Startseite Wood decay by indoor basidiomycetes at different moisture and temperature
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Wood decay by indoor basidiomycetes at different moisture and temperature

  • Tristan Stienen , Olaf Schmidt EMAIL logo und Tobias Huckfeldt
Veröffentlicht/Copyright: 7. August 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Some of the most important indoor wood-decay basidiomycetes were investigated in Erlenmeyer flask experiments, in which 50 Pinus sylvestris sapwood samples with moisture content (MC) of 16% were piled, in view of the parallel influence of wood moisture and temperature on decay in buildings. In the piles, the moisture flow from the liquid at the bottom was interrupted by a metal ring at layer 7. Laboratory incubations with Antrodia xantha, Coniophora puteana, Donkioporia expansa, and Gloeophyllum abietinum over the temperature range of 10°C–25°C showed that fungi are able to colonize, moisten, and thereafter degrade wood samples below fiber saturation, if a moisture source nearby is available. In extreme cases, mycelium grew on wood with 17.4% final MC, and wood mass loss of more than 2% occurred at 24.6% moisture.


Corresponding author: Olaf Schmidt, Section Wood Biology, Centre of Wood Sciences, University of Hamburg, Leuschnerstr. 91, Hamburg, Germany, e-mail:

References

Alfredsen, G., Solheim, H., Jenssen, K.M. (2005) Evaluation of decay fungi in Norwegian buildings. Int. Res. Group Wood Preserv. IRG/WP 10562: pp. 12.Suche in Google Scholar

Ammer, U. (1963) Untersuchung über das Wachstum von Rotstreifepilzen in Abhängigkeit von der Holzfeuchtigkeit. Forstw. Cbl. 82:360–391.10.1007/BF02202726Suche in Google Scholar

Ammer, U. (1964) Über den Zusammenhang zwischen Holzfeuchtigkeit und Holzzerstörung durch Pilze. Holz Roh- Werkstoff 22:47–51.10.1007/BF02627710Suche in Google Scholar

Bavendamm, W., Reichelt, H. (1938) Die Abhängigkeit des Wachstums holzzersetzender Pilze vom Wassergehalt des Nährsubstrates. Arch. Mikrobiol. 9:486–544.10.1007/BF00407374Suche in Google Scholar

Carlile, M.J., Watkinson, S.C., Gooday, G.W. The Fungi. 2nd ed. Academic Press, London, 2001.Suche in Google Scholar

Cartwright, K.St.G., Findlay, W.P.K. (1934) Studies in the physiology of wood-destroying fungi. Ann. Bot. 48:481–495.Suche in Google Scholar

Cartwright, K.St.G., Findlay, W.P.K. Decay of timber and its prevention, 2nd ed. His Majesty’s Stationery Office, London, 1958.Suche in Google Scholar

Clarke, R.W., Jennings, D.H., Coggins, R.W. (1980) Growth of Serpula lacrymans in relation to water potential of substrate. Trans. Br. Mycol. Soc. 75:271–280.Suche in Google Scholar

Coggins, C.R. (1991) Growth characteristics in a building. In: Serpula lacrymans. Eds. Jennings, D.H., Bravery, A.F. Wiley, Chichester, pp. 81–93.Suche in Google Scholar

Davidson, R.W., Lombard, F.F. (1953) Large brown-spored house-rot fungi in the United States. Mycologia 45:88–100.10.1080/00275514.1953.12024252Suche in Google Scholar

Dirol, D., Vergnaud, J.-M. (1992) Water transfer in wood in relation to fungal attack in buildings. Int. Res. Group Wood Preserv. IRG/WP 1543:18 pp.Suche in Google Scholar

Griffin, D.M. (1977) Water potential and wood-decay fungi. Annu. Rev. Phytopathol. 15:319–329.10.1146/annurev.py.15.090177.001535Suche in Google Scholar

Guillitte, O. (1992) Epidémiologie des attaques. In: La mérule et autres champignons nuisable dans les bâtiments. Jardin Bot. Nat. Belgium, Domaine Bouchout. pp. 34–42.Suche in Google Scholar

Huckfeldt, T. Ökologie und Cytologie des Echten Hausschwammes (Serpula lacrymans) und anderer Hausfäulepilze. Mitteilungen BFH 113, Max Wiedebusch, Hamburg, 2003.Suche in Google Scholar

Huckfeldt, T., Schmidt, O. (2005) Ökologie der Hausfäulepilze. Schriftenreihe Inst. Medizin. Mikrobiol. Hygiene Uni. Lübeck, Schmidt-Römhild, Lübeck, 75–90.Suche in Google Scholar

Huckfeldt, T., Schmidt, O. Hausfäule- und Bauholzpilze. Rudolf Müller, Köln, 2006.Suche in Google Scholar

Huckfeldt, T., Schmidt, O., Quader H. (2005) Ökologische Untersuchung am Echten Hausschwamm und weiteren Hausfäulepilzen. Holz Roh- Werkstoff 63:209–219.10.1007/s00107-004-0559-xSuche in Google Scholar

Humphrey, C.J., Siggers, P.V. (1933) Temperature relations of wood-destroying fungi. J. Agric. Res. 47:997–1008.Suche in Google Scholar

Liese, W., Ammer, U. (1964) Über den Befall von Buchenholz durch Moderfäule in Abhängigkeit von der Holzfeuchte. Holz Roh- Werkstoff 18:97–102.Suche in Google Scholar

Mirič, M., Willeitner, H. (1984) Lethal temperature for some wood-destroying fungi with respect to eradication by heat treatment. Int. Res. Group Wood Preserv. IRG/WP 1229:8 pp.Suche in Google Scholar

Moreth, U., Schmidt, O. (2005) Investigations on ribosomal DNA of indoor wood decay fungi for their characterization and identification. Holzforschung 59:90–93.10.1515/HF.2005.014Suche in Google Scholar

Rayner, A.D.M., Boddy, L. Fungal Decomposition of Wood. Its Biology and Ecology. Wiley, Chichester, 1988.Suche in Google Scholar

Schilling, J.S. (2010) Effects of calcium-based materials and iron impurities on wood degradation by the brown rot fungus Serpula lacrymans. Holzforschung 64:93–99.10.1515/hf.2010.009Suche in Google Scholar

Schilling, J.S., Bissonnette, K.M. (2008) Iron and calcium translocation from pure gypsum and iron-amended gypsum by two brown rot fungi and a white rot fungus. Holzforschung 62:752–758.10.1515/HF.2008.125Suche in Google Scholar

Schmidt, O. Wood and Tree Fungi. Biology, Damage, Protection and Use. Springer, Berlin, 2006.Suche in Google Scholar

Schmidt, O., Moreth, U. (1996) Biological characterization of Poria indoor brown-rot fungi. Holzforschung 50:105–110.10.1515/hfsg.1996.50.2.105Suche in Google Scholar

Schmidt, O., Huckfeldt, T. (2005) Gebäudepilze. In: Holzschutz im Hochbau. Eds. Müller, J. Fraunhofer IRB, Stuttgart. pp. 44–72.Suche in Google Scholar

Schmidt, O., Huckfeldt, T. (2011) Characteristics and identification of indoor wood-decaying basidiomycetes. In: Fundamentals of mold growth in indoor environments and strategies for healthy living. Eds. Adan, C.G., Samson, R.A. Acad. Publ., Wageningen. pp. 117–180.10.3920/978-90-8686-722-6_6Suche in Google Scholar

Schmidt, O., Moreth, U. (2003) Molecular identity of species and isolates of internal pore fungi Antrodia spp. and Oligoporus placenta. Holzforschung 57:120–126.10.1515/HF.2003.019Suche in Google Scholar

Schmidt, O., Moreth, U. (2008) Ribosomal DNA intergenic spacer of indoor wood-decay fungi. Holzforschung 62:759–764.10.1515/HF.2008.128Suche in Google Scholar

Schmidt, O., Liese, W., Moreth, U. (1996) Decay of timber in a water cooling tower by the basidiomycete Physisporinus vitreus. Mater. Organismen 30:161–177.Suche in Google Scholar

Schmidt, O., Grimm, K., Moreth, U. (2002a) Molecular identity of species and isolates of the Coniophora cellar fungi. Holzforschung 56:563–571.10.1515/HF.2002.086Suche in Google Scholar

Schmidt, O., Grimm, K., Moreth, U. (2002b) Molekulare und biologische Charakterisierung von Gloeophyllum-Arten in Gebäuden. Z. Mycol. 68:141–152.Suche in Google Scholar

Schwab, E. (1981) Quellung und Schwindung von Holz und Holzwerkstoffen. In: Holz-Außenverwendung im Hochbau. Eds. Willeitner, H., Schwab, E. A. Koch, Stuttgart. pp. 57–62.Suche in Google Scholar

Sell, J. (1981) Klimabedingungen und Wetterbeanspruchung von Außenbauteilen. In: Holz-Außenverwendung im Hochbau. Eds. Willeitner, H., Schwab, E. A. Koch, Stuttgart. pp. 15–23.Suche in Google Scholar

Siau, J.F. Transport Processes in Wood. Springer, Berlin, 1984.10.1007/978-3-642-69213-0Suche in Google Scholar

Steenkjær, H.A.C., Jensen, B., Clausen, C., Green III, F. (2006) The effect of CaCl2 on growth rate, wood decay and oxalic acid accumulation in Serpula lacrymans and related brown-rot fungi. Holzforschung 60:339–345.10.1515/HF.2006.054Suche in Google Scholar

Steenkjær, H.A.C., Jensen, B., Østergaard, T., Bo, J. (2013) Detection of iron-chelating and iron-reducing compounds in four brown rot fungi. Holzforschung 67:99–106.10.1515/hf-2011-0152Suche in Google Scholar

Theden, G. (1941) Untersuchung über die Feuchtigkeitsansprüche der wichtigsten in Gebäuden auftretenden holzzerstörenden Pilze. Angew. Bot. 23:190–253.Suche in Google Scholar

Viitanen, H.A. (1997) Modeling the time factor in the development of brown rot decay in pine and spruce sapwood. Holzforschung 51:99–106.10.1515/hfsg.1997.51.2.99Suche in Google Scholar

Viitanen, H., Ritschkoff, A.C. (1991) Brown rot decay in wooden constructions. Effect of temperature, humidity and moisture. Swed. Univ. Sci. Dept. For. Prod. 222:55 pp.Suche in Google Scholar

Wälchli, O. (1977) Der Temperatureinfluß auf die Holzzerstörung durch Pilze. Holz Roh- Werkstoff 35:45–51.10.1007/BF02608129Suche in Google Scholar

Watkinson, S.C., Davison, E.M., Bramah, J. (1981) The effect of nitrogen availability on growth and cellulolysis by Serpula lacrymans. N. Phytol. 89:295–305.10.1111/j.1469-8137.1981.tb07490.xSuche in Google Scholar

Ważny, H., Czajnik, M. (1963) On the occurrence of indoor wood-decay fungi in Poland. Fol. For. Polon. 5:5–7.Suche in Google Scholar

Weigenand, O., Humar, M., Daniel, G., Militz, H., Mai, C. (2008) Decay resistance of wood treated with amino-silicone compounds. Holzforschung 62:112–118.10.1515/HF.2008.016Suche in Google Scholar

Weigl, J., Ziegler, H. (1960) Wassergehalt und Stoffleitung bei Merulius lacrimans (Wulf.) Fr. Arch. Mikrobiol. 37:124–133.10.1007/BF00408399Suche in Google Scholar

Willeitner, H. (1981) Pilz- und Insektenbefall bei Holz- und Holzwerkstoffen. In: Holz-Außenverwendung im Hochbau. Eds. Willeitner, H., Schwab, E.A. Koch, Stuttgart. pp. 62–68.Suche in Google Scholar

Received: 2013-4-16
Accepted: 2013-7-12
Published Online: 2013-08-07
Published in Print: 2014-01-01

©2014 by Walter de Gruyter Berlin Boston

Artikel in diesem Heft

  1. Masthead
  2. Masthead
  3. Original Articles
  4. Root neck of Norway spruce as a source of bioactive lignans and stilbenes
  5. Wood decay by indoor basidiomycetes at different moisture and temperature
  6. Testing of set recovery of unmodified and furfurylated densified wood by means of water storage and alternating climate tests
  7. Improvement of dimensional stability of wood by in situ synthesis of organo-montmorillonite: preparation and properties of modified Southern pine wood
  8. Properties of molding plates made with various matrices impregnated with PF and liquefied wood-based PF resins
  9. Impregnation of poplar wood (Populus euramericana) with methylolurea and sodium silicate sol and induction of in-situ gel polymerization by heating
  10. AFM nanoindentation of pulp fibers and thin cellulose films at varying relative humidity
  11. Prediction of oven-dry density of wood by time-domain terahertz spectroscopy
  12. Secretion of a bundle of (1→3)-β-glucan hollow fibrils from protoplasts of callus suspension under a Ca2+-rich and acidic stressed condition
  13. Synthesis and biological activities of α-pinene-based dithiadiazoles
  14. Aluminum localization in the cell walls of the mature xylem of maple tree detected by elemental imaging using time-of-flight secondary ion mass spectrometry (TOF-SIMS)
  15. Relationships between 3D roughness parameters and visuotactile perception of surfaces of maritime pinewood and MDF
  16. Polyelectrolyte complex containing antimicrobial guanidine-based polymer and its adsorption on cellulose fibers
  17. Combination of neutron imaging (NI) and digital image correlation (DIC) to determine intra-ring moisture variation in Norway spruce
  18. Influence of wood durability on the suppressive effect of increased temperature on wood decay by the brown-rot fungus Postia placenta
  19. Experimental and finite element study of the effect of temperature and moisture on the tangential tensile strength and fracture behavior in timber logs
  20. Short Note
  21. Pull-out method for direct measuring the interfacial shear strength between short plant fibers and thermoplastic polymer composites (TPC)
  22. Meetings
  23. Meetings
Heruntergeladen am 2.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hf-2013-0065/html
Button zum nach oben scrollen