Research Article

Atsushi Tarui, Erika Kamata, Koji Ebisu, Yui Kawai, Ryota Araki, Takeshi Yabe, Yukiko Karuo, Kazuyuki Sato, Kentaro Kawai and Masaaki Omote*

Synthesis of 2,2-difluoro-2-arylethylamines as fluorinated analogs of octopamine and noradrenaline

https://doi.org/10.1515/hc-2022-0005 received September 29, 2021; accepted January 09, 2022

Abstrtact: A series of 2,2-difluoro-2-arylethylamines was synthesized as fluorinated analogs of octopamine and noradrenaline with the expectation of bioisosteric OH/F exchanges. The syntheses of these compounds were performed by a Suzuki–Miyaura cross-coupling reaction of 4-(bromodifluoroacetyl)morpholine with aryl boronic acids to produce the intermediate 2,2-difluoro-2-arylacetamides, followed by transformation of difluoroacetamide to difluoroethylamine.

Keywords: difluoroacetamide, fluorine analogue, Suzuki–Miyaura coupling, octopamine, noradrenaline

1 Introduction

Noradrenaline and octopamine, very important neuro-transmitters and hormones for controlling the physiological response of human and insect activities [1–7], are composed of two types of alcohols, catechols and benzylic hydroxy groups, both of which are important functionalities to form stable complexes with an adrenergic receptor for stimulating the adrenergic activity [8,9]. To avoid overstimulation, excess and unnecessary noradrenaline released for signaling are disabled upon enzymatic methylation of the alcohols by catechol-*O*-methyltransferase, enabling appropriate interaction with adrenergic receptors [10–12]. This mechanism suggests that the catechol hydroxy groups of

noradrenaline play a key role in the biological response to maintain physiological homeostasis.

Conversely, recent studies of fluorine chemistry suggest that a fluorine substituent can mimic a hydroxy group in some biological responses because of the isoelectronic nature of fluorine and oxygen [13,14]. To date, some fluorinated pharmaceuticals or bioactive compounds have been developed with the aim of bioisosteric OH/F exchanges. For example, Tafluprost, a potential drug for glaucoma and ocular hypertension, is a structural and functional analog of prostaglandin $F_{2\alpha}$, the structure of which contains fluorine atoms to mimic a hydroxy group (Figure 1(a)). Tafluprost possesses a strong agonistic effect toward prostaglandin F receptor that is 12 times larger than the agonistic effect of Latanoprost, a drug commonly used for glaucoma [15]. In view of this success, we envisioned that the OH/F exchange approach is applicable to noradrenaline and octopamine to gain insight into the adrenergic activity of fluorine-substituted analogs. To address this challenge, we first designed target compounds 1a-d, a series of fluorinated analogs of octopamine and noradrenalin, in which fluorine atoms were substituted for hydroxy groups to allow for OH/F bioisomeric exchange (Figure 1(b)). Among 1a-d, 1a and d have already been synthesized by Silverman and Bingham [16,17] even though the synthesis involves long and tedious operation in the difluorination process in which ketone must be converted to difluoromethylene by using N,N-diethylaminosulfar trifluoride (DAST) over 7 days. To circumvent this drawback, we explored a new strategy for the cross-coupling reaction to construct a core structure and finally discovered a straightforward access to the target compounds by the reaction of 4-(2-bromo-2,2difluoroacetyl)morpholine 2 with arylboronic acids. Herein, we report an efficient synthetic method for preparing fluorinated analogs of octopamine and noradrenalin based on OH/F bioisomeric replacement, including a cross-coupling reaction of arylboronic acid and 2 followed by a functional modification for nitrogen insertion. In addition, we performed in silico docking study to evaluate the compatibility

^{*} Corresponding author: Masaaki Omote, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1, Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan, e-mail: omote@pharm.setsunan.ac.jp Atsushi Tarui, Erika Kamata, Koji Ebisu, Yui Kawai, Ryota Araki, Takeshi Yabe, Yukiko Karuo, Kazuyuki Sato, Kentaro Kawai: Faculty of Pharmaceutical Sciences, Setsunan University, 45-1, Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan

Figure 1: (a) Structure of tafluprost designed with bioisosteric OH/F exchanges approach and (b) structure of octopamine, noradrenaline, and four target analogs designed with bioisosteric OH/F exchanges.

of $\mathbf{1a}$ - \mathbf{d} against the ligand-binding pocket of the β 2-adrenergic receptor.

2 Results and discussion

We commenced our study with the cross-coupling reaction of 2 with 4-methoxyphenylzinc chloride in a variant of our previously reported procedure for the Negishi coupling reaction (Table 1, entry 1) [18]. Although the reaction proceeded effectively to afford 3a in excellent yield, the reaction was not scalable, leading to a significant decrease in the chemical yield when the reaction was conducted on a gram scale. This result forced us to explore new methods that would be scalable to the gram level. Among various cross-coupling reactions examined for introducing a difluoroethylene unit [19-23], using a method reported by Zhang's group [22], the reaction of 2 with arylboronic acid did not occur with a NiCl₂/DME complex. However, using a palladium catalyst to react arylboronic acid with two equivalents of 2 enabled the production of 3b in 45% yield (Table 1, entries 2 and 3) [23]. While the use of Ni $(NO_3)_2/6H_2O$ as a catalyst retarded the reaction to give **3b** in 27% yield, the addition of PPh₃ improved the yield of the reaction significantly up to 69% yield (entries 4 and 5). Moreover, the addition of molecular sieves was effective, providing 3b in 76% yield, which was found to be the optimal condition and also scalable to a gram-scale reaction (entry 6). For easy modification, ethyl bromodifluoroacetate instead of amide **2** was used for the cross-coupling reaction under the optimal conditions; however, the reaction yield was decreased to 44% (entry 7).

We next attempted to obtain analogs 3a and 3c-d using arylboronic acids with different substitution patterns under the optimal conditions thus established. All coupling reactions for 3 were carried out successfully in good yields. We then examined the functional modification of **3a-d** to **1a-d** (Scheme 1). Reduction of the amide moiety of 3 was conducted effectively according to Hartwig's method to provide the corresponding alcohols 5a-d, suggesting that NaBH, was the reducing agent for the conversion of the difluoroamide moiety to difluoroethanol [24]. Transformation of difluoroethanol to difluoroethylamine was carried out by a two-step procedure of azide insertion followed by reduction, in which the hydroxy group was initially converted to triflate and the azide group was nucleophilically added [25], and then, the azide group was reduced to an amino group by catalytic hydrogenation.

As mentioned earlier, noradrenaline is an endogenous ligand that acts on adrenergic receptors. Figure 2a shows the binding of noradrenaline to the β 2-adrenergic receptor prepared from an adrenaline complex. The aromatic ring of noradrenaline forms π -interactions with Phe290, and the OH group on the phenyl ring forms a hydrogen bond with Asn293. In addition, the part that forms ammonium salts in the biological condition forms hydrogen bonds and ionic interactions with Asp113 and cation- π interactions with Phe193. The binding models for our compounds **1b** and **1d** were also prepared, and their interactions were evaluated (Figure 2b and c). The results show that the compounds are expected to form π -interactions with Phe290, hydrogen bonds and ionic interactions with Asp113, and cation- π interactions with Phe193.

The docking study was then performed to evaluate the compatibility of our synthesized compounds (1a-d) against the ligand-binding pocket of the β2-adrenergic receptor. The co-crystal structure of the adrenergic receptor with catecholamine (4LDO) was obtained from the Protein Data Bank. Fred [26] was used for the docking to obtain 20 scores (i.e., Chemgauss4 scores) for each of 1a-1d and noradrenaline. As a result, the scores of noradrenaline exhibited the best among the five compounds (Figure 3). The results showed that the scores were better in the order of noradrenaline > 1b > 1d > 1c > 1a. As noradrenaline is an endogenous ligand, the docking result that noradrenaline has the best compatibility with adrenergic receptors seems to be reasonable. Among the derivatives we synthesized, 1b appears to have the best compatibility with adrenergic receptors.

28 — Atsushi Tarui et al. DE GRUYTER

Table 1: Cross-coupling reaction of 2 for the formation of 3

$$R \longrightarrow X + BrF_2C \longrightarrow X$$
 conditions
$$R \longrightarrow X$$

$$R \longrightarrow$$

Entry	Cat. (mol%)/ligand (mol%)/additive (equiv.)	Substrate	Solvent	Temp. (°C)	Time	Product	Yield (%)
1	$NiCl_2$ -DME (5)/oxazoline ligand ^a (6)	H ₃ CO—ZnCl (3 equiv)	THF	0	0.5	3a	91 (42) ^b
2	NiCl ₂ ·DME (5)/bpy (5)/K ₂ CO ₃ (2 equiv.)	BnO B(OH) ₂ (1.5 equiv)	1,4-Dioxane	80	21	3b	0
3	Pd(PPh ₃) ₄ (5)/Cul (5)/Xanthophos (10)/K ₂ CO ₃ (2 equiv.)	BnO — B(OH) ₂	1,4-Dioxane	80	24	3b	45
4	$Ni(NO_3)_2 \cdot 6H_2O$ (5)/bpy (5)/ K_2CO_3 (2 equiv.)	BnO \longrightarrow B(OH) ₂ (1.5 equiv)	1,4-Dioxane	80	24	3b	27
5	$Ni(NO_3)_2 \cdot 6H_2O$ (5)/bpy (5)/PPh ₃ (5)/K ₂ CO ₃ (2 equiv.)	BnO—B(OH) ₂ (2 equiv)	1,4-Dioxane	80	24	3b	69
6	$Ni(NO_3)_2 \cdot 6H_2O$ (5)/bpy (5)/PPh ₃ (5)/ K_2CO_3 (2 equiv.)/MS 4Å	BnO—B(OH) ₂ (2 equiv)	1,4-Dioxane	80	24	3b	76 (80) ^c
7 ^d	$Ni(NO_3)_2 \cdot 6H_2O$ (5)/bpy (5)/PPh ₃ (5)/K ₂ CO ₃ (2 equiv.)/MS 4Å	BnO—B(OH) ₂ (2 equiv)	1,4-Dioxane	80	24	4 ^e	44

bromodifluoroacetate was used instead of 2. ^eThe product was the corresponding ethyl ester.

3 Conclusion

In conclusion, we have successfully synthesized a series of fluorinated analogs of octopamine and noradrenaline in which hydroxy groups have been replaced by fluorine atoms. For the synthesis, the cross-coupling reaction of arylboronic acid with **2** was carried out on a gram scale to construct core structures. Subsequent structural modification led to the formation of a difluoroaminoethyl moiety. In the view of bioisosteric rationale and in silico study, these compounds might be expected to mimic the behavior of octopamine and noradrenaline to some extent in biological systems. Examination of the ability of these

compounds to mimic the biological responses of naturally occurring bioactive compounds is currently underway in our laboratory.

4 Experimental

NMR spectra were obtained from a solution in dimethyl sulfoxide (DMSO)- d_6 or CDCl₃ using 600 and 400 MHz for 1 H NMR, 100 MHz for 13 C, 376 MHz for 19 F NMR. DMSO- d_6 solution of NMR samples was recorded at 40°C, unless noted otherwise. Chemical shifts of 1 H and 13 C NMR are

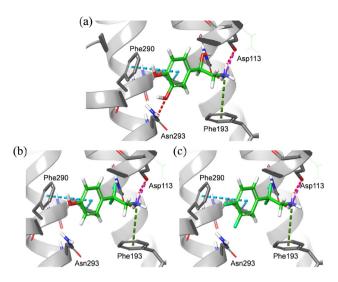


Figure 2: Binding models of (a) noradrenaline, (b) 1b, and (c) 1d with β 2-adrenoceptor prepared from an adrenaline complex (PDBID 4LDO). A red dashed line indicates a hydrogen bond, a blue dashed line indicates π -interactions, a green dashed line indicates cation- π interactions, and a purple dashed line indicates ionic interactions.

reported in ppm downfield of TMS (1 H = 0.00) and DMSO- d_6 (1 H δ = 2.49, 13 C δ = 39.5). Chemical shifts of 19 F NMR are reported in ppm from CFCl₃ as an internal standard. 13 C NMR spectra were obtained with 1 H decoupling. All data are reported as follows: chemical shifts, multiplicity (standard abbreviations), coupling constants (Hz), and relative integration value. HRMS experiments were measured on a double-focusing mass spectrometer with an

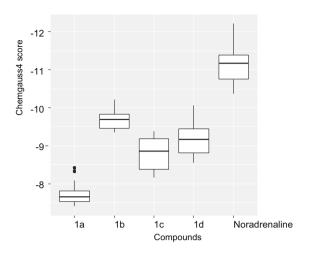


Figure 3: Distribution of docking scores for compounds 1a-1d and noradrenaline.

ionization mode of EI. All experiments were carried out under an argon atmosphere in flame-dried glassware using the standard inert techniques for introducing reagents and solvents unless otherwise noted. All commercially available materials were used as received without further purification. Solvents were heated to reflux over Na metal with benzophenone ketyl (THF, 1,4-dioxane), P₂O₅ (CH₂Cl₂), CaH₂ (DMSO, AcOEt), and Mg metal (EtOH) under argon atmosphere and collected by distillation just before use. All compounds were purified by silica gel column chromatography, unless noted otherwise.

BrF₂C
$$\frac{R^1}{S}$$
 $\frac{R^2}{S}$ $\frac{B(OH)_2}{S}$ $\frac{S}{S}$ $\frac{B(OH)_2}{S}$ $\frac{B(OH)_2}{S}$

Scheme 1: Synthesis of fluorinated CF₂ analogs of octopamine and noradrenaline.

30 — Atsushi Tarui *et al*.

4.1 A typical procedure for the synthesis of 2-aryl-2,2-difluoroacetamide (3a)

To a vial containing Ni(NO₃)₂·6H₂O (29.0 mg, 10 mol%), bpy (15.6 mg, 10 mol%), Ph₃P (26.2 mg, 10 mol%), molecular sieve (MS) 4 Å (400 mg), 4-metnoxyphenylboronic acid (607.8 mg, 4.0 mmol), K_2 CO₃ (552.0 mg, 4.0 mmol), and 2-bromo-2,2-difluoro-1-morpholinoethan-1-one (**2**, 448.1 mg, 2.0 mmol), 1,4-dioxane (14 mL) was added. The reaction mixture was heated at 80°C, and then, the whole mixture was stirred at the same temperature for 24 h. The mixture was diluted in EtOAc, and the dilution was filtered through Celite pad. The solvent was concentrated in vacuo. Then, the crude mixture was purified with flash column chromatography using hexane/AcOEt (7:3) as the eluent to give the pure product **3a**.

4.2 A typical procedure for the transformation of 3a to 3-aryl-2,2,-difluoroethylamine (1a)

To a vial containing NaBH₄ (2.247 g, 59 mmol) in EtOH (18 mL), a solution of **3a** (3.9 mmol) in EtOH (17 mL) was added at room temperature, and then, the reaction mixture was heated to reflux for 1h. The mixture was cooled to room temperature and was poured into H₂O. The whole mixture was extracted with AcOEt, and the combined organic phases were washed with brine, dried (MgSO₄), and concentrated in vacuo. The crude mixture was purified with flash column chromatography using hexane/AcOEt (7:3) as the eluent to give the reduced alcohol **5a**. To the obtaining alcohol **5a** (564.2 mg, 3.0 mmol) in CH₂Cl₂ (18 mL), pyridine (1.45 mL, 18 mmol) was added, and the mixture was cooled to -20°C. Then, trifluoromethanesulfonic acid anhydride (1.48 mL, 9.0 mmol) was added, and the reaction mixture was stirred at the same temperature for 1 h. The reaction was quenched by saturated NH₄Cl and then extracted with AcOEt. The extract was washed with brine, and the solvent was removed in vacuo. The crude triflate 6a was used in the next step without purification. The crude 6a was dissolved in DMSO (9 mL), and then NaN₃ (234.0 mg, 3.6 mmol) was added. The resulting mixture was heated at 80°C, and then, the whole mixture was stirred at the same temperature for 1 h. The mixture was cooled to room temperature and was poured into H₂O. The whole mixture was extracted with AcOEt, and the combined organic phases were washed with brine, dried (MgSO₄), and concentrated in vacuo. The crude mixture was purified with flash column chromatography using hexane/AcOEt (95:5) as the eluent to give the azide **7a**. To a reaction vessel containing the azide **7a** (445.9 mg, 2.1 mmol) and 20% $Pd(OH)_2/C$ (44.6 mg), AcOEt (10 mL) was added, and then, the reaction mixture was stirred at room temperature under H_2 atmosphere (1 atm) for 3 h. The Pd catalyst was removed from the reaction mixture by filtration, and the solvent was concentrated in vacuo. The crude mixture was purified with flash column chromatography using hexane/AcOEt (2:8) as the eluent to give the 2,2-difluoroethylamine **1a**.

DE GRUYTER

5 Characterization of compounds

5.1 2,2-Difluoro-2-(4-methoxyphenyl)-1-morpholinoethan-1-one (3a)

Yield 75% (0.407 g, 2 mmol scale), colorless liquid. 1 H NMR (400 MHz, CDCl₃) δ 7.47 (d, J = 8.7 Hz, 2H), 6.97 (d, J = 8.7 Hz, 2H), 3.85 (s, 3H), 3.71 (s, 4H), 3.48 (s, 4H); 13 C NMR (100 MHz, CDCl₃) δ 162.3 (t, J = 30.8 Hz), 161.4, 126.8 (t, J = 5.8 Hz), 125.5 (t, J = 25.0 Hz), 115.6 (t, J = 249.5 Hz), 114.1, 66.7, 66.4, 55.4, 46.7, 43.4; 19 F NMR (376 MHz, CDCl₃) δ –92.8 (s, 2 F). MS m/z = 271 [M⁺]; HRMS (EI): m/z [M⁺] calculated for C₁₃H₁₅F₂NO₃: 271.1020; found: 271.1014.

5.2 2,2-Difluoro-2-(4-methoxyphenyl) ethan-1-ol (5a)

Yield 92% (0.675 g, 3.9 mmol scale), colorless solid. 1 H NMR (400 MHz, CDCl₃) δ 7.44 (d, J = 9.2 Hz, 2H), 6.95 (d, J = 9.2 Hz, 2H), 3.95 (t, J = 13.4 Hz, 2H), 3.84 (s, 3H), 1.96 (brs, 1H); 13 C NMR (100 MHz, CDCl₃) δ 161.0, 127.0 (t, J = 6.1 Hz), 126.5 (t, J = 26.0 Hz), 120.8 (t, J = 243.7 Hz), 113.9, 66.1 (t, J = 32.7 Hz), 55.4; 19 F NMR (376 MHz, CDCl₃) δ −105.5 (t, J = 13.5 Hz, 2 F). MS m/z = 188 [M $^+$]; HRMS (EI): m/z [M $^+$] calculated for C $_9$ H $_{10}$ F $_2$ O $_2$: 188.0649; found: 188.0645.

5.3 1-(2-Azido-1,1-difluoroethyl)-4methoxybenzene (7a)

Yield 72% (0.460 g, 3.0 mmol scale), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, J = 9.2 Hz, 2H), 6.96 (d, J = 9.2 Hz, 2H), 3.84 (s, 3H), 3.67 (t, J = 13.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 161.2, 126.8 (t, J = 6.1 Hz), 126.3

(t, J = 25.9 Hz), 120.4 (t, J = 245.1 Hz), 114.0, 56.1 (t, J = 245.1 Hz), 114.033.1 Hz), 55.4; ¹⁹F NMR (376 MHz, CDCl₃) δ –99.5 (t, I = 13.1 Hz, 2 F). MS m/z = 213 [M⁺]; HRMS (EI): m/z [M⁺] calculated for C₉H₉F₂N₃O: 213.0714; found: 213.0714.

5.4 2,2-Difluoro-2-(4-methoxyphenyl) ethan-1-amine (1a)

Yield 88% (345.1 mg, 2.1 mmol scale), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, J = 8.7 Hz, 2H), 6.94 (d, J = 8.7 Hz, 2H), 3.83 (s, 3H), 3.15 (t, J = 14.3 Hz, 2H),1.44 (brs, 2H); 13 C NMR (100 MHz, CDCl₃) δ 160.1, 127.7 (t, $J = 26.7 \,\mathrm{Hz}$), 126.7 (t, $J = 6.1 \,\mathrm{Hz}$), 121.8 (t, $J = 242.1 \,\mathrm{Hz}$), 113.9, 55.4, 49.5 (t, J = 31.3 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –104.1 (t, J = 14.5 Hz, 2 F). MS m/z = 187 [M⁺]; HRMS (EI): m/z [M⁺] calculated for C₉H₁₁F₂NO: 187.0809; found: 187.0814.

5.5 2-(4-(Benzyloxy)phenyl)-2,2-difluoro-1morpholinoethan-1-one (3b)

Yield 80% (1.395 g, 5 mmol scale), colorless solid, mp 95.0–95.2°C (recrystallized from C6). ¹H NMR (400 MHz, CDCl₃) δ 7.48–7.32 (m, 7H), 7.36 (d, J = 8.8 Hz, 2H), 5.10 (s, 2H), 3.70 (s, 4H), 3.48 (s, 4H); 13 C NMR (100 MHz, CDCl₃) δ 162.3 (t, J = 30.3 Hz), 160.7, 136.2, 128.7, 128.2, 127.5, 126.8(t, J = 5.0 Hz), 125.8 (t, J = 25.1 Hz), 115.7 (t, J = 250.1 Hz),115.0, 70.1, 66.7, 66.4, 46.7, 43.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -92.9 (s, 2 F). MS m/z = 347 [M⁺]; HRMS (EI): m/z [M⁺] calculated for C₁₉H₁₉F₂NO₃: 347.1333; found: 347.1331.

5.6 2-(4-(Benzyloxy)phenyl)-2,2difluoroethan-1-ol (5b)

Yield 95% (1.260 g, 5 mmol scale), colorless solid, mp 82.4-82.5°C (recrystallized from C6). ¹H NMR (400 MHz, CDCl₃) δ 7.43–7.31 (m, 7H), 7.02 (d, J = 8.5 Hz, 2H), 5.09 (s, 2H), 3.94 (t, $J = 13.2 \,\text{Hz}$, 2H), 1.85 (brs, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 160.2, 136.5, 128.7, 128.2, 127.5, 127.0 (t, J = 5.8 Hz), 126.7 (t, J = 26.0 Hz), 120.7 (t, J = 243.7 Hz),114.8, 70.0, 66.0 (t, J = 33.7 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -105.5 (t, J = 13.2 Hz, 2 F). MS m/z = 264 [M⁺]; HRMS (EI): m/z [M⁺] calculated for C₁₅H₁₄F₂O₂: 264.0962; found: 264.0956.

5.7 1-(2-Azido-1,1-difluoroethyl)-4-(benzyloxy)benzene (7b)

Yield 94% (1.271 g, 4.7 mmol scale), colorless solid, mp 73.8-74.1°C (recrystallized from C6). ¹H NMR (400 MHz, CDCl₃) δ 7.44–7.32 (m, 7H), 7.03 (d, J = 8.6 Hz, 2H), 5.09 (s, 2H), 3.67 (t, $J = 13.1 \,\text{Hz}$, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 160.4, 136.4, 128.7, 128.2, 127.5, 126.8 (t, J = 6.0 Hz), 126.6 (t, J = 26.0 Hz), 120.4 (t, J = 245.6 Hz), 114.9, 70.1, 56.1 (t, J = 26.0 Hz), 120.4 (t, J = 245.6 Hz), 120.4 (t,I = 32.7 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -99.5 (t, I =13.2 Hz, 2 F). MS m/z = 289 [M⁺]; HRMS (EI): m/z [M⁺] calculated for C₁₅H₁₃F₂N₃O: 289.1023; found: 289.1029.

5.8 4-(2-Amino-1,1-difluoroethyl)phenol (β, β -CF₂-Tyramine) (1b)

Note: The product was purified by only filtration from the reaction mixture and washing cold Et₂O (without chromatography). This product was unstable in a solution.

Yield 74% (38.6 mg, 0.3 mmol scale), colorless solid. ¹H NMR (400 MHz, DMSO- d_6) δ 9.82 (brs, 1H), 7.31 (d, J =8.7 Hz, 2H), 7.02 (d, J = 8.7 Hz, 2H), 3.07 (t, J = 14.7 Hz, 2H), 1.61 (brs, 2H); 13 C NMR (100 MHz, DMSO- d_6) δ 158.6, 126.7 (t, $J = 6.0 \,\mathrm{Hz}$), 125.9 (t, $J = 26.6 \,\mathrm{Hz}$), 122.5 (t, $J = 26.6 \,\mathrm{Hz}$) 240.8 Hz), 114.9, 48.1 (t, J = 30.8 Hz); ¹⁹F NMR (376 MHz, DMSO- d_6) δ –99.5 (t, $J = 15.1 \,\text{Hz}$, 2 F).

5.9 2,2-Difluoro-2-(4-fluorophenyl)-1morpholinoethan-1-one (3c)

Yield 85% (1.103 g, 5 mmol scale), colorless solid. ¹H NMR (400 MHz, CDCl₃) δ 7.56–7.53 (m, 2H), 7.18–7.14 (m, 2H), 3.71 (s, 4H), 3.54 (s, 4H); 13 C NMR (100 MHz, CDCl₃) δ 164.1 (dt, J = 251.2, 1.9 Hz), 161.9 (t, J = 30.6 Hz), 129.6 (td, J = 30.6 Hz)25.3, 3.3 Hz), 127.6 (dt, J = 8.7, 5.8 Hz), 115.9 (d, J =22.3 Hz), 115.7 (t, J = 251.8 Hz), 66.7, 66.4, 46.7 (m), 43.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -93.8 (d, J = 2.8 Hz, 2 F), -108.8 to -108.9 (m, 1 F). MS m/z = 259 [M⁺]; HRMS (EI): m/z [M⁺] calculated for C₁₂H₁₂F₃NO₂: 259.0820; found: 259.0823.

5.10 2,2-Difluoro-2-(4-fluorophenyl)ethan-1ol (5c)

Yield 98% (0.692 g, 4 mmol scale), colorless solid, mp 37.5–39.0°C (recrystallized from C6). ¹H NMR (400 MHz,

CDCl₃) δ 7.53–7.50 (m, 2H), 7.15–7.11 (m, 2H), 3.95 (td, J = 13.3, 6.9 Hz, 2H), 2.11 (t, J = 6.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 163.8 (d, J = 250.0 Hz), 130.5 (td, J = 26.3, 3.4 Hz), 127.7 (dt, J = 8.7, 5.8 Hz), 120.3 (t, J = 243.7 Hz), 115.7 (d, J = 21.9 Hz), 66.0 (t, J = 33.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –105.9 (td, J = 13.3, 2.9 Hz, 2 F), –110.3 to –110.2 (m, 1 F). MS m/z = 176 [M⁺]; HRMS (EI): m/z [M⁺] calculated for C₈H₇F₃O: 176.0449; found: 176.0450.

5.11 1-(2-Azido-1,1-difluoroethyl)-4-fluorobenzene (7c)

Yield 79% (0.597 g, 3.75 mmol scale), colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 7.52–7.49 (m, 2H), 7.17–7.13 (m, 2H), 3.69 (t, J = 12.9 Hz, 2H); 13 C NMR (100 MHz, CDCl₃) δ 163.9 (d, J = 250.5 Hz), 130.2 (td, J = 26.1, 3.2 Hz), 127.5 (dt, J = 8.7, 6.1 Hz), 120.0 (t, J = 245.8 Hz), 115.9 (d, J = 22.2 Hz), 56.0 (t, J = 32.8 Hz); 19 F NMR (376 MHz, CDCl₃) δ –100.0 (td, J = 12.9, 2.2 Hz, 2 F), –109.5 to –109.6 (m, 1 F). MS m/z = 201 [M⁺]; HRMS (EI): m/z [M⁺] calculated for C₈H₈F₃N₃: 201.0514; found: 201.0522.

5.12 2,2-Difluoro-2-(4-fluorophenyl)ethan-1-amine (1c)

Yield 83% (0.389 g, 2.70 mmol scale), colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 7.49–7.46 (m, 2H), 7.15–7.11 (m, 2H), 3.16 (t, J = 14.6 Hz, 2H), 1.35 (brs, 2H); 13 C NMR (100 MHz, CDCl₃) δ 163.6 (d, J = 249.4 Hz), 131.6 (td, J = 26.7, 3.1 Hz), 127.4 (dt, J = 8.6, 6.2 Hz), 121.4 (t, J = 242.6 Hz), 115.6 (d, J = 22.0 Hz), 49.5 (t, J = 30.8 Hz); 19 F NMR (376 MHz, CDCl₃) δ –104.7 (td, J = 14.6, 1.9 Hz, 2 F), –110.8 to –110.7 (m, 1 F). MS m/z = 175 [M $^{+}$]; HRMS (EI): m/z [M $^{+}$] calculated for C₈H₈F₃N: 175.0609; found: 175.0601.

5.13 2-(3,4-Difluorophenyl)-2,2-difluoro-1morpholinoethan-1-one (3d)

Yield 75% (1.037 g, 5 mmol scale), colorless liquid. 1 H NMR (400 MHz, CDCl₃) δ 7.41–7.37 (m, 1H), 7.32–7.23 (m, 2H), 3.74–3.69 (m, 4H), 3.61 (s, 4H); 13 C NMR (100 MHz, CDCl₃) δ 161.4 (t, J = 30.8 Hz), 151.9 (dd, J = 253.4, 12.5 Hz),

150.3 (dd, J = 251.0, 13.5 Hz), 130.5 (m), 122.3–122.0 (m), 117.8 (d, J = 18.3 Hz), 115.4 (dt, J = 20.2, 6.7 Hz), 115.1 (t, J = 254.3 Hz), 66.7, 66.5, 46.6 (m), 43.6; ¹⁹F NMR (376 MHz, CDCl₃) δ –94.3 (d, J = 2.9 Hz, 2 F), –133.2 to –133.3 (m, 1 F), –135.2 (ddd, J = 21.3, 10.5, 6.5 Hz, 1 F). MS m/z = 277 [M⁺]; HRMS (EI): m/z [M⁺] calculated for $C_{12}H_{11}F_4NO_2$: 277.0726; found: 277.0726.

5.14 2-(3,4-Difluorophenyl)-2,2-difluoroethan-1-ol (5d)

Yield 77% (0.563 g, 3.75 mmol scale), colorless liquid. 1 H NMR (400 MHz, CDCl₃) δ 7.39–7.34 (m, 1H), 7.30–7.21 (m, 2H) 3.94 (t, J = 13.0 Hz, 1H), 2.48 (brs, 1H); 13 C NMR (100 MHz, CDCl₃) δ 151.6 (dd, J = 251.9, 12.5 Hz), 150.3 (dd, J = 250.0, 13.5 Hz), 131.05 (m), 122.3–122.0 (m), 119.5 (t, J = 244.7 Hz), 117.7 (d, J = 17.3 Hz), 115.4 (dt, J = 12.8, 6.4 Hz), 65.7.0 (t, J = 33.2 Hz); 19 F NMR (376 MHz, CDCl₃) δ –105.9 (t, J = 13.0 Hz, 2 F), –134.7 to –134.6 (m, 1 F), –136.0 (ddd, J = 21.0, 10.5, 6.9 Hz, 1 F). MS m/z = 194 [M⁺]; HRMS (EI): m/z [M⁺] calculated for C₈H₆F₄O: 194.0355; found: 194.0360.

5.15 4-(2-Azido-1,1-difluoroethyl)-1,2-difluorobenzene (7d)

Yield 54% (0.457 g, 2.90 mmol scale), colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 7.38–7.33 (m, 1H), 7.28–7.25 (m, 2H), 3.69 (t, J = 12.8 Hz, 2H); 13 C NMR (100 MHz, CDCl₃) δ 151.7 (dd, J = 253.0, 12.4 Hz), 150.3 (dd, J = 250.7, 13.0 Hz), 131.2 (m), 122.2–121.9 (m), 119.2 (t, J = 246.4 Hz), 117.9 (d, J = 17.8 Hz), 115.3 (dt J = 19.9, 6.1 Hz), 55.9 (t, J = 32.8 Hz); 19 F NMR (376 MHz, CDCl₃) δ –100.0 (td, J = 12.8, 2.2 Hz, 2 F), –133.7 to –133.9 (m, 1 F), –135.3 to –135.4 (m, 1 F). MS m/z = 219 [M $^{+}$]; HRMS (EI): m/z [M $^{+}$] calculated for $C_8H_5F_4N_3$: 219.0420; found: 219.0425.

5.16 2-(3,4-Difluorophenyl)-2,2-difluoroethan-1-amine (1d)

Yield 54% (0.163 g, 1.57 mmol scale), colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 7.35–7.30 (m, 1H), 7.28–7.20 (m, 2H), 3.16 (t, J = 14.4 Hz, 2H), 1.40 (brs, 2H); 13 C NMR (100 MHz, CDCl₃) δ 151.4 (dd, J = 251.4, 12.5 Hz), 150.2 (dd, J = 249.5, 12.5 Hz), 132.6 (m), 121.9–121.7 (m), 120.6

(t, J = 243.7 Hz), 117.7 (d, J = 17.3 Hz), 115.2 (td, J = 12.8,6.4 Hz), 49.3 (t, I = 30.3 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -104.7 (t, J = 14.4 Hz, 2 F), -135.0 to -135.1 (m, 1 F), -135.9to -136.0 (m, 1 F). MS $m/z = 193 \, [\text{M}^+]$; HRMS (EI): $m/z \, [\text{M}^+]$ calculated for C₈H₇F₄N: 193.0515; found: 193.0516.

Acknowledgements: We thank Shoji Yamaguchi at Setsunan University for help with the MS analysis. We thank Alicia Glatfelter for editing this manuscript. We also thank OpenEye Scientific Software for giving us a free academic license.

Funding information: Authors state no funding involved.

Author contributions: Dr. Atsushi Tarui strongly contributed to this study by carrying out the synthetic experiment about all the compounds discussed here, with the help of Miss Erika Kamata, Mr. Koji Ebisu, Miss Yui Kawai Dr. Yukiko Karuo and Dr. Kazuyuki Sato. Dr. Kentaro Kawai conducted computer-based modeling study to provide binding model of our compounds with β2-adrenoceptor as well as docking scores of the compounds, in which some analyses based on a biological aspect were carried out by Dr. Ryota Araki and Professor Takeshi Yabe. Professor Masaaki Omote wrote this manuscript and supervised the whole study.

Conflict of interest: Authors state no conflict of interest.

Data availability statement: The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

- Iversen SD, Iversen LL. Dopamine: 50 years in perspective. Trends Neurosci. 2007;30(5):188-93.
- Arancibia S, Marambio M, Campusano JM, Fierro A. Modeling of the binding of octopamine and dopamine in insect monoamine transporters reveals structural and electrostatic differences. ACS Chem Neurosci. 2019;10(5):2310-7.
- Huang J, Hamasaki T, Ozoe F, Ohta H, Enomoto K, Kataoka H, et al. Identification of critical structural determinants responsible for octopamine binding to the α -adrenergic-like bombyx mori octopamine receptor. Biochemistry. 2007;46(20):5896-903.
- Ehrlich K, Gotz A, Bollinger S, Tschammer N, Bettinetti L, Harterich S, et al. Dopamine D2, D3, and D4 selective phenylpiperazines as molecular probes to explore the origins of

- subtype specific receptor binding. J Med Chem. 2009;52(15):4923-35.
- [5] Bautista DL, Morris DH, Stein L, Asher W, Hammitt TA. Two model receptor system of the $alpha_{1D}$ adrenergic receptor to describe interactions with epinephrine and BMY7378. J Chem Inf Model. 2006;46(1):334-44.
- Schrader T. Toward synthetic adrenaline receptors: strong, selective, and biomimetic recognition of biologically active amino alcohols by bisphosphonate receptor molecules. J Org Chem. 1998;63(2):264-72.
- Kontoyianni M, DeWeese C, Penzotti JE, Lybrand TP. Threedimensional models for agonist and antagonist complexes with β_2 adrenergic receptor. J Med Chem. 1996;39(22):4406-20.
- Ring AM, Manglik A, Kruse AC, Enos MD, Weis WI, Garcia KC, et al. Adrealine-activated structure of β_2 -adrenoceptor stabilized by an engineered nanobody. Nature. 2013;502(7472):575-9.
- Klinman JP, Krueger M. Dopamine β-hydroxylase: activity and inhibition in the presence of β-substituted phenethylamines. Biochemistry. 1982;21(1):67-75.
- Buchler I, Akuma D, Au V, Carr G, Leon P, DePasquale M, et al. [10] Optimization of 8-hydroxyquinolines as inhibitors of catechol O-methyltransferase. J Med Chem. 2018;61(21):9647-65.
- Männistö PT, Kaakkola S. Catechol-O-methyltransferase (COMT): biochemistry, molecular biology, pharmacology, and clinical efficacy of the new selective COMT inhibitors. Pharmacol Rev. 1999;51(4):593-628.
- [12] Coward JK, Slisz EP, Wu FYH. Kinetic studies on catechol O-methyltransferase. Product inhibition and the nature of the catechol binding site. Biochemistry. 1973;12(12):2291-7.
- [13] Meanwell NA. Fluorine and fluorinated motifs in the design and application of bioisosteres for drug design. J Med Chem. 2018;61(14):5822-80.
- [14] Elliott TS, Slowey A, Yeb Y, Conway SJ. The use of phosphate bioisosteres in medicinal chemistry and chemical biology. Med Chem Commun. 2012;3:735-51.
- [15] Takagi Y, Nakajima T, Shimazaki A, Kageyama M, Matsugi T, Matsumura Y, et al. Pharmacological characteristics of AFP-168 (tafluprost), a new prostanoid FP receptor agonist, as an ocular hypotensive drug. Experimental Eye Research. 2004;78(4):767-76.
- [16] Xia G, Benmohamed R, Morimoto RI, Kirsch DR, Silverman RB. Deuteration and fluorination of 1,3-bis(2-phenylethyl) pyrimidine-2,4,6(1H,3H,5H)-trione to improve its pharmacokinetic properties. Bioorg Med Chem Lett. 2014;24(21):5098-101.
- Middleton WJ, Bingham EM. α,α-Difluoroarylacetic acids: preparation from (diethylamino)sulfur trifluoride and α-oxoarylacetates. J Org Chem. 1980;45(14):2883-7.
- Tarui A, Shinohara S, Sato K, Omote M, Ando A. Nickel-catalyzed negishi cross-coupling of bromodifluoroacetamides. Org Lett. 2016;18(5):1128-31.
- [19] Feng Z, Min QQ, Zhang X. Access to difluoromethylated arenes by Pd-catalyzed reaction of arylboronic acids with bromodifluoroacetate. Org Lett. 2016;18(1):44-7.

- [20] Ge S, Arlow SI, Mormino MG, Hartwig JF. Pd-catalyzed α -arylation of trimethylsilyl enolates of α , α -difluoroacetamides. J Am Chem Soc. 2014;136(41):14401–4.
- [21] Araki K, Inoue M. Cobalt-catalyzed cross-coupling reaction of arylzinc reagents with ethyl bromodifluoroacetate. Tetrahedron. 2013;69(19):3913-8.
- [22] Xiao YL, Guo WH, He GZ, Pan Q, Zhang X. Nickel-catalyzed cross-coupling of functionalized difluoromethyl bromides and chlorides with aryl boronic acids: a general method for difluoroalkylated arenes. Angew Chem Int Ed. 2014;53(37):9909–13.
- [23] Feng Z, Min QQ, Xiao YL, Zhang B, Zhang X. Palladiumcatalyzed difluoroalkylation of aryl boronic acids: a new

- method for the synthesis of aryldifluoromethylated phosphonates and carboxylic acid derivatives. Angew Chem Int Ed. 2014;53(6):1669-73.
- [24] Arlow SI, Hartwig JF. Synthesis of aryldifluoroamides by copper-catalyzed cross-coupling. Angew Chem Int Ed. 2016;55(14):4567–72.
- [25] Maryanoff BE, McComsey DF, Costanzo MJ, Hochman C, Smith-Swintosky V, Shank RP. Comparison of sulfamate and sulfamide groups for the inhibition of carbonic anhydrase-II by using topiramate as a structural platform. J Med Chem. 2005;48(6):1941-7.
- [26] OEDocking 3.5.0.4: OpenEye Scientific Software, Santa Fe, NM. http://www.eyesopen.com.