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Abstract: In this work, a novel C(sp®)-C(sp®) cross-dehydro-
genative-coupling method is developed to react benzoxazin-
2-one derivatives with various indoles. As a result, combined
use of ball milling and Fe(n) catalysis leads to rapid coupling
of 1,4-benzoxazinones with derivatives of indole. Under
the conditions, derivatives of 1 couple with various indoles
at room temperature to produce good vyields of the desired
compounds within 0.5-2h time period. Thus, derivatives of
both starting materials couple smoothly under relatively
mild conditions to give good yields of 3.

Keywords: ball mill, benzoxazinones, CDC reactions,
heterocycles

1 Introduction

Implementation of environmentally compatible protocols
has received tremendous attention from organic chemists
in recent decades [1]. This policy has been mainly
involved with the use of fewer chemicals [2] and safer
sources of energy [3], leading to overwhelming growth in
the development of sustainable chemistry [4]. An outstanding
approach in designing green synthetic procedures has
been connected with the use of non-conventional methods
for the activation of functional groups employing micro-
wave [5-7], ultrasound [8,9], and ball milling [10], result-
ing in numerous interesting clean synthetic procedures
with increased activities and selectivities [11]. Among
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these new techniques, ball milling, causing mechanical
grinding of solid reactants, has witnessed a rapid growth
in developing new procedures for diverse synthetic trans-
formations [12].

One important approach for rapid and selective com-
bination of smaller molecules into complex target pro-
ducts is direct cross-dehydrogenative-coupling (CDC)
reaction [13,14]. The approach is applicable to both carbon-
carbon (C-C) [15-19] and carbon-heteroatom (C-X) [20—26]
bond formation reactions and has found many applications
in organic synthesis [13]. An interesting point about CDC
reactions is that they can be conveniently used for the
oxidation of amines [27-29]. Moreover, in CDC reactions
preliminary operations to prepare starting materials with
appropriate carbon—metal bonds and carbon-leaving groups
are unnecessary [30-35]. These privileges have led to many
practical applications of CDC reactions in the synthesis of
natural products [14,36-40] and compounds with inter-
esting biochemical properties [41].

An important structural motif that occurred in the
skeleton of bioactive molecules is 1,4-benzoxazinone [42].
These compounds can also be used as reactive intermedi-
ates for the preparation of other molecules of choice
with biomedical applications through derivatization of the
carbon atom adjacent to the amine group of the benzoxa-
zinone moiety [43]. A few synthetic and natural examples of
such molecules are shown in Figure 1 [43-46]. Although the
method is very convenient, scattered investigations are per-
formed till now. Separate CDC-based studies by Huo et al.
[47], Zhang et al. [41], and Sharifi et al. [48] groups can
serve as the examples. Despite that these methods introduce
working procedures to access new 4-benzoxazin-2-one deri-
vatives, there is still a need to develop a more environmen-
tally safe benign methods.

We have previously carried out investigations to design
environmentally friendly synthetic methods [49,50]. Following
that, we would like to report a new procedure exposing the
synergistic effect rising from the combined use of ball
milling and Lewis acid. This combination promotes conve-
nient synthesis of a diverse series of 1,4-benzoxazinone
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Figure 1: Some important 1,4-benzoxazinone structures.

structures at ambient temperature, as illustrated in Scheme 1
for the reaction between benzoxazinones and 1H-indole
derivatives.

2 Results and discussion

We first optimized the reaction for the synthesis of 3aa by
evaluating the coupling of 1a with parent 2H-indole 2a
under various sets of conditions (Table 1). The best
results were obtained when a solvent-free mixture of
the two reactants (1.0:1.2) and tert-butyl hydroperoxide
(TBHP) was shaken at 20 Hz in an oscillatory ball mill
apparatus in the presence of catalytic amounts (5 mol%)
of FeCl,-4H,0, leading to 91% formation of 3aa after 3h
(entry 1). When the reaction was conducted under the
conditions reported by Huo et al. [47], only 55% forma-
tion of 3aa was noticed after 1 h (entry 2), and even longer
reaction times up to 3 h did not improve the yield. Use of
other amounts of the catalyst did not lead to better out-
comes (entries 3—-6). Variation in the oxidant quantity
could not improve the results as well (entries 7 and 8).
Similarly, the results with other catalysts (entries 9-17)
were in favor of using FeCl,-4H,0 as the best catalyst.
With the optimization results in hand, we then eval-
uated the scope of the reaction by allowing various deri-
vatives of 1 to couple with 2H-indoles 2 (Scheme 2). As
a result, reaction of 1a with the parent 1H-indole 2a or

e

TBHP (2.4 mmol)
_FeCly .4H,0 (5 mol%) .4H,0 (5 mol%)
ball mill
20 Hz

@ETCD

Scheme 1: Typical synthesis of 3aa.

its various N-substituted derivatives gave high yields
of 3aa—3ad products within 3-6 h. Similarly, reactions
with 2e—f, having methyl or phenyl substitutions at posi-
tion 2, behaved equally well and produced 3ae-af. This
was also the case for the reactions of 1a with other indoles
(2g-i) possessing various substitutions at other posi-
tions. Alternatively, when 1a was reacted with double
substituted indoles (2j-1), the respective products were
obtained within 3-6 h. Finally, reactions of 1b—d with 2a
were successful to further show the generality of the
method.

Based on the results, an iron catalyzed mechanism
can be proposed for the reaction, as is shown in Scheme 3
for the formation of 3aa. TBHP is initially reduced by Fe(m)

Table 1: Optimization of the conditions for the synthesis of 3aa

Entry TBHP (equiv.) Catalyst (mol%) Yield (%)?
1 2.4 FeCl,-4H,0 (5)° 91
2 2.4 FeCl,-4H,0 (5)° 55
3 2.4 FeCl,-4H,0 (1)° 57
4 2.4 FeCl,-4H,0 (3)° 65
5 2.4 FeCl,-4H,0 (7)° 91
6 2.4 FeCl,-4H,0 (10)° 91
7 1.2 FeCl,-4H,0 (5)° 70
8 3.6 FeCl,-4H,0 (5)° 30
9 2.4 CuBr, (5)° 75
10 2.4 CuBr (5)° 50
1 2.4 CuCl (5)° 50
12 2.4 CuCl, (5)° 20
13 2.4 FeCl; (5)° 25
14 2.4 ZnCl, (5)° 50
15 2.4 Cu(NO3),-3H,0 (5)° 65
16 2.4 Cu(OAc),-H,0 (5)° 40
17 2.4 CoCl,-6H,0 (5)° 65

2|solated yields. ®Ball mill, 20 Hz. “MeCN (10 mL), mixing at room
temperature.
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Scheme 2: One-pot synthesis of various derivatives of 3.

ions to produce tert-butoxide radicals and Fe(m) ions. Fe
() ions are regenerated by oxidizing 1a to its respective
cation-radical 1a’. This cation-radical is further oxidized
by tert-butoxide radicals to the intermediate imminium
1a”. Finally, nucleophilic attack of 2a on 1a” and rear-
omatization of the indole ring (in 3aa’) give the target
product 3aa. This mechanism was supported by showing
that the reaction is halted when a radical scavenger is
used. In the presence of (2,2,6,6-tetramethylpiperidin-1-yl)-
oxyl, no 3aa was detected and the staring materials were

Cry
h
1a Bn
%OOH + Fe2+

3aa BIE@

Scheme 3: Plausible mechanism for the reaction.
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recovered. This suggests that the process might go via a
radical pathway.

3 Conclusion

In summary, we have developed an efficient method to
couple indoles with 1,4-benzoxazinone derivatives at
ambient temperature. As a result, high yield synthesis
of indolyl-benzoxazin-2-one derivatives was achieved,
where chemoselective formation of the target products was
observed within 3-7 h. The reaction was solvent-free, the
catalyst is inexpensive and was used in minimum quanti-
ties, and a diverse array of reactants could be used under
the conditions.

4 Experimental

Reactions were monitored by thin layer chromatography
using silica gel-coated plates and hexane/EtOAc solutions
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as the eluent. Melting points (MPs) are uncorrected.
Fourier-transform infrared spectroscopy spectra are
recorded using KBr disks on a Bruker Vector-22 infrared
spectrometer and absorptions are reported as wave num-
bers (cm™). 'H NMR (500 MHz) and *C NMR (125 MHz)
spectra are obtained on an FT-NMR Bruker Ultra Shield™
instrument as CDCl; solutions and the chemical shifts are
expressed as § units using Me,Si as the internal standard.
Mass spectra are obtained on a Finnigan Mat 8430 appa-
ratus at an ionization potential of 70 eV. Elemental analyses
are performed using a Thermo Finnigan Flash EA 1112
instrument. Reagents and starting materials are purchased
from commercial sources and are freshly used after being
purified by standard procedures. For ball milling condi-
tions, reactions were carried out in a Retsch® Mixer Mills
MM 200. The identities of the known products (3aa, 3ab,
3ad-j, and 3ba-3da) are confirmed by the comparison
of their MPs and their '"H NMR data with those reported in
the literature [47,48]. New products (3ac, 3al, and 3ak)
are characterized by their '"H NMR, ®°C NMR, IR, and
mass spectra, and their purity are confirmed by elemental
analyses.

4.1 Typical procedure for the synthesis
of 3aa

A 5.0 mL of stainless steel vial was charged with 1a (0.24 g,
1.0 mmol), 1H-indole (2a, 0.15 g, 1.2 mmol), FeCl,-4H,0 (0.01g,
5mol%), TBHP (0.3 g, 2.4 mmol), and a 10 mm stainless
steel ball. The mixture was capped and shaken at 20 Hz in
an oscillatory ball mill apparatus for 3 h. The mixture was
extracted with EtOAc (10 mL), the extract was washed with
water (15 mL) and dried over Na,SO,, and the volatile por-
tion was removed under reduced pressure. The residue was
fractionated by column chromatography using hexane/
EtOAc (10:1) as the eluent to obtain 3aa (0.33 g, 91%).

4.2 Spectral data of new products

4.2.1 4-Benzyl-3-(1-ethyl-1H-indol-3-yl)-3,4-dihydro-2H-
benzo[b][1,4]oxazin-2-one (3ac)

MP: 158-160°C; 'H NMR (500 MHz, CDCl;) 6 7.51 (d, J =
8.0 Hz, 1H), 7.41-7.31 (m, 6H), 7.29-7.24 (m, 1H), 7.20-7.08
(m, 3H), 6.95 (t, ] = 8.0 Hz, 1H), 6.85 (d, J = 8.0 Hz, 1H), 6.68
(s, 1H), 5.44 (s, 1H), 4.64 (d, ] = 15.0Hz, 1H), 419 (4, ] =
15.0 Hz, 1H), 4.08 (q, J = 7.0 Hz, 2H), 1.36 (t, ] = 7.0 Hz, 3H).
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3C NMR (125 MHz, CDCl;) § 164.6, 141.9, 136.3, 135.7, 134.2,
128.8, 127.8, 127.7, 126.9, 125.6, 125.3, 122.2, 120.0, 119.8,
119.3, 116.5, 113.9, 109.5, 107.2, 55.9, 51.5, 41.1, 15.2; IR
(KBr, cm™) 2,977, 1,765, 1,501, 741; MS (70 eV) m/z (%)
382, 354, 263, 185, 157, 91, 65; anal. calcd for CyH,N,0,:
C, 78.51; H, 5.80; N, 7.32. Found: C, 78.40; H, 5.89; N, 7.58.

4.2.2 4-Benzyl-3-(5-bromo-1-ethyl-1H-indol-3-yl)-3,4-
dihydro-2H-benzo[b][1,4]oxazin-2-one (3al)

MP: 162-164°C; '"H NMR (500 MHz, CDCl;) § 7.55 (s, 1H),
7.33-7.43 (m, 3H), 7.33-7.26 (m, 3H), 7.19-7.10 (m, 3H),
6.97 (t, ] = 8.0 Hz, 1H), 6.87 (d, ] = 8.0 Hz, 1H), 6.65 (s, 1H),
5.32 (s, 1H), 4.63 (d, J = 14.5 Hz, 1H), 4.08 (d, J = 14.5 Hz,
1H), 3.99 (q, J = 7.5Hz, 2H), 1.33 (t, ] = 7.5Hz, 3H); °C
NMR (125 MHz, CDCl;) 6 164.4, 141.9, 135.9, 134.4, 134.1,
128.9, 128.5, 128.0, 127.9, 126.6, 125.5, 125.1, 122.0, 120.1,
116.6, 114.1, 113.4, 111.0, 106.9, 55.4, 51.5, 41.3, 15.2; IR
(KBr, cm‘l) 2,923, 1,763, 1,500, 1,198; MS (70eV) m/z
(%) 461, 462, 463, 432, 341, 247, 128, 91, 65; anal. calcd
for CysH»BrN,0,: C, 65.08; H, 4.59; N, 6.07. Found: C,
65.15; H, 4.66; N, 5.90.

4.2.3 4-Benzyl-3-(1-ethyl-2-methyl-1H-indol-3-yl)-3,4-
dihydro-2H-benzo[b][1,4]oxazin-2-one (3ak)

MP: 81-100°C; 'H NMR (500 MHz, CDCL;) 6§ 1.32 (t, J =
7.2Hz, 3H), 2.07 (s, 3H), 3.99 (d, J = 16.2Hz, 1H), 4.03-4.18
(m, 2H), 4.60 (d, J = 16.2Hz, 1H), 5.39 (s, 1H), 6.83 (d, J =
8.1Hz, 1H), 6.9 (t, J = 7.7 Hz, 1H), 6.98 (t, ] = 7.5 Hz, 1H), 7.08
(t, J = 7.8Hz, 1H), 7.11-7.15 (m, 3H), 7.15-7.21 (m, 2H),
7.24-7.31 (m, 4H). >C NMR (125 MHz, CDCL;) 6 165.9, 140.6,
136.8, 136.2, 135.7, 134.7, 128.6, 127.2, 127.1, 126.0, 125.5, 121.2,
119.8, 119.0, 118.7, 116.9, 113.1, 109.0, 105.3, 56.0, 49.9, 37.9,
15.1, 9.9; IR (KBr, cm™) 2,979, 1,763, 1,499, 1,281; MS (70 eV)
m/z (%); 398, 397, 278, 330, 278, 199, 143, 91, 65; anal. calcd
for C,cH,,N,0,: C, 78.76; H, 6.10; N, 7.07. Found: C, 78.85; H,
6.15; N, 7.01.
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