

Ghasem Shahmoradi and Saeid Amani*

Synthesis, characterization and computational studies of 2-cyano-6-methoxybenzothiazole as a firefly-luciferin precursor

<https://doi.org/10.1515/hc-2018-0047>

Received March 21, 2018; accepted July 10, 2018; previously published online August 27, 2018

Abstract: A novel approach to the synthesis of 2-cyano-6-methoxybenzothiazole via the Cu-catalyzed cyanation of 2-iodo-6-methoxybenzothiazole was developed. $K_4[Fe(CN)_6]$ was used as a source of cyanide, and a Cu/N,N,N',N'-tetramethylethylenediamine (TMEDA) system was utilized as a catalyst. This approach is scalable and can be practiced with operational benign. The most stable conformation of 2-cyano-6-methoxybenzothiazole was delineated using the density functional theory (DFT)/B3LYP method with 6-311++G(d, p) basis set.

Keywords: 2-cyano-6-methoxybenzothiazole; 2-iodo-6-methoxybenzothiazole; Cu catalyst; cyanation; DFT; firefly luciferin; $K_4[Fe(CN)_6]$.

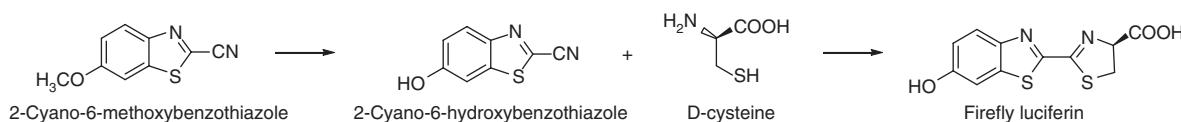
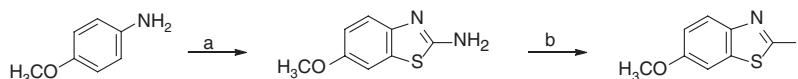
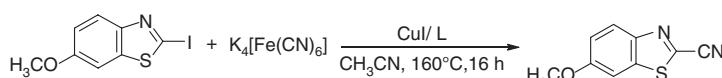
Introduction

Firefly luciferin is a common substrate in biological imaging [1] that originates from some insects [2]. It is widely applied in life sciences [3–5]. The chemical preparation of firefly luciferin has been described previously [6–9]. In particular, 2-cyano-6-methoxybenzothiazole has been converted to 2-cyano-6-hydroxybenzothiazole followed by the reaction with cysteine [6] (Scheme 1). Typical routes to 2-cyano-6-methoxybenzothiazole include the classical Rosenmund-von Braun [10] and Sandmeyer [11] reactions. These methods proceed with low atom economy and require toxic reagents such as KCN [12], NaCN [13], $Zn(CN)_2$ or TMSCN [14] that are also difficult to handle in a large-scale synthesis [15, 16].

The Cu-catalyzed cyanation of aryl halides to benzonitrile derivatives has been reported [13]. Various copper catalyst systems with bidentate ligands [17–23] have been

developed. In 2004, Beller and co-workers introduced $K_4[Fe(CN)_6]$ as a low-cost and eco-friendly source of cyanide [19]. Due to its strong CN bond, the catalyst deactivation was prevented through a slow release of cyanide ion [24]. Herein, a Cu-catalyzed cyanation of 2-iodo-6-methoxybenzothiazole for the synthesis of 2-cyano-6-methoxybenzothiazole was introduced. $K_4[Fe(CN)_6]$ was applied as a source of cyanide, and CuI in the presence of N,N,N',N'-tetramethylethylenediamine (TMEDA) [25] was used as part of the catalyst system. Density functional theory (DFT) calculations were made with the structural parameters calculated using the B3LYP/6-311++G(d, p) method [26–29].

Results and discussion




2-Amino-6-methoxybenzothiazole as a starting material was synthesized from *p*-anisidine as shown in Scheme 2 [30] and subsequently converted into 2-iodo-6-methoxybenzothiazole using a simple and efficient one-pot sequential diazotization-iodination method.

Reagents and conditions: (a) $-CH_3COOH$, Br_2 , $KSCN$, 20 h, temperature $<35^\circ C$, yield 85%; (b) $-H_2SO_4$, $NaNO_2$, KI , $0^\circ C$, 30 min, yield 80%.

The one-pot cyanation of 2-iodo-6-methoxybenzothiazole to 2-cyano-6-methoxybenzothiazole was achieved using 0.25 mmol of $K_4[Fe(CN)_6]$, 0.25 mmol of CuI and 3 mmol of TMEDA in acetonitrile at $160^\circ C$ (Scheme 3). In addition, 1 mmol of mystril trimethyl bromide (MTMAB) was used as a phase transfer agent. The presence of a phase-transfer catalyst is essential for a successful cyanation reaction. Under these conditions, 2-cyano-6-methoxybenzothiazole was produced in a 90% yield. In the presence of 0.18 mmol of $K_4[Fe(CN)_6]$, the cyanation still proceeded in a 90% yield, indicating that all six cyanide ions in the molecule are utilized in the reaction. On the other hand, increasing the amount of $K_4[Fe(CN)_6$ to more than 0.25 mmol resulted in a moderate yield of 60%, presumably due to the catalyst deactivation. In addition, a decrease in the CuI loading to 0.1 mmol from 0.25 mmol, resulted in a poor yield of 40%, even after an increase of the reaction time to 40 h.

*Corresponding author: Saeid Amani, Department of Chemistry, Faculty of Science, Arak University, P.O. Box: 38156-88349, Arak, Iran, e-mail: s-amani@araku.ac.ir, amani1331@yahoo.com

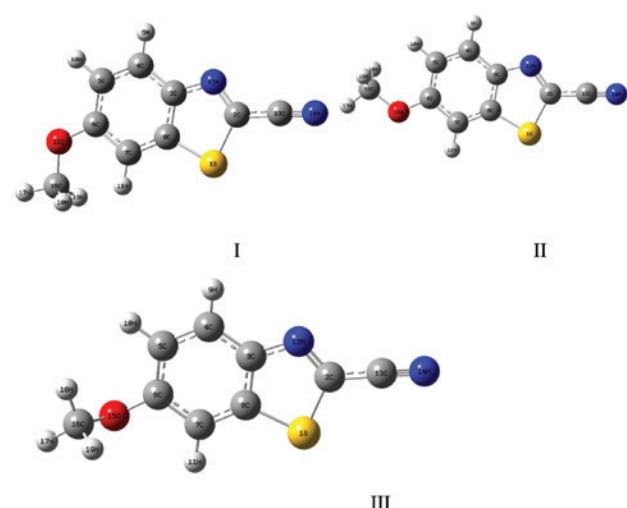
Ghasem Shahmoradi: Department of Chemistry, Faculty of Science, Arak University, P.O. Box: 38156-88349, Arak, Iran

Scheme 1 Synthesis of firefly luciferin.**Scheme 2** Synthesis of 2-iodo-6-methoxybenzothiazole from *p*-anisidine.**Scheme 3** Cyanation reaction of 2-iodo-6-methoxybenzothiazole.

The optimized geometric structures of 2-cyano-6-methoxybenzothiazole were calculated using the B3LYP 6-311++G(d, p) method. This molecule has C1 full point group and 51 fundamental modes of vibrations. It exists in two stable conformers, I and II. Conformer III is the transition state structure (Figure 1). Conformer I with the dihedral angle (C7-C6-O15-C16) of 1.4° is 0.17 kcal/mol more stable than conformer II and 2.02 kcal/mol more stable than conformer III. The dihedral angle (C7-C6-O15-C16) of the second stable structure is 179.98° .

an Agilent 575 mass spectrometer equipped with a quadrupole analyzer. 2-Amino-6-methoxybenzothiazole was synthesized according to the method described by Stuckwisch [30].

Synthesis of 2-iodo-6-methoxybenzothiazole


A solution of 2-amino-6-methoxybenzothiazole (1.81 g, 0.01 mol) in water (3 mL) was stirred at $0^\circ C$ and treated with acetic acid (3 mL) and sulfuric acid (6 M, 4.5 mL). The mixture was stirred for 1 h. The resultant clear solution was treated dropwise for 15 min at $0^\circ C$ with an aqueous solution (3 mL) of $NaNO_2$ (0.70 g, 0.01 mol). After stirring for 1 h, an aqueous solution (3 mL) of KI (1.65 mg, 0.01 mol) was added slowly for 30 min, until the evolution of nitrogen gas ceased. The product was extracted with $EtOAc$ (3×12 mL), and the combined organic layers were washed with a 10% aqueous solution of Na_2SO_4 , dried and concentrated. The residue of 2-iodo-6-methoxybenzothiazole was

Conclusions

2-Cyano-6-methoxybenzothiazole, a synthetic intermediate of firefly luciferin, was prepared by a high-yield Cu-catalyzed cyanation of 2-iodo-6-methoxybenzothiazole. $K_4[Fe(CN)_6]$ was applied as an eco-friendly cyanide source. The cyanation reaction was performed efficiently by applying the catalytic system of $CuI/TMEDA$ that is non-toxic and environmentally friendly. The structure of 2-cyano-6-methoxybenzothiazole was characterized using computational studies.

Experimental

All chemicals and solvents were supplied by Merck (Germany) and used without purification. The Fourier transform infrared (FT-IR) spectra were recorded on an Alpha Centauri FT-IR (Bruker, Germany) spectrophotometer using KBr pellets. The 1H NMR (300 MHz) and ^{13}C NMR (75 MHz) spectra were determined on a Mercury-300 MHz (Bruker, Germany) instrument. The mass spectra were obtained on

Figure 1 Conformers of 2-cyano-6-methoxybenzothiazole.

crystallized from ethanol; ^1H NMR (300 MHz, $\text{DMSO}-d_6$): δ 3.67 (s, 3H), 6.87 (m, 1H), 7.41 (m, 1H), 7.71 (m, 1H); IR: 2932, 1651, 1239, 1208 (C-N), 1053, 875 cm^{-1} ; MS: m/z 291.0 (M^+). Anal. Calcd for $\text{C}_8\text{H}_6\text{INOS}$: C, 33.01; H, 2.15; N: 4.87. Found: C, 32.27; H, 2.08; N, 4.81.

Synthesis of 2-cyano-6-methoxybenzothiazole from 2-iodo-6-methoxybenzothiazole

A solution of CuI (47.6 mg, 0.25 mmol), $\text{K}_4[\text{Fe}(\text{CN})_6]$ (90 mg, 0.18 mmol) and TMEDA (348 mg, 3 mmol) in dry acetonitrile (5 mL) was stirred for 30 min and then treated with MTMAB (34 mg, 1 mmol) and 2-iodo-6-methoxybenzothiazole (290 mg, 1 mmol). The mixture was stirred under argon atmosphere at room temperature for 30 min and then under reflux at 160°C for 16 h. After cooling to room temperature, the mixture was extracted with diethyl ether (3 \times 5 mL). The extract was dried with anhydrous MgSO_4 , filtered and concentrated. The red-brown solid residue was purified by column chromatography on silica gel eluting with hexane/ CH_2Cl_2 , 1:10, to give 2-cyano-6-methoxybenzothiazole in the form of pale yellow needles; yield 90%; mp 128–130°C; ^1H NMR (300 MHz, CDCl_3): δ 3.87 (s, 3H), 7.11 (m, 1H), 7.23 (m, 1H), 7.52 (m, 1H); ^{13}C NMR (75 MHz, $\text{DMSO}-d_6$): δ 160.6, 147.3, 141.3, 135.6, 125.6, 118.6, 113.1, 103.5, 55.6; IR: 3030, 2932, 2240, 1651, 1280, 1207, 1034, 872 cm^{-1} ; MS: m/z 190.1 (M^+). Anal. Calcd for $\text{C}_9\text{H}_6\text{N}_2\text{OS}$: C, 56.83; H, 3.18; N, 14.73. Found: C, 56.68; H, 3.01; N, 14.42.

References

- Wood, K. V. The chemical mechanism and evolutionary development of beetle bioluminescence. *Photochem. Photobiol.* **1995**, *62*, 662–673.
- Ugarova, N. N.; Brovko, L. Y. Protein structure and bioluminescent spectra for firefly bioluminescence. *Luminescence* **2002**, *17*, 321–330.
- Hamada, T.; Sutherland, K.; Ishikawa, M.; Miyamoto, N.; Honma, S.; Shirato, H.; Honma, K. I. In vivo imaging of clock gene expression in multiple tissues of freely moving mice. *Nat. Commun.* **2016**, *7*, 11705.
- Li, J.; Chen, L.; Du, L.; Li, M. Cage the firefly luciferin – a strategy for developing bioluminescent probes. *Chem. Soc. Rev.* **2013**, *42*, 662–676.
- Sellmyer, M. A.; Bronsart, L.; Imoto, H.; Contag, C. H.; Wandless, T. J.; Prescher, J. A. Visualizing cellular interactions with a generalized proximity reporter. *Proc. Natl. Acad. Sci. USA* **2013**, *110*, 8567–8572.
- White, E. H.; McCapra, F.; Field, G. F. The structure and synthesis of firefly luciferin. *J. Am. Chem. Soc.* **1963**, *85*, 337–343.
- White, E. H.; Rapaport, E.; Seliger, H. H.; Hopkins, T. A. The chemi- and bioluminescence of firefly luciferin: an efficient chemical production of electronically excited states. *Bioorg. Chem.* **1971**, *1*, 92–122.
- Seto, S.; Ogura, K.; Nishiyama, Y. A convenient synthetic method of 2-carbamoyl-6-methoxybenzothiazole, one of intermediates for the synthesis of firefly luciferin. *Bull. Chem. Soc. Jpn.* **1963**, *36*, 331–333.
- Toya, Y.; Takagi, M.; Nakata, H.; Suzuki, N.; Isobe, M.; Goto, T. A convenient synthetic method of 2-cyano-6-methoxybenzothiazole – a key intermediate for the synthesis of firefly luciferin. *Bull. Chem. Soc. Jpn.* **1992**, *65*, 392–395.
- Rosenmund, K. W.; Harms, H. Das am Ringkohlenstoff gebundene Halogen und sein Ersatz durch andere Substituenten. I. Mitteilung: Ersatz des Halogens durch die Carboxylgruppe. *Eur. J. Inorg. Chem.* **1919**, *52*, 1749–1756.
- Sandmeyer, T. Ueber die Ersetzung der Amidgruppe durch Chlor in den aromatischen Substanzen. *Eur. J. Inorg. Chem.* **1884**, *17*, 1633–1635.
- Ren, Y.; Liu, Z.; Zhao, S.; Tian, X.; Wang, J.; Yin, W.; He, S. Ethylenediamine/Cu (OAc)₂ H_2O -catalyzed cyanation of aryl halides with $\text{K}_4[\text{Fe}(\text{CN})_6]$. *Catal. Commun.* **2009**, *10*, 768–771.
- Zanon, J.; Klapars, A.; Buchwald, S. L. Copper-catalyzed domino halide exchange-cyanation of aryl bromides. *J. Am. Chem. Soc.* **2003**, *125*, 2890–2891.
- Sundermeier, M.; Mutyla, S.; Zapf, A.; Spannenberg, A.; Beller, M. A convenient and efficient procedure for the palladium-catalyzed cyanation of aryl halides using trimethylsilylcyanide. *J. Organomet. Chem.* **2003**, *684*, 50–55.
- Velmathi, S.; Leadbeater, N. E. Palladium-catalyzed cyanation of aryl halides using $\text{K}_4[\text{Fe}(\text{CN})_6]$ as cyanide source, water as solvent, and microwave heating. *Tetrahedron Lett.* **2008**, *49*, 4693–4694.
- Grossman, O.; Gelman, D. Novel trans-spanned palladium complexes as efficient catalysts in mild and amine-free cyanation of aryl bromides under air. *Org. Lett.* **2006**, *8*, 1189–1191.
- Beletskaya, I. P.; Sigeev, A. S.; Peregudov, A. S.; Petrovskii, P. V. Catalytic Sandmeyer cyanation as a synthetic pathway to aryl nitriles. *J. Organomet. Chem.* **2004**, *689*, 3810–3812.
- Schareina, T.; Zapf, A.; Maegerlein, W.; Mueller, N.; Beller, M. Copper-catalyzed cyanation of heteroaryl bromides: a novel and versatile catalyst system inspired by nature. *Synlett.* **2007**, *4*, 0555–0558.
- Schareina, T.; Zapf, A.; Beller, M. An environmentally benign procedure for the Cu-catalyzed cyanation of aryl bromides. *Tetrahedron Lett.* **2005**, *46*, 2585–2588.
- Lang, H.; Jakob, A.; Milde, B. Copper (I) alkyne and alkynide complexes. *Organometallics* **2012**, *31*, 7661–7693.
- Evano, G.; Blanchard, N.; Toumi, M. Copper-mediated coupling reactions and their applications in natural products and designed biomolecules synthesis. *Chem. Rev.* **2008**, *108*, 3054–3131.
- Zhang, G.; Yi, H.; Zhang, G.; Deng, Y.; Bai, R.; Zhang, H.; Miller, J. T.; Kropf, A. J.; Bunel, E. E.; Lei, A. Direct observation of reduction of Cu (II) to Cu (I) by terminal alkynes. *J. Am. Chem. Soc.* **2014**, *136*, 924–926.
- Schareina, T.; Beller, M. Copper-Catalyzed Cyanations of Aryl Halides and Related Compounds. In *Copper-Mediated Cross-Coupling Reactions*. Evano, G., Blanchard, N., Eds. Wiley: New Jersey, 2013; pp 313–334.
- Schareina, T.; Zapf, A.; Cotte, A.; Mueller, N.; Beller, M. A bio-inspired copper catalyst system for practical catalytic cyanation of aryl bromides. *Synthesis* **2008**, *20*, 3351–3355.
- Sigeev, A.; Beletskaya, I.; Petrovskii, P.; Peregudov, A. Cu (I)/Cu (II)/TMEDA, new effective available catalyst of sandmeyer reaction. *Russ. J. Org. Chem.* **2012**, *48*, 1055–1058.
- Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. *Phys. Rev.* **1988**, *38*, 3098.

[27] Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. Gaussian 09, Revision A. 02; Gaussian Inc.: Wallingford, CT, 2009.

[28] Dega-Szafran, Z.; Katrusiak, A.; Szafran, M. Molecular structure of the complex of N-methylmorpholine betaine with 2,4-dinitrophenol. *J. Mol. Struct.* **2005**, *741*, 1–9.

[29] Tachikawa, M.; Mori, K.; Nakai, H.; Iguchi, K. An extension of *ab initio* molecular orbital theory to nuclear motion. *Chem. Phys. Lett.* **1998**, *290*, 437–442.

[30] Stuckwisch, C. Derivatives of 2-amino-6-methoxybenzothiazole. *J. Am. Chem. Soc.* **1949**, *71*, 3417–3417.