus halepensis and Eucalyptus camaldulensis as predominant trees in Algeria. Holzforschung 72:97–104.10.1515/hf-2017-0098Search in Google Scholar

Bertaud, F., Tapin-Lingua, S., Pizzi, A., Navarrete, P., Petit-Conil, M. (2012) Development of green adhesives for fibreboard manufacturing, using tannins and lignin from pulp mill residues. Cellul. Chem. Technol. 46:449–455.Search in Google Scholar

Cadahia, E., Conde, E., deSimon, B.F., GarciaVallejo, M.C. (1997) Tannin composition of Eucalyptus camaldulensis, E. globulus and E. rudis. 2. Bark. Holzforschung 51:125–129.10.1515/hfsg.1997.51.2.125Search in Google Scholar

de Melo, E.L., Ramos, R.D., de Almeida, S. (2016) Phytochemical study, chemicalphysical analysis and toxicological testing of stem bark of Dalbergia monetaria L. f. Br. J. Pharm. Res. 12:1–7.10.9734/BJPR/2016/20204Search in Google Scholar

Devappa, R.K., Rakshit, S.K., Dekker, R.F.H. (2015) Forest biorefinery: potential of poplar phytochemicals as value-added co-products. Biotechnol. Adv. 33:681–716.10.1016/j.biotechadv.2015.02.012Search in Google Scholar PubMed

Domingues, R.M.A., Guerra, A.R., Duarte, M., Freire, C.S.R., Neto, C.P., Silva, C.M.S., Silvestre, A.J.D. (2014) Bioactive triterpenic acids: from agroforestry biomass residues to promising therapeutic tools. Mini Rev. Org. Chem. 11:382–399.10.2174/1570193X113106660001Search in Google Scholar

Domingues, R.M.A., Sousa, G.D.A., Freire, C.S.R., Silvestre, A.J.D., Neto, C.P. (2010) Eucalyptus globulus biomass residues from pulping industry as a source of high value triterpenic compounds. Ind. Crops Prod. 31:65–70.10.1016/j.indcrop.2009.09.002Search in Google Scholar

Domingues, R.M.A., Sousa, G.D.A., Silva, C.M., Freire, C.S.R., Silvestre, A.J.D., Neto, C.P. (2011) High value triterpenic compounds from the outer barks of several Eucalyptus species cultivated in Brazil and in Portugal. Ind. Crops Prod. 33:158–164.10.1016/j.indcrop.2010.10.006Search in Google Scholar

Dzubak, P., Hajduch, M., Vydra, D., Hustova, A., Kvasnica, M., Biedermann, D., Markova, L., Urban, M., Sarek, J. (2006) Pharmacological activities of natural triterpenoids and their therapeutic implications. Nat. Prod. Rep. 23:394–411.10.1039/b515312nSearch in Google Scholar PubMed

Eberhardt, T.L. (2013) Longleaf pine inner bark and outer bark thicknesses: measurement and relevance. Southern J. Appl. Forestry 37:177–180.10.5849/sjaf.12-023Search in Google Scholar

Eberhardt, T.L., Dahlen, J., Schimleck, L. (2017) Species comparison of the physical properties of loblolly and slash pine wood and bark. Can. J. For. Res. 47:1495–1505.10.1139/cjfr-2017-0091Search in Google Scholar

Freire, C.S.R., Silvestre, A.J.D., Neto, C.P., Cavaleiro, J.A.S. (2002) Lipophilic extractives of the inner and outer barks of Eucalyptus globulus. Holzforschung 56:372–379.10.1515/HF.2002.059Search in Google Scholar

Geldres, E., Gerding, V., Schlatter, J.E. (2006) Biomasa de Eucalyptus nitens de 4–7 años de edad en un rodal de la X Región, Chile. Bosque (Valdivia) 27:223–230.10.4067/S0717-92002006000300001Search in Google Scholar

Gominho, J., Lourenco, A., Miranda, I., Pereira, H. (2015) Radial and axial variation of heartwood properties and extractives in mature trees of Eucalyptus globulus. Bioresources 10:721–731.10.15376/biores.10.1.721-731Search in Google Scholar

Gonzalez, N., Elissetche, J., Pereira, M., Fernandez, K. (2017) Extraction of polyphenols from Eucalyptus nitens and Eucalyptus globulus: experimental kinetics, modeling and evaluation of their antioxidant and antifungical activities. Ind. Crops Prod. 109:737–745.10.1016/j.indcrop.2017.09.038Search in Google Scholar

Gullon, B., Gullon, P., Lu-Chau, T.A., Moreira, M.T., Lema, J.M., Eibes, G. (2017) Optimization of solvent extraction of antioxidants from Eucalyptus globulus leaves by response surface methodology: characterization and assessment of their bioactive properties. Ind. Crops Prod. 108:649–659.10.1016/j.indcrop.2017.07.014Search in Google Scholar

Jerez, M., Selga, A., Sineiro, J., Torres, J.L., Núñez, M.J. (2007) A comparison between bark extracts from Pinus pinaster and Pinus radiata: antioxidant activity and procyanidin composition. Food Chem. 100:439–444.10.1016/j.foodchem.2005.09.064Search in Google Scholar

Jing, S.Q., Zhang, X.M., Yan, L.J. (2015) Antioxidant activity, antitumor effect, and antiaging property of proanthocyanidins extracted from Kunlun Chrysanthemum Flowers. Oxid. Med. Cell. Longev. 2015:10. Article ID 983484.10.1155/2015/983484Search in Google Scholar

Jutakridsada, P., Iamamornphanth, W., Patikarnmonthon, N., Kamwilaisak, K. (2017) Usage of Eucalyptus globulus bark as a raw material for natural antioxidant and fuel source. Clean Technol. Environ. Policy 19:907–915.10.1007/s10098-016-1276-ySearch in Google Scholar

Kennedy, J.A., Jones, G.P. (2001) Analysis of proanthocyanidin cleavage products following acid-catalysis in the presence of excess phloroglucinol. J. Agric. Food Chem. 49:1740–1746.10.1021/jf001030oSearch in Google Scholar PubMed

Ku, C.S., Mun, S.P. (2008) Antioxidant properties of monomeric, oligomeric, and polymeric fractions in hot water extract from Pinus radiata bark. Wood Sci. Technol. 42:47–60.10.1007/s00226-007-0150-9Search in Google Scholar

Lima, L., Miranda, I., Knapic, S., Quilho, T., Pereira, H. (2018) Chemical and anatomical characterization, and antioxidant properties of barks from 11 Eucalyptus species. Eur. J. Wood Wood Prod. 76:783–792.10.1007/s00107-017-1247-ySearch in Google Scholar

Luis, A., Neiva, D., Pereira, H., Gominho, J., Domingues, F., Duarte, A.P. (2014) Stumps of Eucalyptus globulus as a source of antioxidant and antimicrobial polyphenols. Molecules 19:16428–16446.10.3390/molecules191016428Search in Google Scholar PubMed PubMed Central

Mapanga, R.F., Rajamani, U., Dlamini, N., Zungu-Edmondson, M., Kelly-Laubscher, R., Shafiullah, M., Wahab, A., Hasan, M.Y., Fahim, M.A., Rondeau, P., Bourdon, E., Essop, M.F. (2012) Oleanolic acid: a novel cardioprotective agent that blunts hyperglycemia-induced contractile dysfunction. PLoS One 7:e47322.10.1371/journal.pone.0047322Search in Google Scholar PubMed PubMed Central

Marsh, K.J., Kulheim, C., Blomberg, S.P., Thornhill, A.H., Miller, J.T., Wallis, I.R., Nicolle, D., Salminen, J.P., Foley, W.J. (2017) Genus-wide variation in foliar polyphenolics in eucalyptus. Phytochemistry 144:197–207.10.1016/j.phytochem.2017.09.014Search in Google Scholar PubMed

Martin-Aragon, S., de las Heras, B., Sanchez-Reus, M.I., Benedi, J. (2001) Pharmacological modification of endogenous antioxidant enzymes by ursolic acid on tetrachloride-induced liver damage in rats and primary cultures of rat hepatocytes. Exp. Toxicol. Pathol. 53:199–206.10.1078/0940-2993-00185Search in Google Scholar PubMed

Miranda, I., Gominho, J., Lourenco, A., Pereira, H. (2007) Heartwood, extractives and pulp yield of three Eucalyptus globulus clones grown in two sites. Appita J. 60:485–488.Search in Google Scholar

Miranda, I., Gominho, J., Mirra, I., Pereira, H. (2013) Fractioning and chemical characterization of barks of Betula pendula and Eucalyptus globulus. Ind. Crops Prod. 41:299–305.10.1016/j.indcrop.2012.04.024Search in Google Scholar

Miranda, I., Gominho, J., Pereira, H. (2015) Heartwood, sapwood and bark variation in coppiced Eucalyptus globulus trees in 2nd rotation and comparison with the single-stem 1st rotation. Silva Fennica. 49:13. Article ID 1141.10.14214/sf.1141Search in Google Scholar

Miranda, I., Lima, L., Quilho, T., Knapic, S., Pereira, H. (2016) The bark of Eucalyptus sideroxylon as a source of phenolic extracts with anti-oxidant properties. Ind. Crops Prod. 82:81–87.10.1016/j.indcrop.2015.12.003Search in Google Scholar

Miranda, I., Mirra, I., Gominho, J., Pereira, H. (2017) Fractioning of bark of pinus pinea by milling and chemical characterization of the different fractions. Maderas-Ciencia Y Tecnologia. 19:185–194.10.4067/S0718-221X2017005000016Search in Google Scholar

Moodley, R.S., Andrew, J.E., Sithole, B.B. (2018) Beneficiation opportunities for bark from south african grown Eucalyptus grandis and Pinus patula. J. Sci. Ind. Res. 77:176–180.Search in Google Scholar

Mota, I., Pinto, P.C.R., Novo, C., Sousa, G., Guerreiro, O., Guerra, A.R., Duarte, M.F., Rodrigues, A.E. (2012) Extraction of polyphenolic compounds from Eucalyptus globulus Bark: process optimization and screening for biological activity. Ind. Eng. Chem. Res. 51:6991–7000.10.1021/ie300103zSearch in Google Scholar

Mota, G.S., Sartori, C.J., Miranda, I., Quilho, T., Mori, F.A., Pereira, H. (2017) Bark anatomy, chemical composition and ethanol-water extract composition of Anadenanthera peregrina and Anadenanthera colubrina. Plos One 12:e0189263.10.1371/journal.pone.0189263Search in Google Scholar PubMed PubMed Central

Mu, D., Zhou, G., Li, J., Su, B., Guo, H. (2018) Ursolic acid activates the apoptosis of prostate cancer via ROCK/PTEN mediated mitochondrial translocation of cofilin-1. Oncol. Lett. 15:3202–3206.10.3892/ol.2017.7689Search in Google Scholar PubMed PubMed Central

Olugbami, J.O., Gbadegesin, M.A., Odunola, O.A. (2014) In vitro evaluation of the antioxidant potential, phenolic and flavonoid contents of the stem bark ethanol extract of Anogeissus leiocarpus. Afr. J. Med. Med. Sci. 43:101–109.Search in Google Scholar

Parada, M.S., Fernandez, K. (2017) Modelling the hydrophilic extraction of the bark of Eucalyptus nitens and Eucalyptus globulus: adsorption isotherm and thermodynamic studies. Ind. Crops Prod. 109:558–569.10.1016/j.indcrop.2017.08.059Search in Google Scholar

Parreira, P., Soares, B.I.G., Freire, C.S.R., Silvestre, A.J.D., Reis, C.A., Martins, M.C.L., Duarte, M.F. (2017) Eucalyptus spp. outer bark extracts inhibit Helicobacter pylori growth: in vitro studies. Ind. Crops Prod. 105:207–214.10.1016/j.indcrop.2017.05.012Search in Google Scholar

Patinha, D.J.S., Domingues, R.M.A., Villaverde, J.J., Silva, A.M.S., Silva, C.M., Freire, C.S.R., Neto, C.P., Silvestre, A.J.D. (2013) Lipophilic extractives from the bark of Eucalyptus grandis x globulus, a rich source of methyl morolate: selective extraction with supercritical CO2. Ind. Crops Prod. 43:340–348.10.1016/j.indcrop.2012.06.056Search in Google Scholar

Pinto, P.C.R., Sousa, G., Crispim, F., Silvestre, A.J.D., Neto, C.P. (2013) Eucalyptus globulus bark as source of tannin extracts for application in leather industry. ACS Sustainable Chem. Eng. 1:950–955.10.1021/sc400037hSearch in Google Scholar

Santos, S.A.O., Villaverde, J.J., Freire, C.S.R., Domingues, M.R.M., Neto, C.P., Silvestre, A.J.D. (2012) Phenolic composition and antioxidant activity of Eucalyptus grandis, E. urograndis (E. grandis×E. urophylla) and E. maidenii bark extracts. Ind. Crops Prod. 39:120–127.10.1016/j.indcrop.2012.02.003Search in Google Scholar

Santos, S.A.O., Vilela, C., Domingues, R.M.A., Oliveira, C.S.D., Villaverde, J.J., Freire, C.S.R., Neto, C.P., Silvestre, A.J.D. (2017) Secondary metabolites from Eucalyptus grandis wood cultivated in Portugal, Brazil and South Africa. Ind. Crops Prod. 95:357–364.10.1016/j.indcrop.2016.10.044Search in Google Scholar

Sartori, C., Mota, G.D., Ferreira, J., Miranda, I., Mori, F.A., Pereira,H. (2016) Chemical characterization of the bark of Eucalyptus urophylla hybrids in view of their valorization in biorefineries. Holzforschung 70:819–828.10.1515/hf-2015-0258Search in Google Scholar

Schwarz, S., Xavier, N.M., Csuk, R., Rauter, A.P. (2011) Triterpene/steroid glycoconjugates: natural occurrence, synthesis and biological activities. In: Carbohydrate Chemistry: Chemical and Biological Approaches, Vol. 37. Eds. Rauter, A.P., Lindhorst, T.K. pp. 326–373.10.1039/9781849732765-00326Search in Google Scholar

Trugilho, P.F., Goulart, S.L., de Assis, C.O., Couto, F.B.S., Alves, I.C.N., Protasio, T.D., Napoli, A. (2015) Growing characteristics, chemical composition, physical and dry mass estimated of wood in young Eucalyptus species and clones. Cienc. Rural 45:661–666.10.1590/0103-8478cr20130625Search in Google Scholar

Valduga, M.O., Zenni, R.D., Vitule, J.R.S. (2016) Ecological impacts of non-native tree species plantations are broad and heterogeneous: a review of Brazilian research. An. Acad. Bras. Cienc. 88:1675–1688.10.1590/0001-3765201620150575Search in Google Scholar PubMed

Vedernikov, D.N., Shabanova, N.Y., Roshchin, V.I. (2011) Change in the chemical composition of the crust and inner bark of the Betula pendula roth. Birch (Betulaceae) with tree height. Russ. J. Bioorgan. Chem. 37:877–882.10.1134/S1068162011070259Search in Google Scholar

Vuong, Q.V., Chalmers, A.C., Bhuyan, D.J., Bowyer, M.C., Scarlett, C.J. (2015) Botanical, phytochemical, and anticancer properties of the eucalyptus species. Chem. Biodivers. 12:907–924.10.1002/cbdv.201400327Search in Google Scholar PubMed

Xie, Y.J., Arnold, R.J., Wu, Z.H., Chen, S.F., Du, A.P., Luo, J.Z. (2017) Advances in eucalypt research in China. Front. Agric. Sci. Eng. 4:380–390.10.15302/J-FASE-2017171Search in Google Scholar

Yang, H., Xue, X., Li, H., Apandi, S.N., Tay-Chan, S.C., Ong, S.P., Tian, E.F. (2018) The relative antioxidant activity and steric structure of green tea catechins – a kinetic approach. Food Chem. 257:399–405.10.1016/j.foodchem.2018.03.043Search in Google Scholar PubMed

Received: 2018-10-12
Accepted: 2019-02-08
Published Online: 2019-04-04
Published in Print: 2019-07-26

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hf-2018-0243/html
Scroll to top button