Startseite Influence of epoxidation conditions on the rheological properties of gel-like dispersions of epoxidized kraft lignin in castor oil
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Influence of epoxidation conditions on the rheological properties of gel-like dispersions of epoxidized kraft lignin in castor oil

  • Esperanza Cortés-Triviño , Concepción Valencia und José M. Franco EMAIL logo
Veröffentlicht/Copyright: 2. Juni 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The modification of castor oil (CO) with lignin was the focus of this research to create a lubricating medium with improved gel-like properties. Namely, an alkali lignin (L) was epoxidized with epichlorohydrin (EP) and the resulting LEPs were dispersed in CO. The parameters of LEP synthesis were varied and the epoxidation index (EPI) of the LEPs was determined. The LEPs were also submitted to thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy. Rheological responses of the LEP/CO dispersions were investigated through small-amplitude oscillatory shear (SAOS) tests. Linear viscoelasticity functions are quantitatively affected by the epoxidation parameters, such as temperature, reaction time and L/EP and L/NaOH ratios. In general, lignins with higher EPI show higher values of the SAOS functions, which are indicative of better gel-strength due to a higher cross-linking density between the LEPs and CO. A power-law equation describes well the evolution of the complex modulus, G*, with frequency of gel-like dispersions, where the power-law parameters were found to increase almost linearly with the EPI. The thermo-rheological characterization provides a softening temperature beyond 50°C.


Corresponding author: Prof. José M. Franco, Departamento de Ingeniería Química, Universidad de Huelva, Campus El Carmen, Campus de Excelencia Internacional Agroalimentario, ceiA3, 21071 Huelva, Spain, Phone: +34959219995, Fax: +34959219983

Acknowledgments

This work is part of two research projects (CTQ2014-56038-C3-1R and TEP-1499) sponsored by MINECO-FEDER and Junta de Andalucía programmes, respectively. One of the authors (E. Cortés-Triviño) has received a PhD Research Grant from the “Junta de Andalucía”. The authors gratefully acknowledge its financial support.

References

Almdal, K., Dyre, J., Hvidt, S., Kramer, O. (1993) Towards a phenomenological definition of the term ‘gel’. Polym. Gels Netw. 1:5–17.10.1016/0966-7822(93)90020-ISuche in Google Scholar

Alvarez-Mitre, F., Toro-Vázquez, J.F., Moscosa-Santillán, M. (2013) Shear rate and cooling modeling for the study of candelilla wax organogels’ rheological properties. J. Food Eng. 119:611–618.10.1016/j.jfoodeng.2013.06.009Suche in Google Scholar

Asada, C., Basnet, S., Otsuka, M., Sasaki, C., Nakamura, Y. (2015) Epoxy resin synthesis using low molecular weight lignin separated from various lignocellulosic materials. Int. J. Biol. Macromol. 74:413–9.10.1016/j.ijbiomac.2014.12.039Suche in Google Scholar PubMed

Bartz, W.J. (1998) Lubricants and the environment. Tribol. Int. 31:35–47.10.1016/S0301-679X(98)00006-1Suche in Google Scholar

Björkman, A. (2001) Lignin sulfonation-a different approach. Cell. Chem. Technol. 35:113–133.Suche in Google Scholar

Boyde, S. (2002) Green lubricants. Environmental benefits and impacts of lubrication. Green Chem. 4:293–307.10.1039/b202272aSuche in Google Scholar

Carvajal, J.C., Gómez, Á., Cardona, C.A. (2016) Comparison of lignin extraction processes: economic and environmental assessment. Bioresour. Technol. 214:468–476.10.1016/j.biortech.2016.04.103Suche in Google Scholar PubMed

El Mansouri, N., Yuan, Q., Huang, F. (2011) Synthesis and characterization of kraft lignin-based epoxy resins. BioResources 6:2647–2662.10.15376/biores.6.3.2492-2503Suche in Google Scholar

Gabriele, D., de Cindio, B., D’Antona, P. (2001) A weak gel model for foods. Rheol Acta. 40:120–127.10.1007/s003970000139Suche in Google Scholar

Gallego, R., Arteaga, J.F., Valencia, C., Franco, J.M. (2013a) Chemical modification of methyl cellulose with HMDI to modulate the thickening properties in castor oil. Cellulose 20:495–507.10.1007/s10570-012-9803-4Suche in Google Scholar

Gallego, R., Arteaga, J.F., Valencia, C., Franco, J.M. (2013b) Rheology and thermal degradation of isocyanate-functionalized methyl cellulose-based oleogels. Carbohydr. Polym. 98:152–160.10.1016/j.carbpol.2013.04.104Suche in Google Scholar PubMed

Gallego, R., Arteaga, J.F., Valencia, C., Díaz, M.J., Franco, J.M. (2015) Gel-like dispersions of HMDI-cross-linked lignocellulosic materials in castor oil: toward completely renewable lubricating grease formulations. ACS Sustain. Chem. Eng. 3:2130–2141.10.1021/acssuschemeng.5b00389Suche in Google Scholar

Gan, L.H., Zhou, M.S., Qiu, X.Q. (2012) Preparation of water-soluble carboxymethylated lignin from wheat straw alkali lignin. Adv. Mat. Res. 550–553:1293–1298.10.4028/www.scientific.net/AMR.550-553.1293Suche in Google Scholar

Gîlcă, I., Popa, V.I. (2013) Study on biocidal properties of some nanoparticles based on epoxy lignin. Cell. Chem. Technol. 47:3–4.Suche in Google Scholar

Hong, N., Yu, W., Xue, Y., Zeng, W., Huang, J., Xie, W., Qiu, X., Li, Y. (2016) A novel and highly efficient polymerization of sulfomethylated alkaline lignins via alkyl chain cross-linking method. Holzforschung 70:297–304.10.1515/hf-2015-0043Suche in Google Scholar

Laredo, T., Barbut, S., Marangoni, A.G. (2011) Molecular interactions of polymer oleogelation. Soft Matter 7:2734–2743.10.1039/c0sm00885kSuche in Google Scholar

Laurichesse, S., Avérous, L. (2014) Chemical modification of lignins: Towards biobased polymers. Prog. Polym. Sci. 39:1266–1290.10.1016/j.progpolymsci.2013.11.004Suche in Google Scholar

Lora, J.H., Glasser, W.G. (2002) Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials. J. Polym. Environ. 10:39–48.10.1023/A:1021070006895Suche in Google Scholar

Lu, L., Liu, X., Tong, Z. (2006) Critical exponents for sol-gel transition in aqueous alginate solutions induced by cupric cations. Carbohydr. Polym. 65:544–551.10.1016/j.carbpol.2006.02.010Suche in Google Scholar

Lupi, F.R., Gentile, L., Gabriele, D., Mazzulla, S., Baldino, N., de Cindio, B. (2015) Olive oil and hyperthermal water bigels for cosmetic uses. J. Colloid Interface Sci. 459:70–78.10.1016/j.jcis.2015.08.013Suche in Google Scholar PubMed

Malutan, T., Nicu, R., Popa, V.I. (2008) Contribution to the study of hydroxymetylation reaction of alkali lignin. BioResources 3:13–20.Suche in Google Scholar

Marangoni, A.G. (2012) Organogels: an alternative edible oil-structuring method. J. Am. Oil Chem. Soc. 89:749–780.10.1007/s11746-012-2049-3Suche in Google Scholar

Myrvold, B.O. (2015) Free radical gelling reactions of lignosulfonates. Holzforschung 69:1089–1096.10.1515/hf-2014-0195Suche in Google Scholar

Núñez, N., Martín-Alfonso, J.E., Valencia, C., Sánchez, M.C., Franco, J.M. (2011) Rheology of new green lubricating grease formulations containing cellulose pulp and its methylated derivative as thickener agents. Ind. Crops. Prod. 37:500–507.10.1016/j.indcrop.2011.07.027Suche in Google Scholar

Núñez, N., Martín-Alfonso, J.E., Eugenio, M.E., Valencia, C., Díaz, M.J., Franco, J.M. (2012) Influence of Eucalyptus globulus kraft pulping severity on the rheological properties of gel-like cellulose pulp dispersions in castor oil. Ind. Eng. Chem. Res. 51:9777–9782.10.1021/ie301014vSuche in Google Scholar

Octave, S., Thomas, D. (2009) Biorefinery: toward an industrial metabolism. Biochimie 91:659–664.10.1016/j.biochi.2009.03.015Suche in Google Scholar PubMed

Pan, H., Sun, G., Zhao, T. (2013) Synthesis and characterization of aminated lignin. Int. J. Biol. Macromol. 59:221–226.10.1016/j.ijbiomac.2013.04.049Suche in Google Scholar PubMed

Passauer, L., Fischer, K., Liebner, F. (2011a) Preparation and physical characterization of strongly swellable oligo (oxyethylene) lignin hydrogels. Holzforschung 65:309–317.10.1515/hf.2011.044Suche in Google Scholar

Passauer, L., Fischer, K., Liebner, F. (2011b) Activation of pine kraft lignin by Fenton-type oxidation for cross-linking with oligo(oxyethylene) diglycidyl ether. Holzforschung 65:319–326.10.1515/hf.2011.045Suche in Google Scholar

Patel, A.R., Schatteman, D., De Vos, W.H., Dewettinck, K. (2013) Shellac as a natural material to structure a liquid oil-based thermo reversible soft matter system. RSC Adv. 3:5324–5327.10.1039/c3ra40934aSuche in Google Scholar

Pelaez-Samaniego, M., Yadama, V., Garcia-Perez, M., Lowell, E., Zhu, R., Englund, K. (2016) Interrelationship between lignin-rich dichloromethane extracts of hot water-treated wood fibers and high-density polyethylene (HDPE) in wood plastic composite (WPC) production. Holzforschung 70:31–38.10.1515/hf-2014-0309Suche in Google Scholar

Qiu, W., Zhang, F., Endo, T., Hirotsu, T. (2005) Isocyanate as a compatibilizing agent on the properties of highly crystalline cellulose/polypropylene composites. J. Mater. Sci. 40:3607–3614.10.1007/s10853-005-0790-9Suche in Google Scholar

Quinchia, L.A., Delgado, M.A., Valencia, C., Franco, J.M., Gallegos, C. (2010) Viscosity modification of different vegetable oils with EVA copolymer for lubricant applications. Ind. Crops. Prod. 32:607–612.10.1016/j.indcrop.2010.07.011Suche in Google Scholar

Sánchez, R., Franco, J.M., Delgado, M.A., Valencia, C., Gallegos, C. (2008) Effect of thermo-mechanical processing on the rheology of oleogels potentially applicable as biodegradable lubricating greases. Chem. Eng. Res. Des. 86:1073–1082.10.1016/j.cherd.2008.05.002Suche in Google Scholar

Satapathy, D., Biswas, D., Behera, B., Sagiri, S.S., Pal, K., Pramanik, K. (2013) Sunflower-oil-based lecithin organogels as matrices for controlled drug delivery. J. Appl. Polym. Sci. 129:585–594.10.1002/app.38498Suche in Google Scholar

Thakur, V.K., Thakur, M.K. (2015) Recent advances in green hydrogels from lignin: A review. Int. J. Biol. Macromol. 72:834–847.10.1016/j.ijbiomac.2014.09.044Suche in Google Scholar PubMed

Wilson, B. (1998) Lubricants and functional fluids from renewable sources. Ind. Lubr. Tribol. 50:6–15.10.1108/00368799810781274Suche in Google Scholar

Yang, L., Wang, X., Cui, Y., Tian, Y., Chen, H., Wang, Z. (2014) Modification of renewable resources-lignin-by three chemical methods and its applications to polyurethane foams. Polym. Adv. Technol. 25:1089–1098.10.1002/pat.3356Suche in Google Scholar

Zetzl, A.K., Gravelle, A.J., Kurylowicz, M., Dutcher, J., Barbut, S., Marangoni, A.G. (2014) Microstructure of ethylcellulose oleogels and its relationship to mechanical properties. Food Struct. 2:27–40.10.1016/j.foostr.2014.07.002Suche in Google Scholar

Zhang, M. (2007) Polymeric materials from natural resources – emerging as the times require. Express Polym. Lett. 1:406.10.3144/expresspolymlett.2007.57Suche in Google Scholar

Received: 2017-1-20
Accepted: 2017-4-25
Published Online: 2017-6-2
Published in Print: 2017-9-26

©2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 2.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hf-2017-0012/pdf
Button zum nach oben scrollen