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Abstract: The development of (nano)materials based on
the renewable cellulose is a challenge. The present arti-
cle provides a brief overview of the recent research efforts
carried out at the CICECO Laboratory of the University
of Aveiro on the development of novel composites based
on nanofibrillated plant and bacterial cellulose embed-
ded in natural and synthetic polymeric matrices such as
poly(lactic acid), chitosan, starch, and pullulan. These
materials have high potential for applications in packag-
ing, paper coating, organic electronics, and biomedical
products and devices.
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Introduction

The finiteness of fossil raw materials led in the last
decades to intense research activities toward a more
sophisticated utilization of renewable materials, such
as plant biomass (lignocellulosic feedstock), which are
subsumed as “biorefinery” (Fernando et al. 2006; Kamm
et al. 2006). The biorefinery concept is analogous to the
traditional petroleum refinery, which means that biomass

conversion processes should be improved so that more
value-added chemicals can be produced aside from heat
and power. The biorefinery concept is frequently devel-
oped in the context of the well-established pulping indus-
try, with pulp (cellulose and hemicelluloses) as its main
product and lignin as its byproduct. Also, the University
of Aveiro met this rewarding challenge and dedicated
intense research efforts to many aspects of wood chem-
istry, pulping, and bleaching technologies. Frequently,
Eucalyptus globulus is in focus, a tree of large importance
for pulp production in Portugal. Since the last decade, the
biorefinery concept is an integrated part of the research
efforts aiming at better utilization of important forest
species of Portugal.

Concerning E. globulus, the research has been mainly
devoted to high-value components from bark residues
(Freire et al. 2002; Domingues et al. 2010; Santos et al.
2011) and to new applications of cellulose fibers (Freire
et al. 2005, 2006a,b, 2008; Cunha et al. 2007a,b, 2010;
Fernandes et al. 2011a; Tomé et al. 2011a).

The outstanding properties of cellulose fibers
(Figure 1a and b) are well documented (Fengel and
Wegener 1989; Klemm et al. 1998, 2005) in terms of
mechanical strength, chemical behavior, biocompatibil-
ity, biodegradability, nontoxicity, absorption properties,
and low density. These properties are the basis for novel
applications beyond the well-established utilization in
paper and textile products (Klemm et al. 2005).

Esterification, etherification, urethane formation,
and cross-linking or graft copolymerization enlarge the
application possibilities of cellulose (Klemm et al. 1998;
Gandini 2008; Heinze and Petzold 2008; Yu and Chen
2009). A peculiarity is the controlled heterogeneous modi-
fication of cellulose fibers, where the reaction is limited
to the most accessible regions of the fibers while its bulk
mechanical properties are preserved. This is one of the
strategies for utilization of cellulose as reinforcing ele-
ments in composites (Bledzki and Gassan 1999; Schurz
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Figure1 Images of cellulose.
(@) A glucan chain of cellulose with repeating anhydrocellobiose units. (b) Macroscopic and SEM images of conventional pulp fibers.
(c and ¢’) Macroscopic and SEM images of NFC. (d) Image of BC. (d’) SEM image of BC.

1999; Mohanty et al. 2001; Belgacem and Gandini 2005;
Samir et al. 2005; Freire and Gandini 2006; Teeri et al.
2007; Dufresne 2008). Here, cellulose replaces inorganic
(mineral)-based fibers (Wang and Zhang 2009). Automo-
tive, construction, and packaging are among the largest
segments for these materials with an exponential growth
in recent years.

More recently, polymer-based nanocomposites
(multiphase materials) consisting of a polymer matrix
and a nanofiller, gained particular attention and inter-
est. They have very special properties in comparison
with conventional polymer composites (Bordes et al.
2009), for example, improved mechanical, thermal, and
barrier properties and transparency (Zimmermann et al.
2004; Hubbe et al. 2008; Nogi and Yano 2008; Azeredo
2009; Fukuzumi et al. 2009; Kim et al. 2009). The nano-
composites of this category, in which the micro- and
nanofibrillated cellulose (MFC and NFC, respectively),
cellulose whiskers, and bacterial cellulose (BC) play an
essential role, have a wide range of application domain
(Nakagaito and Yano 2004, 2005; Nakagaito et al. 2005;
Shimazaki et al. 2007; Jung et al. 2008; Nogi et al. 2009).

The preparation, properties, modification, and applica-
tion of NFC were reviewed extensively (Zimmermann
et al. 2004; Samir et al. 2005; Hubbe et al. 2008; Chinga-
Carrasco 2011; Klemm et al. 2011; Petersen and Gaten-
holm 2011; Siqueira et al. 2011).

The first production of MFC from wood fibers was
reported by Turbak et al. (1983). Meanwhile, the term
NFC is more frequently applied. The disintegration of
cellulose fibrils to nanocellulose is realized by high-
pressure homogenizers combined with chemical or
enzymatic treatments (Preston 1974; Sjostrom 1981;
Klemm et al. 1998; Teeri et al. 2007). The obtained NFC
suspensions (Figure 1c and c’) bear the appearance of
highly viscous shear-thinning transparent gels and have
high aspect ratios and specific surface areas combined
with remarkable strength and flexibility, low thermal
expansion, high optical transparency, and specific
barrier properties. MFC and NFC can be incorporated
in different matrices such as hydroxypropylcellulose
(Zimmermann et al. 2004), chitosan (CH; Nordqvist et al.
2007), viscous polysaccharide matrices in the form of
50/50 amylopectin-glycerol blends (Svagan et al. 2007),
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poly(lactic acid) (PLA; Iwatake et al. 2008; Suryane-
gara et al. 2009), polyvinyl alcohol (Zimmermann et al.
2004), and polyurethanes (Seydibeyoglu and Oksman
2008). The NFC-based nanocomposites are used for the
production of transparent materials (Yano et al. 2005;
Fukuzumi et al. 2009) and gas barrier films (Fukuzumi
et al. 2009).

BC, also known as microbial cellulose, is produced
by different bacteria genera, such as Gluconacetobac-
ter, Sarcina, and Agrobacterium, but Gluconacetobacter
xylinus is probably the most commonly referred strain
in this context (Budhiono et al. 1999; Shoda and Sugano
2005; Pecoraro et al. 2008). Recently, it was reported by our
group that G. sacchari also produces BC in very high yields
(Trovatti et al. 2011). These bacteria are Gram-negative
aerobic and nonphotosynthetic bacteria usually found in
fruits, vegetables, vinegar, and alcoholic beverages. They
are capable of converting several substrates into cellulose
within a few days. Studied substrates comprise glucose,
glycerol, and other organic materials, including residues
from agroforest industries (Chawla et al. 2009; Carreira
et al. 2011). BC can be produced as a highly swollen hydro-
gel and, depending on the static or agitated nature of the
culture media, as a membrane (Figure 1d and d’) or in the
form of small beads. BC consists of ribbons of microfibrils
generated at the surface of the bacterial cell. The bacte-
ria first segregate a structurally homogeneous slimy sub-
stance, and after a short time, the cellulose nanofibers are
formed (Chawla et al. 2009). More precisely, BC is a three-
dimensional network consisting of nano- and microfibrils
with the dimensions of 3—-4 nm thickness and 70—-80 nm
length (Figure 1d’), that is, the fibrils are approximately
1000 times thinner than typical plant cellulose fibrils.
These dimensions explain the unique properties of BC.
Additionally, BC is free of lignin, hemicelluloses, and
other natural components usually associated with cellu-
lose isolated from the cell wall of plants. BC has a high
degree of polymerization and crystallinity, extremely high
water holding capacity, high tensile strength, and high
surface area (George et al. 2005a,b). BC is well suited as
a reinforcing element in nanocomposites in several poly-
meric matrices, namely, cellulose acetate butyrate (Gindl
and Keckes 2004), acrylic thermosetting resins (Yano et al.
2005; Ifuku et al. 2007), phenolic resins (Nakagaito et al.
2005), poly(ethylene oxide) (Brown and Laborie 2008),
plasticized starch (Wan et al. 2009), PLA (Kim et al. 2009),
and epoxidized soybean oil matrix (Retegi et al. 2012), just
to mention a few examples.

Recent advances of nanocomposite research with NFC
and BC as reinforcing elements achieved at the University
of Aveiro will be reported in the next chapter.
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Research on cellulose nanocompos-
ites at the University of Aveiro

Different strategies were applied to obtain nanocompos-
ites, namely, heterogeneous chemical modification, com-
pounding with synthetic polymers matrices such as PLA,
and blending with other natural polymers such as CH,
starch, and pullulan. Polysaccharide matrices are compat-
ible with cellulose because of their structural similarity.
This is the reason why simple “green procedures” such as
casting of water-based suspensions or melting-mixing can
be applied for the production of composites with polysac-
charides and nanocellulose fibers. The next paragraphs
will present some examples of these approaches.

BC-PLA nanocomposites

PLA is a versatile and biodegradable thermoplastic poly-
ester (Figure 2a), which is produced entirely from renew-
able resources, specifically from starch-enriched raw
materials such as sugar beet, corn, and wheat (Averous
2008). The properties of PLA such as high mechanical
strength and stiffness, UV stability, and gloss open a large
field of applications in the automotive industry, packag-
ing, and medicine.

Nanocomposites with improved properties based on
PLA matrix and BC were described by Tomé et al. (2011b),
who prepared such materials by heterogeneous acetyla-
tion of BC followed by simple melting-mixing with PLA.
The acetylation increases substantially the hydrophobic-
ity of nanofibers and therefore their compatibility and
adhesion with the PLA matrix. The compatibility was evi-
denced by scanning electron microscopy (SEM) images
(Figure 2b’).

PLA-BC nanocomposites have considerably improved
mechanical properties as evidenced by the significant
increase both in the storage modulus (E’/Pa; Figure 3a) as
well as Young’s modulus and in the tensile strength (Tomé
et al. 2011b). The increments were approximately 100%,
40%, and 25% for elastic modulus, Young’s modulus, and
tensile strength, respectively, even when the level of nano-
filler loadings (up to 6%) was low.

The incorporation of both unmodified and acetylated
BC nanofibers in the PLA matrix also resulted in a con-
siderable increase in the thermal properties of the cor-
responding nanocomposites (Figure 3b) and particularly
those with acetylated BC fillers (PLA-BCAc), observed by
the increment in both initial and maximum degradation
temperatures, which reflect their excellent interfacial
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PLA-BCAc6

Figure 2 Images of PLA.
(@) Visual aspect of PLA pellets. (b and b’) Optical and SEM images
of PLA and PLA-BC nanocomposites (PLA-BC).

compatibility. For example, the incorporation of 6% of acet-
ylated BC (PLA-BCAc6) elevated the initial and maximum
degradation temperatures by 15°C and 14°C, respectively.
Moreover, these nanocomposites also have a low
hygroscopicity and considerable transparency (Figure 1b).
For example, their transmittance (measured for specimens
with a thickness of ~1 mm) at 580 nm was approximately
80% for PLA, 70% for the nanocomposites prepared with
PLA and 1% of acetylated BC (PLA-BCAc1), and 60% with
4% and 6% of acetylated BC (PLA-BCAc4 and PLA-BCAc6).

CH-nanocellulose transparent
nanocomposites

CH (Figure 4a), obtained from deacetylation of chitin,
which is the main component of crustacean shells
and insects’ exoskeletons, is unique concerning
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Figure 3 Properties of PLA and PLA-BC composites.

(a) Storage modulus of PLA and PLA-BC and PLA-BCAc acetylated
(PLA-BCAC). (b) Thermogravimetric analysis and differential thermo-
gravimetric analysis of PLA, PLA-BC, and PLA-BCAc.

biocompatibility, antimicrobial activity, biodegradabil-
ity, and excellent film-forming ability (Rinaudo 2006;
Peniche et al. 2008), which have attracted scientific and
industrial interest in biotechnology, pharmaceutics, bio-
medicine, packaging, and wastewater treatment, among
many other application fields. CH behaves in aqueous
acidic media as a polycation contrasting with the other
polysaccharides, which are usually neutral or anionic
(Rinaudo 2006; Peniche et al. 2008).

The preparation and characterization of nanocom-
posite films (Figure 4b and c) were described based on
different matrices of CH and BC (Fernandes et al. 2009,
2011b) or NFC (Fernandes et al. 2010, 2011b). The goal is
the preparation of CH films with improved mechanical
properties while keeping their transparency and thermal
stability. The preparation was carried out by casting NFC
or BC suspensions in aqueous CH (or chemically modified
CH). The components are perfectly compatible; moreover,
CH solutions are an efficient media for stable suspen-
sions of NFC or BC. As a result, the BC (as well as NFC) is
very homogeneously distributed in the matrix (Figure 4b
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Figure 4 Images to CH and CH-based composites.

(a) Chemical structure of a CH chain. (b) lllustration of the transpar-
ency of a CH film (HCH; left) and the SEM image of LCH. (c) Illustra-
tion of the transparency of a CH-BC nanocomposite (HCH-BC 10%;
left) and the SEM image of LCH-BC 10%.

and c). The same figure demonstrates that the films are
highly transparent and flexible. The mechanical prop-
erties of the films are manifested by excellent Young’s
modulus (that can go up to 320% improvement for some
formulations) and tensile strength, and the thermal stabil-
ity of the films is better compared with pure CH films.

These films are well suited for the development of
transparent electronic devices, namely, organic field-
effect transistors (Pereira et al. 2011). Finally, CH- and
BC-based aqueous formulations can be used successfully
as surface coating of paper with substantially improved
properties concerning the surface and printing quality
and mechanical strength (Fernandes et al. 2011c).

Pullulan-nanocellulose nanocomposites

Pullulan is a linear water-soluble homopolysaccharide
of glucose (Leathers 2003) consisting of maltotriose units
that are integrated in the polymers by o-(1-6) linkages
(Figure 5a). Pullulan is produced aerobically by certain
strains of the polymorphic fungus Aureobasidium pullulans.
It is able to form films that show high oxygen impermeabil-
ity, nontoxicity, edibility, biodegradability, and compatibility
to humans and the environment and have good mechani-
cal properties (Krochta and DeMulder 1997). These films are
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Figure 5 Images to pullulan and pullulan-based composites.

(@) Chemical structure of pullulan. Pullulan is a polysaccharide
consisting of maltotriose units also known as a-1,4-;0-1,6-glucan.
(b) SEM image of a PBC-based nacocomposite (PBC 40%). (c) SEM
image of a PBC-glycerol-based nanocomposite (PGBC 40%).

normally used as coating or packaging materials for dried
foods as well as in the pharmaceutical industry.

Novel pullulan-BC (PBC) nanocomposite films were
prepared by Trovatti et al. (2012a) and the material was
filled with 5%, 10%, 20%, 40%, and 60% (w/w) BC and
with glycerol as plasticizer. The procedure is similar to
that described above for the CH nanocomposite films.
The morphology of the nanocomposites was studied by
SEM, aiming at the assessment of the dispersion of the
BC nanofibrils into the pullulan matrix and the interfacial
adhesion between the two components (Figure 5b and c).
As visible, the BC is well dispersed in the pullulan matrix,
without forming considerable aggregates, even for high
fiber contents (up to 40%).

Figure 6 displays the stress-strain curves of nanocom-
posites made of pullulan, pullulan-glycerol (PG) films,
PBC, and PG-BC. The incorporation of BC into the pullulan
matrix improves considerably both Young’s modulus and
tensile strength, with increments of up to 100% and 50%
for films without glycerol and up to 8000% and 7000%
for films plasticized with glycerol. Glycerol as plasticizer
increases the flexibility of the films, which is an important
parameter in many applications.

The thermal stability of all PBC nanocomposites is con-
siderably improved as a function of the BC content as evi-
denced by an increment in the degradation temperatures.
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Figure 6 Stress-strain curves of PG and PG-BC nanocomposites
(PGBOQ).
The numbers indicate the BC concentration in %.

For instance, for PBC nanocomposites, the incorporation
of 5% BC resulted in an increase of approximately 3°C and
7°C in the initial and maximum degradation temperatures,
respectively, whereas the incorporation of 20% BC resulted
in an increment of 9°C and 17°C of the initial and maximum
degradation temperatures, respectively (Trovatti et al. 2012a).

Similar nanocomposites were also developed based
on NFC as reinforcing element (Trovatti et al. 2012b). As in
the case of the materials prepared with BC, all pullulan-NFC
nanocomposites show a good homogeneity (atomic force
microscopy images in Figure 7a and a’) and a high translu-
cency as evidenced by the optical image of nanocomposite
specimens against a printed background (Figure 7b). The
image in the corner of Figure 7b demonstrates the consid-
erable flexibility of the films. Pullulan-NFC nanocompos-
ites also showed considerable improvements in thermal
stability, which means increments of up to 20°C in the deg-
radation temperature (Trovatti et al. 2012b); finally, pullu-
lan-NFC nanocomposites showed increments in mechani-
cal properties of up to 5500% and 8000% in the Young’s
modulus and tensile strength, respectively, for films plas-
ticized with glycerol when compared with the unfilled pul-
lulan films (Trovatti et al. 2012b).

Thermoplastic starch-cellulose
nanocomposites

Starch (Figure 8a) is one of the most abundant and availa-
ble natural polysaccharides, which is well investigated as
part of novel biocomposites. The disruption of the molecu-
lar chain interactions in starch granules (Figure 8b) leads
to a thermoplastic material [thermoplastic starch (TPS)]
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Figure 7 Images of nanocomposites based on pullulan and NFC
(PNFC 40%).

(a and a’) Atomic force microscopy images of PNFC 40% with
different enlargements. (b) Optical images to illustrate the
transparency of films made of PG, PGNFC 20%, and PGNFC 40%. For
abbreviations, see also Figure 5.

under specific conditions and in the presence of a plasti-
cizer, such as water or glycerol.

TPS composites are prepared in a single step with
cornstarch by adding glycerol/water as plasticizer and
BC (1% and 5%, w/w) as reinforcing agent (Martins et al.
2009). The BC is well dispersed in the matrix and there is a
strong adhesion between BC and TPS (Figure 8c).

Plant NFC and especially BC proved to be efficient
reinforcement agents even in low quantities. At 5% BC
loading, the Young’s modulus and the tensile strength of
the composite are elevated considerably (Figure 9a and b).
The good performance of BC in comparison with plant
NFC has to be emphasized (Figure 9a and b). This is prob-
ably due to the high aspect ratio and three-dimensional
network of the BC.

In principle, these materials are promising in appli-
cations of food packaging and biodegradable materials.
Then again, TPS-based materials are sensitive to humidity.
The moisture sorption maximum was slightly reduced by
the incorporation of BC. The interpretation is that starch
is more hydrophilic than cellulose and nanofibers absorb
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Figure 8 Starch and composites of starch.
(a) Segment of the chemical structure of a starch helix. (b) Starch
granulates. (c) TPS film.

a part of the glycerol that will be not available to absorb
humidity (Curvelo et al. 2001).

Conclusions

Novel composites based on nanofibrillated plant cel-
lulose and BC embedded in natural and synthetic poly-
meric matrices such as PLA, CH, starch, and pullulan
are promising because of the high compatibility of the
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