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Abstract: Imidazole and its derivatives possess remarkable
versatility, finding applications in medicine, synthetic chem-
istry, and industry. This review explores the latest advance-
ments observed over the last few years (2018–2022), focusing
on diverse multicomponent reactions conducted under dif-
ferent conditions. It highlights the role of catalysts and diverse
conditions, optimizing synthetic efficiency. The review offers
concise insights into emerging trends, making it a valuable
resource for researchers and practitioners seeking greener
and more efficient imidazole synthesis.
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1 Introduction

Nitrogen-containing aromatic heterocyclic compounds, par-
ticularly imidazoles, have garnered significant attention in
research and industrial chemistry in recent years, mainly
due to their versatile range of biological and pharmacolo-
gical activities [1]. They play a pivotal role in the synthesis of
biologically active molecules [2,3], such as anticancer, anti-
aging, anticoagulant, anti-inflammatory, antimicrobial, anti-
tubercular, antidiabetic, antimalarial, antiviral drugs, and
enzyme inhibitors [4–6]. They also act as selective plant
growth regulators, fungicides, herbicides, and therapeutic
agents [7]. Nowadays, green chemistry and organometallic
catalysis have extended the application of imidazoles as ionic
liquids and N-heterocyclic carbenes (NHCs) [8,9]. Therefore,

imidazole derivatives have become more popular due to the
demand for environmentally friendly methods in chemical
organic synthesis. There are several approaches for the synth-
esis of substituted imidazoles by condensation [10], ring cycli-
zation [11], oxidation conversion [12], solid face analysis [13],
flash vacuum pyrolysis [14], microreactor [15] and ionic liquid
promoted technique [16]. In most cases, tri and tetra-substi-
tuted imidazoles are synthesized by three or four components
of cyclo-condensation of 1,2-diketones, ammonium acetate
with aldehydes, and anilines using a variety of different cat-
alysts under efficient green method or solvent-based condi-
tions [17]. Some of the well-known methods for the synthesis
of substituted imidazoles are Van Leusen [18], Debus-Radzis-
zewski [19], Marckwald [20], and Wallach [21] in the last few
decades [22].

Continuing our interest inN-containing heterocycles [23–25],
we propose this review, which comprehensively explores recent
advancements in imidazole synthesis. We emphasize
reviewing critical strategies, catalytic approaches, and
sustainable methodologies based on two, three, and
four components. As imidazole derivative synthesis con-
tinues to evolve, it promises scientific innovation while
addressing environmental sustainability concerns in the
chemical industry.

2 Two-component methods

2.1 Synthesis of imidazoles using water as a
solvent

Zhaojun et al. explored the synthesis of 1-benzyl-2-aryl-1H-
benzo[d]imidazole derivatives 1a via 2,2′-bis(diphenylpho-
sphino)-1,1′-binaphthyl (BINAP)-copper supported by hydrotalcite
([Cu(binap)I]2@HT) as a heterogeneous catalyst in water.
The reaction between diamines 2 and various alcohol 3,
which undergoes dehydrogenative cyclization in the pre-
sence of the [Cu(binap)I]2@HT catalyst, and K2CO3 in water
at 90°C gives the expected products in high yield (Scheme 1).
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This BINAP-Cu complex, which is supported by hydrotalcite,
exhibits exceptional air stability and can be recycled at least
five times in an environment free of solvents [26].

2.2 Synthesis of imidazoles under solvent-
free conditions

An efficient synthesis of 2,4,5-trisubstituted imidazoles 1b by
the intermolecular [3 + 2] cycloaddition reaction between
azido chalcones 4 and organic nitriles 5 using trimethylsilyl-
trifluoromethanesulfonate (TMSOTF) as a catalyst under
microwave radiation, resulted in a high yield (85%) under
a short reaction time (Scheme 2), as reported by Mysore
et al. This method has a simple and straightforward proce-
dure for synthesizing substituted imidazole derivatives 1b

for future purposes [27].

Anitha and Sankari reported a novel NHC catalyst for
synthesizing substituted imidazole derivatives 1c. An NHC
catalyzed the reaction between acetophenones 6 and ben-
zylamines 7 with t-BuOK, and BF3OEt2 as a Lewis acid
in the presence of aq. tert-butyl hydroperoxide (TBHP) as
an oxidant at 80°C under solvent-free conditions and a
plausible mechanism is shown in Scheme 3. It is a conve-
nient method for synthesizing substituted imidazoles 1c in
high yields under solvent-free conditions without using
transition metals and the pre-functionalization of sub-
strates [28].

Ali et al. recently prepared a novel nanoparticle (Co/
Mn)-supported graphene oxide (GO) nanocatalyst for the
synthesis of benzimidazoles 1d. The reaction started with
aldehydes 8 and 1,2-benzenediamine 2 in the presence of
GO(Co/Mn) catalyst (0.1 g) under thermal conditions at
80°C. In the same manner, they also performed the reac-
tion under ultrasonic irradiation in the presence of water.
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Scheme 1: Synthesis of 1H-benzo[d]imidazoles using the [Cu(binap)I]2@HT catalyst.
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The thermal and ultrasonic conditions give high yields of
up to 95% benzimidazoles 1d (Scheme 4). This is an efficient
method due to the short reaction time, easy procedure, and
reuse of the catalyst, and it is performed under solvent-free
conditions [29].

2.3 Synthesis of imidazoles using an organic
solvent

A new novel phosphine-free Ru(II)-NNN pincer complex
([RuCl(L)(MeCN)2]Cl), L = 2,6-bis(1H-imidazole-2-yl)pyridine,
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developed by Lin et al. was used as a homogenous catalyst
for the synthesis of 1H-benzo[d]imidazoles 1d. The reaction
proceeds between benzene-1,2-diamines 2 and primary alco-
hols 3 that dehydrogenation condensation with the Ru(II)
complex as a catalyst with additive NaBPh4 and 1,2-bis(diphe-
nylphosphanyl)ethane (DPPE) inmesitylenewas heated at 165°C
for 12 h in an open system and gives a high yield of 2-substituted
1H-benzo[d]imidazole 1d (95%) and released H2 (Scheme 5). A
strong electro-donor ligand DPPE was coordinated to the Ru

center, which improved the catalytic reactivity. Both electron-
donating and electron-withdrawing groups of alcohols or dia-
mines give excellent yields (97%) of the products [30]. Compared
to other reported homogeneous systems, it is an excellent
example of a one-step synthesis of imidazole derivatives
from alcohols without using an oxidant and the stoichio-
metric amounts of inorganic bases.

Shoujie et al. developed a ZnCl2-catalyzed one-pot [3 + 2]
cycloaddition reaction between benzimidates 9 and
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2H-azirines 10 in MeCN for the synthesis of substituted imi-
dazoles 1b (Scheme 6). The substrates of electron-with-
drawing groups, such as F– and NO2– groups, afford the
products 1b in good yields (87 and 82%). In the mechanism,
ZnCl2 activates azirine 10, which undergoes nucleophilic
attack by benzimidate 9, and then subsequent ring opening
and intramolecular cyclization occur to give the desired
products. The reaction exhibits exceptional reactivity and
favorable tolerance towards various functional groups and
produces a good yield in the afforded period [31].

1,2,4-Trisubstituted-(1H)-imidazoles 1c was successfully
synthesized through the unconventional C–C bond clea-
vage of chalcones 11 and benzylamine 7, catalyzed by Cu
(OTF)2 and I2 in toluene at 70°C for 24 h in the presence of
air, developed by Chettiyan et al. (Scheme 7). In this reaction,
a variety of aryl- and heteroaryl-substituted chalcones 11
and benzylamines 7 afforded a good yield. This protocol
was applicable in medicinal chemistry approaches, such as

scaffold hopping, molecular hybridization, and other related
techniques to achieve selectivity [32].

Lucas et al. developed the synthesis of 2-aminoimida-
zole derivatives 1b using [3 + 2] dipolar cycloaddition of
vinyl azides 12 (1 eq.) and cyanamide 13 (3 eq.) in the
presence of potassium acetate as a base under both micro-
wave and visible light-mediated conditions with t-butanol
and ethanol as solvents, respectively (Scheme 8). Micro-
wave and thermal conditions give a high yield of 2-aminoi-
midazoles 1b under a short reaction time. The photoactivation
of vinyl azides gives a remarkable outcome through visible
light. In the photochemical reaction, blue light (456 nm) alone
generated photolysis of the azide without the addition of a
photocatalyst [33].

An efficient base-promoted metal-free cyclization reac-
tion for the synthesis of 2,4,5-trisubstituted imidazoles 1b

using substituted alkynes 14 (1 eq.), benzonitrile 5 (3 eq.),
and t-BuOK (2.5 eq.) as a base at 100°C in cyclohexane for
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11 h under Ar atmosphere was developed by Qiang et al.
(Scheme 9). The best result was obtained with up to 93%
yield when using cyclohexane as a solvent, but the reaction
still obtained a 43% yield without a solvent. This approach
directly contributes to the achievement of synthesizing

valuable imidazole derivatives using easily accessible raw
materials [34].

The synthesis of 2-amido-substituted benzimidazoles
1d, from benzene-1,2-diamine 2 and 2-bromo-2,2-difluoro-
N-isopropylacetamides 15 using S8 and Na2CO3 in MeCN
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at 130°C for 16 h was reported by Shuilin et al. (Scheme 10)
[35]. This method successfully obtained S8-catalyzed selec-
tive cleavage of three halogen carbon bonds of the halo-
genated difluoro compounds and 2-amido-substituted
benzimidazoles 1d with a high yield.

Erfei et al. reported a single-step synthesis of 2-aminoi-
midazole derivatives 1e by a cyclization between unsym-
metrical carbodiimides 16 and propargylic amines 17 with
Cs2CO3 in dioxane at room temperature for 8 h and afforded
the product in moderate to good yield (Scheme 11). The
regio-divergent cyclization is observed when they change
the base and temperature [36].

Lan et al. developed substituted imidazoles 1b using
trimethylsilylethynyl benzoxazinanones 18 and benzimi-
damides hydrochloride 19, which undergo SN2 reaction
followed by decarboxylation in the presence of K2CO3 (2
eq.) in MeCN as a solvent at 80°C for 5 h and afforded the
corresponding imidazole derivatives in high yield of up to
90% (Scheme 12) [37].

3 Three-component methods

3.1 Synthesis of imidazoles using a green
solvent

Mohd and Zeba described a practical and ecofriendly pro-
cess for the synthesis of isatin-based imidazole derivatives
1d using cerium-immobilized silicotungstic acid nanopar-
ticle-impregnated zirconia (Ce@STANPs/ZrO2) as a catalyst in
water. A mixture of isatin 20, aliphatic/aromatic/heteroaro-
matic aldehydes 8, ammonium acetate 21, and Ce@STANPs/
ZrO2 in water was heated at 100°C under MW condition and
obtained a high yield of products up to 94% (Scheme 13). In
this reaction, the Ce@STANPs/ZrO2 catalyst was used to acti-
vate the carbonyl bond, and they optimized several organic
solvents; among them, using water as a solvent gave a high
yield under a short reaction time [38]. The protocol provides
various advantages, including the catalyst’s ability to be
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reused several times, a high product yield, and environmen-
tally conscious conditions.

Leila et al. recently prepared a zingiber extract based
on the Cr2O3 nanocatalyst, used as a precursor for the
synthesis of polysubstituted imidazoles 1b from aromatic
aldehydes 8, ammonium acetate 21, and benzil 22 under
microwave irradiation in the presence of H2O as a solvent
for 4–5 min, which gave a high yield of up to 98% (Scheme
14). When aldehyde has electron-donating groups, yields
are higher than those with electron-withdrawing groups.
This methodology is a simple and efficient route for synthe-
sizing imidazole derivatives without using other inorganic
solvents [39].

Natalia and Diana reported an efficient and environ-
mentally friendly method for the synthesis of triaryl-1H-
imidazoles or 2-aryl-1H-phenanthro[9,10-d]imidazoles (1d/
1d’) using dicarbonyl compound 22/23, ammonium acetate
21, and aromatic aldehydes 8 in the presence of the
urea–ZnCl2 deep eutectic solvent (DES) as a precursor at
110°C under 30min. They afforded imidazole derivatives in
good to excellent yield (Scheme 15) [40].

3.2 Synthesis of imidazoles under solvent-
free conditions

Zeinab and Mohammad prepared a new magnetic polymer
catalyst named cross-linked poly(4-vinylpyridine)-supported
Fe3O4 nanoparticles ([P4-VP]-Fe3O4NPs) for the synthesis of
2,4,5-trisubstituted imidazole derivatives 1b. The one-pot
condensation reaction was between benzil 22, aldehydes
8, and ammonium acetate 21 in the presence of [P4-VP]-
Fe3O4 catalyst under short reaction time (20–80 min) at
100°C [method a] (Scheme 16). The best result (yield: 99%)
was obtained with 100 mg of the catalyst under solvent-
free conditions [41]. The catalyst exhibits commendable
catalytic efficiency when employed to synthesize imida-
zole derivatives.

Leila et al. also described the synthesis of 2,4,5-trisubstituted
imidazoles 1b using benzil 22, ammonium acetate 21, and aryl
aldehydes 8 in the presence of amino glucose‐functionalized
silica‐coated NiFe2O4 nanoparticles (NiFe2O4@SiO2@amino glu-
cose) as a catalyst under solvent-free conditions at rt for 10min
(method b) (Scheme 16) [42].
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Jayant et al. also reported another route for the synth-
esis of 2,4,5-trisubstituted imidazole derivatives 1b using
aromatic aldehydes 8, benzil 22, and ammonium acetate
21 in lactic acid as a precursor at 160°C (method c) (Scheme
16) [43].

Faranak et al. recently described one-pot synthesis of
2,4,5-trisubstituted imidazoles 1b under solvent-free condi-
tions [44]. The reaction between benzil 22, aldehydes 8, and
ammonium acetate 21 in the presence of MIL-101 (chro-
mium(III) benzene-1,4-dicarboxylate) catalyst at 120°C gave
excellent yield (method d) (Scheme 16). There are several
advantages of the above method, such as short reaction time

and simple procedure, and the catalyst could be reused
several times without loss in its activity.

A one-pot reaction between benzil 22, ammonium
acetate 21, and aromatic aldehydes 8 in the presence of
LADES@MNP catalyst under solvent-free sonication condi-
tions gave an excellent yield of 2,4,5-trisubstituted imida-
zoles 1b was also developed by Nguyen et al. (method e)
(Scheme 17) [45]. In the reaction, the Lewis acid properties
of the LADES@MNP catalyst activate the oxygen atoms of
carbonyl groups to accept nucleophiles and intramolecular
cyclization to form the expected product. The depicted
mechanism is shown in Scheme 17.
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3.3 Synthesis of imidazoles using an organic
solvent

Wei et al. described the two routes for synthesizing sub-
stituted imidazoles 1c/1 f under metal-free three-compo-
nent between amidines 25, ynals 26, and sodium sulfonates
27 as a substrate. They generate sulfonylated imidazoles 1c

in the first route, using AcOH as a promoter in EtOH at 70°C,
and the other route generates 1f in the presence of TBHP in
MeCN at 70°C and gives excellent yield in both conditions
(Scheme 18). This transition-metal-free protocol is an effi-
cient and environmentally friendly procedure for synthe-
sizing substituted imidazoles for future purposes [46].

A three-component reaction between amidines 25,
ynals 26, and boronic acids 28 for the synthesis of imida-
zole derivatives 1 f through transition metal-free C–B bond
cleavage was reported by Changcheng et al. The reaction
proceeded in the presence of PivOH as a catalyst in n-
hexane at 80°C under mild conditions (Scheme 19). In the
reaction, various functional groups could afford an excel-
lent yield of imidazole-containing triarylmethanes 1f [47].

The synthesis of 4- and 5-hydroxyalkyl substituted imi-
dazoles 1c/1f under a three-component reaction of amidines

25, ynals 26, and water as a substrate was established by
Wei et al. The best result of 4-hydroxyalkyl-substituted imi-
dazoles 1c was obtained when NaSO2CF3/TsOH was used as
an additive in toluene at 80°C for 4 h. Meanwhile, they also
synthesized 5-hydroxyalkyl-substituted imidazoles 1b using
the same starting material in the presence of CuI in DMSO at
80°C for 4 h (Scheme 20) [48].

Stefanie et al. reported a three-component synthesis of
1,4,5-trisubstituted imidazoles 1g via Van Leusen cycliza-
tion using primary amines 7, toluenesulfonyl isocyanides
29, and aldehyde-functionalized DNA conjugate molecule
30, under basic conditions and afforded a high yield of up
to 97% (Scheme 21). They optimized various organic bases
but obtained a low yield and oxazol formation as a side
product. The best result was obtained when morpholine
was used as a base under a high percentage of dimethyla-
cetamide (DMA, 62%) under mild heating (45°C) condi-
tions [49].

A one-pot multicomponent reaction for the synthesis of
substituted imidazoles 1h, under Van Leusen [2 + 2 + 1] cycli-
zation between aryl methyl ketones 6,2-aminobenzyl alcohols
31, and p-toluene sulfonyl methyl isocyanide (TosMIC) 32 in
the presence of I2/FeCl3 as a co-catalyst in DMSO at 110°C was
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developed by Xiao et al. [50]. In this reaction, they introduced
a neighboring-assisted group (−CH2OH) to avoid imine inter-
mediate formation and then in situ-generated intermediate
TsCH2NH2 35 by hydrolysis and further underwent cycliza-
tion and ring opening to obtain a high yield of 1,4-disubsti-
tuted imidazole derivatives 1d; the possible mechanism is
shown in Scheme 22.

The Radziszewski reaction was used to create new por-
phyrin-imidazole derivatives 1b/1b’ from 2-formyl-5,10,15,20-
tetraphenylporphyrin 36, heteroaromatic 1,2-diones 37/38,
and ammonium acetate 21 in the presence of toluene/acetic
acid as a solvent under reflux for 3 h and obtained a high
yield up to 99% (Scheme 23), as reported by Xavier et al. [51].

Mansouria et al. synthesized fatty imidazoles 1b/1i

using fatty 1,3-diketones 39 (derived from methyl oleate),
ammonium acetate 21, and various aldehydes 8 through
the Debus–Radziszewski reaction. The reaction proceeded

under microwave irradiation in AcOH at 180°C under 5 min
and produced a high yield of fatty imidazole derivatives 1b/
1i (Scheme 24) [52].

Amol et al. described a one-pot, three-component synth-
esis of substituted imidazole derivatives 1d using isatin 20,
aromatic aldehydes 8, and ammonium acetate 21 as a sub-
strate, which was catalyzed by β-cyclodextrin (β-CD) (15mol
%) using H2O/EtOH as a solvent. The mixture was refluxed at
80°C (Scheme 25). During optimization, they used H2O, EtOH,
and various organic solvents, but the best yield of the
desired 1,8-dihydroimidazo[2,3-b]indoles 1d (95% of yield)
was obtained when H2O/EtOH (9:1) was used as a sol-
vent [53].

A one-pot three-component reaction was used for the
synthesis of trisubstituted imidazole derivatives 1b using
benzil/benzoin 22/22”, various aldehydes 8, and ammo-
nium acetate 21 in the presence of newly synthesized
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supermagnetic heterogenous Bronsted acidic sulfonated
nanocomposite (Fe3O4@PVA–SO3H) as a catalyst in EtOH
at room temperature, as described by Ali et al. (method
f) (Scheme 26) [54].

Zahra and Ali designed an efficiently mixed transition
metal oxide (MTMO) nanocatalyst, ZnS-ZnFe2O2, by the che-
mical co-precipitation method. They also described the
one-pot synthesis of 2,4,5-triaryl-1H-imidazole derivatives
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1b by cyclic condensation of benzil 22, various aldehydes 8,
and ammonium acetate 21 using ZnS-ZnFe2O2 (2 mg) as a
catalyst in ethanol under ultrasonic irradiation at 70°C.
They obtained excellent yields of up to 95% under short
reaction time (method g) (Scheme 26). The yield was not
affected when the amount of catalyst was increased. The
ZnS-ZnFe2O4 MTMO catalyst acts as a Lewis acid, which
interacts with the oxygen of the carbonyl group of benzal-
dehyde [55]. The benefits of this methodology are mild
reaction conditions, high product yields, simple recycl-
ability, high atom economy, and environmentally benign
conditions.

For the synthesis of 2,4,5-trisubstituted imidazoles 1b,
Mehdi and Zohre also reported using the same substrates
of benzil 22, aldehydes 8, and ammonium acetate 21 in the
presence of magnetic SO3H@zeolite-Y nanocomposite-sup-
ported nano-Fe3O4 (Fe3O4/SO3H@zeolite-Y) as a catalyst in
ethanol at 80°C (method h) (Scheme 26) [56].

Gyanendra et al. designed an efficient and eco-friendly
nanocatalyst of graphene oxide/NiO nanocomposites (rGO-
NiO-NCs), which was used as a promoter for the synthesis of
imidazole derivatives 1b using benzil 22, aldehydes 8, and
ammonium acetate 21 in ethanol at 55°C under 60min and
obtained a high yield (86–96%) (method i) (Scheme 26) [57].
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A novel pyromellitic diamide–diacid-bridged meso-
porous organosilica (PMAMOS) nanosphere with different
morphologies and Bronsted acid catalytic centers was pre-
pared under green conditions by Ehsan and Mohammad.
Recently, they synthesized substituted imidazoles 1b from
benzyl/benzoin 22/22′, ammonium acetate 21, and different
aldehydes 8 in the presence of PMAMOS as a catalyst in
EtOH under reflux conditions (method j) (Scheme 26). The
best yield of 2,4,5-trisubstituted imidazole derivatives 1bwas
obtained when 15mg of PMAMOS was used as a nanocata-
lyst. This heterogeneous catalyst can be reused several times
without loss of any catalytic activity [58].

Babak and Mohammad also synthesized the trisubsti-
tuted imidazoles 1b using the three components of benzil/

benzoin 22/22″, aldehydes 8, and ammonium acetate 21
with a newly prepared supramolecular Fe3O4/SiO2-deco-
rated trimesic acid-melamine (Fe3O4/SiO2-TMA-Me) nano-
composite as a catalyst in EtOH (method k) (Scheme 26) [59].

4 Four-component methods

4.1 Synthesis of imidazoles using water as a
solvent

Ravi et al. reported a one-pot four-component reaction for
the synthesis of 1,2,4,5-tetrasubstituted imidazoles 1i using
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benzil 22, aldehydes 8, anilines 7, and ammonium acetate
21 in the presence of sodium lauryl sulfate (SLS) as a cat-
alyst in water under reflux at 80°C; after 1 h, the desired
product was obtained in up to 95% yield (Scheme 27). It
is an efficient and convenient method for synthesizing
substituted imidazoles under simple and environmentally
friendly conditions [60].

4.2 Synthesis of imidazoles under solvent-
free conditions

Maryam et al. prepared a new nano-Fe3O4@Ca3(PO4)2
catalyst synthesized from an eggshell as a solid waste
with Fe3O4 nanoparticles. The newly synthesized nano-

Fe3O4@Ca3(PO4)2 catalyst was used as a promoter for the
synthesis of 1,2,4,5-tetra-substituted imidazole derivatives
1i via a one-pot four component of benzaldehydes 8, ani-
lines 7, benzoin 22″, and ammonium acetate 21 at 95°C
(method l) (Scheme 28). The best yield of up to 90% was
obtained using 0.05 g of the synthesized catalyst under
solvent-free conditions [61].

Myo et al. also reported the synthesis of 1,2,4,5-tetra-
substituted imidazole derivatives 1i using benzil 22, ben-
zaldehydes 8, benzalamines 7, and ammonium acetate 21
in the presence of Cu@imine/Fe3O4 MNPs as a catalyst at
80°C under solvent-free conditions (method m) (Scheme
28). Both electrons, the donating and withdrawing groups,
at the meta and para positions of the benzene ring of alde-
hydes and amines, gave an excellent yield of the desired
imidazole derivatives (up to 95%) [62].
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4.3 Synthesis of imidazoles using organic
solvents

An efficient synthesis of tetra-substituted imidazoles 1i

from α-hydroxyphenyl-acetic acids 40, diphenylacetylene
41, primary amines 7, and ammonium acetate 21 was cata-
lyzed by Pd(OAc)2/Ce(SO4)2/Bi(NO3 )3 (tri-metallic system) in
DMSO/H2O at 120°C, as described by Wei et al. The reaction
proceeds via decarboxylation of α-hydroxyphenylacetic acid
oxidation of diphenylacetylene through the Wacker process,
followed by Debus–Radziszewski annulation. The plausible
mechanism of the reaction is shown in Scheme 29 [63].

A one-pot four component of benzils 22, aldehydes 8,
amines 7, and ammonium acetate 21 was used as a sub-
strate to synthesize 1,2,4,5-tetrasubstituted imidazoles 1i

in the presence of a newly derived magnetic bifunctional
L-proline artificial enzyme (OAc-HPro@Fe3O4) that acts as
a catalyst in ethanol at 60°C and obtained a high yield in
the range 70–90%, as described by Hamideh et al. (method
n) (Scheme 30) [64].

Ramin et al. also synthesized tetra-substituted imida-
zole derivatives 1i under in situ oxidation–condensation between
benzoin 22″, aldehydes8, amines 7, and ammoniumacetate 21 in
the presence of H3PW12O40/Fe3O4@SiO2–Pr–Pimagnetic nanopar-
ticles as a catalyst in EtOH under reflux conditions (method o)
(Scheme 30) [65].

Rupali and Monika also developed another route for
the synthesis of tetrasubstituted imidazoles 1i from benzil
22, aldehydes 8, amines 7, and ammonium acetate 21 cat-
alyzed by sulfoacetate-modified silica-supported indium(III)
triflate (SiSAIn(OTf)2) in EtOH/H2O at 80°C (method p)
(Scheme 30). Different amounts of the synthesized catalyst
were used in the reaction, but the best yield of 80–85% was
obtained when 0.05 mg of catalyst was used [66].

Moreover, recently, Zahra et al. also reported the efficient
synthesis of 1,2,4,5-tetrasubstituted imidazoles 1i using a newly
synthesized hybrid nanocatalyst of guar gum with iron oxide
and copper oxide nanoparticles (Cu2O/Fe3O4@guarana) as a
catalyst under one-pot multicomponent of benzil 22, alde-
hydes 8, amines 7, and ammonium acetate 21 in EtOH under
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ultrasonication at room temperature. After 20min, a yield of
up to 97% was obtained (method q) (Scheme 30) [67].

Ming et al. developed a one-pot, four-component
synthesis of pyrrole-imidazoles derivatives 1j followed
by a post-Ugi cascade reaction. In the reaction, the mixture
of tert-butyl 2-formyl-1H-pyrrole-1-carboxylate 44, anilines 7,
propionic acid 42, and benzyl isocyanides 43 in methanol,
stirred at room temperature overnight gave an intermediate.
Then, the intermediate mixture was further heated at high
temperature under microwave conditions with an additive

K2CO3 (2 eq.) and MeCN for 20min and obtained the desired
product 1j in high yield. The plausible mechanism is shown in
Scheme 31 [68].

5 Conclusions

This review has provided a comprehensive overview of
recent advancements in imidazole synthesis, demonstrating

Boc
N CHO

R1 NH2

R2 N

COOH
1. MeOH, rt

2. K2CO3 (2 eq.)
MeCN, 12 min

N
N R1

O

HN
O

R2

7

44

42

43
1j

Representative examples

N
N

O

HN
O

N
N

O

HN
O

F

82% 74%

N
N

O

HN
O F

F

71%

Boc
N CHO

R1 NH2

R2 NCOOH

NBoc

N
O

H
N

O
R1

N

N
O

H
N

O
R1

N

N
O

H
N

O
R1

N

O

H
N

N
O R1

R2

R2

R2 R2

N

O

H
N

N
O R1

R2 HC CH
N

N R1

O

HN
O

R2

Plausible mechanism

8' 7

16'' 33'
50

515253

54 1j

Scheme 31: Synthesis of pyrrole-imidazole derivatives at room temperature.

24  Mayanglambam Maneeta Devi et al.



a solid commitment to efficiency and versatility. They were
based on solvents and solvent-free conditions while effec-
tively employing catalysts in multicomponent reactions.
These innovations hold great promise for sustainable and
adaptable imidazole synthesis, impacting various applica-
tions frompharmaceuticals tomaterials science. The dynamic
evolution of imidazole synthesis signifies a bright future,
marked by more efficient and versatile pathways for imida-
zole derivative production, ensuring the continued advance-
ment of the field.
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