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Abstract: An efficient protocol was developed for the synthe-
sis of 1,2,4-oxadiazinan-5-one derivatives via [3 + 3] cycload-
dition of in situ generated aza-oxyallyl cations with nitrones. 
This method provides high yields of the heterocyclic prod-
ucts, excellent regioselectivity and broad substrate scope.
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A number of medicinally important heterocycles have 
been prepared by [3 + 1], [3 + 2], [3 + 3], and [3 + 4] cycload-
ditions [1–12] of aza-oxyallylic cations with various syn-
thons including alkynes, dienes and aldehydes. However, 
the [3 + 3] cycloadditions of aza-oxyallylic cations with 
nitrones have not received much attention until recently 
[6]. To the best of our knowledge, reference [6] is the 
only report of this type of synthesis of 1,2,4-oxadiazinan-
5-ones. Nitrones are particularly useful for the construc-
tion of a variety of nitrogen- and oxygen-containing five 
and six-membered heterocycles [13–19].

As part of our effort to develop efficient synthetic meth-
odologies for the synthesis of heterocyclic molecules [19, 20], 
we wish to report the synthesis of 1,2,4-oxadiazinan-5-ones 
via [3 + 3] cycloaddition of in situ generated an aza-oxyallyl 
cation with nitrones. The aza-oxyallyl cation is easily gen-
erated from N-(benzyloxy)-2-bromo-2-methylpropanamide 

(1 in Scheme 1). Compared to Wang’s report  [6], our 
method utilizes simple and readily available inorganic 
base Na2CO3 instead of 4-dimethylaminopyridine (DMAP) 
used in Wang’s reaction. Acetonitrile was employed as a 
solvent in our method in contrast to the more expensive 
hexafluoro-2-propanol used in Wang’s reaction.

The reaction of 1 and nitrone 2a was investigated as a 
model [3 + 3] cycloaddition (Scheme 1). The desired 1,2,4-oxa-
diazinan-5-one 3a was obtained in a 98% yield using Na2CO3 
as the base and acetonitrile as the solvent at 50°C. The use of 
other bases including K2CO3, NaOAc, NaOH, pyridine, DBU 
and TEA resulted in a greatly diminished yield of 3a. Also, 
only a trace amount of the product was isolated for the reac-
tion conducted in MeOH, CF3CH2OH, DMF, THF or DCM. It is 
worth mentioning that the use of Wang’s solvent gave only 
a moderate yield of 3a of 65%. Under the optimized condi-
tions, the use of other substrates 2b and 2d–m gave good to 
excellent yields of products 3 ranging from 77% to 98%. The 
only exception was a failed synthesis of 3c which, appar-
ently, is due to the steric hindrance in the starting nitrone 2c.

Experimental
1H nuclear magnetic resonance (NMR) and 13﻿C NMR spectra were 
taken in  CDCl3 at 400  MHz and 100  MHz, respectively. Mass spectra 
were obtained using the electrospray ionization (ESI) mode. Nitrones 
2a–m were prepared as previously reported [6]. All products 3a–m are 
colorless oils.
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a: R1 = Me; R2 = Ph; 96%
b: R1 = Me; R2 = 2-Cl-C6H4; 80%
c: R1 = Me; R2 = 2-OMe-C6H4; 0%
d: R1 = Me; R2 = 3-Cl-C6H4; 89%
e: R1 = Me; R2 = 4-OMe-C6H4; 96%
f: R1 = Me; R2 = 4-NO2-C6H4; 81%
g: R1 = Me; R2 = 2-naphthalenyl; 89%

h: R1 = Me; R2 = 3-styryl; 82%
i: R1 = Me; R2 = 2,4-diCl-C6H3; 85%
j: R1 = Me; R2 = thiophen-2-yl; 98%
k: R1 = Me; R2 = propyl; 77%
l: R1 = Bn; R2 = 4-Me-C6H4; 92%
m: R1 = Bn; R2 = thiophen-2-yl; 98%

Scheme 1 
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General procedure for synthesis of substrate 1

The following modification of the previously reported procedure was 
used [6]. A mixture of O-benzylhydroxylamine hydrochloride (1 g, 
6.3 mmol) and triethylamine (0.88 mL, 6.3 mmol) in dichloromethane 
(30 mL) was cooled to 0°C and treated dropwise with 2-bromo-2-meth-
ylpropanoyl bromide (0.75 mL, 6.3 mmol). The mixture was stirred for 
4 h at 0°C, then quenched with water and washed with brine (×3). 
The organic layer was dried over anhydrous sodium sulfate, filtered 
and concentrated under reduced pressure. The residue was purified 
by silica gel chromatography eluting with ethyl acetate/hexanes to 
give haloamide 1 as a white solid; yield 1.3 g (80%).

Synthesis of 3a,b and 3d–m

A mixture of nitrone 2 (1.1 mmol), haloamide 1 (1.0 mmol) and sodium 
carbonate (2 mmol) in acetonitrile (20 mL) was stirred at 50°C, and 
the reaction progress was monitored by silica gel TLC eluting with 
hexanes/ethyl acetate, 5:1. The mixture was filtered through the short 
pad of celite, and the filtrate was concentrated under reduced pres-
sure. The residue of 3 was purified by silica gel chromatography elut-
ing with hexanes/ethyl acetate, 10:1.

4-(Benzyloxy)-3,6,6-trimethyl-2-phenyl-1,2,4-oxadiazinan-5-one 
(3a) Yield 96%; 1H NMR: δ 7.47–7.38 (m, 5H), 7.32–7.28 (m, 3H), 7.13–
7.11 (m, 2H), 5.00 (d, 1H, J = 10 Hz), 4.89 (s, 1H), 4.40 (d, 1H, J = 10 Hz), 
2.35 (s, 3H), 1.71 (s, 3H), 1.51 (s, 3H); 13C NMR: δ 170.6, 134.7, 133.9, 129.9, 
129.8, 129.1, 128.8, 128.6, 128.4, 81.8, 77.1, 41.3, 24.1, 23.9. HR-MS. Calcd 
for C19H22N2O3Na, [M + Na]+: m/z 349.1528. Found: m/z 349.1525.

4-(Benzyloxy)-2-(2-chlorophenyl)-3,6,6-trimethyl-1,2,4-oxadiazi-
nan-5-one (3b) Yield 80%; 1H NMR: δ 7.45 (s, 1H), 7.44–7.42 (m, 1H), 
7.35–7.30 (m, 6H), 7.28–7.23 (s, 2H), 5.02 (d, 1H, J = 10 Hz), 4.89 (s, 1H), 
4.65 (d, 1H, J = 10 Hz), 2.42 (s, 3H), 1.62 (s, 3H), 1.53 (s, 3H); 13C NMR: 
δ 170.4, 134.9, 134.5, 130.6, 130.5, 129.7, 128.8, 128.4, 127.2, 82.0, 70.0, 
40.7, 24.0. HR-MS. Calcd for C19H21ClN2O3Na, [M + Na]+: m/z 383.1138). 
Found: m/z 383.1136.

4-(Benzyloxy)-2-(3-chlorophenyl)-3,6,6-trimethyl-1,2,4-oxadi-
azinan-5-one (3d) Yield 89%; 1H NMR: δ 7.43–7.15 (m, 9H), 4.99 (d, 
1H, J = 10 Hz), 4.80 (s, 1H), 4.48 (d, 1H, J = 10 Hz), 2.33 (s, 3H), 1.68 (s, 
3H), 1.51 (s, 3H); 13C NMR: δ 170.4, 136.0, 134.7, 134.5, 130.0, 129.9, 129.0, 
128.5, 127.3, 82.0, 77.2, 41.4, 24.0, 23.9. HR-MS. Calcd for C19H21ClN2O3Na, 
[M + Na]+ : m/z 383.1138. Found: m/z 383.1136.

4-(Benzyloxy)-2-(4-methoxyphenyl)-3,6,6-trimethyl-1,2,4-oxadi-
azinan-5-one (3e) Yield 96%; 1H NMR: δ 7.32-7.28 (m, 5H), 7.16–7.14 
(m, 2H), 6.94 (d, 2H, J = 9 Hz), 4.98 (d, 1H, J = 10 Hz), 4.83 (s, 1H), 4.42 
(d, 1H, J = 10 Hz), 3.86 (s, 3H), 2.33 (s, 3H), 1.69 (s, 3H), 1.50 (s, 3H); 13C 
NMR: δ 170.4, 160.7, 134.9, 130.3, 129.8, 128.8, 128.4, 126.0, 113.9, 81.8, 
77.1, 55.4, 41.3, 24.1, 24.0. HR-MS. Calcd for C20H24N2O4Na, [M + Na]+: 
m/z 379.1634. Found: m/z 379.1635.

4-(Benzyloxy)-3,6,6-trimethyl-2-(4-nitrophenyl)-1,2,4-oxadiazi-
nan-5-one (3f) Yield 81%; 1H NMR: δ 8.23 (d, 2H, J = 9 Hz), 7.45 (d, 
2H, J = 9 Hz), 7.36–7.28 (m, 3H), 7.17–7.14 (m, 2H), 4.97 (d, 1H, J = 10 Hz), 

4.89 (s, 1H), 4.57 (d, 1H, J = 10 Hz), 2.29 (s, 3H), 1.66 (s, 3H), 1.52 (s, 
3H); 13C NMR: δ 170.4, 148.7, 140.8, 134.7, 130.0, 129.8, 129.1, 128.5, 123.7, 
82.3, 77.1, 41.2, 23.9. HR-MS. Calcd for C19H21N3O5Na, [M + Na] +: m/z 
394.1379. Found: m/z 394.1378.

4-(Benzyloxy)-3,6,6-trimethyl-2-(naphthalen-2-yl)-1,2,4-oxadi-
azinan-5-one (3g) Yield 89%; 1H NMR: δ 7.93–7.88 (m, 3H), 7.75–7.56 
(m, 4H), 7.31–7.24 (m, 3H), 7.07 (d, 2H, J = 7 Hz), 5.04 (d, 1H, J = 10 Hz), 
5.01 (s, 1H), 4.44 (d, 1H, J = 10 Hz), 2.38 (s, 3H), 1.78 (s, 3H), 1.57 (s, 
3H); 13C NMR: δ 170.5, 134.8, 134.1, 132.9, 131.4, 129.9, 128.9, 128.6, 128.4, 
128.2, 127.9, 126.0, 125.6, 82.0, 77.2, 41.5, 24.1, 24.0. HR-MS. Calcd for 
C23H24N2O3Na, [M + Na]+: m/z 399.1690. Found: m/z 399.1685.

(E)-4-(Benzyloxy)-3,6,6-trimethyl-2-styryl-1,2,4-oxadiazinan-
5-one (3h) Yield 82%; 1H NMR: δ 7.43–7.28 (m, 10H), 6.58 (d, 1H, 
J = 15 Hz), 5.04 (d, 1H, J = 10 Hz), 4.86 (d, 1H, J = 10 Hz), 4.53 (d, 1H, 
J = 10 Hz), 2.53 (s, 3H), 1.52 (s, 3H), 1.50 (s, 3H); 13C NMR: δ 170.1, 138.0, 
135.4, 134.9, 130.0, 128.8, 128.4, 127.0, 122.0, 82.0, 77.4, 41.3, 24.0, 23.8. 
HR-MS. Calcd for C21H24N2O3Na, [M + Na]+: m/z 375.1685. Found: m/z 
375.1683.

4-(Benzyloxy)-2-(2,4-dichlorophenyl)-3,6,6-trimethyl-1,2,4-
oxadiazinan-5-one (3i) Yield 85%; 1H NMR: δ 7.36–7.28 (m, 5H), 
7.44–7.43 (m, 2H), 7.34–7.24 (m, 6H), 5.73 (s, 1H), 5.00 (d, 1H, J = 10 Hz), 
4.70 (d, 1H, J = 10 Hz), 2.40 (s, 3H), 1.63 (s, 3H), 1.52 (s, 3H); 13C NMR: 
δ 170.7, 135.9, 135.5, 134.4, 131.3, 129.7, 129.4, 129.0, 128.5, 127.7, 82.2, 
77.0, 40.6, 23.9, 23.8. HR-MS. Calcd for C19H20Cl2N2O3Na, [M + Na]+: m/z 
417.0749. Found: m/z 417.0750.

4-(Benzyloxy)-3,6,6-trimethyl-2-(thiophen-2-yl)-1,2,4-oxadiazi-
nan-5-one (3j) Yield 98%; 1H NMR: δ 7.46–7.06 (m, 8H), 5.31 (s, 1H), 
5.04 (d, 1H, J = 10.1Hz), 4.45 (d, 1H, J = 10Hz), 2.43 (s, 3H), 1.61 (s, 3H), 
1.58 (s, 3H); 13C NMR: δ 169.8, 134.8, 129.7, 128.8, 128.5, 128.4, 128.2, 
126.2, 82.3, 77.6, 41.0, 24.0, 23.5. HR-MS. Calcd for C17H20N2O3SNa, 
[M + Na]+: m/z 355.1092. Found: m/z 355.1090.

4-(Benzyloxy)-3,6,6-trimethyl-2-propyl-1,2,4-oxadiazinan-5-one 
(3k) Yield 77%; 1H NMR: δ 7.47–7.39 (m, 5H), 4.97 (s, 2H), 4.00 (t, 1H, 
J = 3.7 Hz), 2.57 (s, 3H), 1.93–1.75 (m, 2H), 1.56–1.40 (m, 8H), 0.90 (t, 
3H, J = 7 Hz); 13C NMR: δ 170.3, 135.0, 129.9, 129.0, 128.6, 83.2, 81.5, 76.5, 
41,3, 30.6, 24.1, 23.5, 14.2. HR-MS. Calcd for C16H24N2O3Na, [M + Na]+: 
m/z 315.1685. Found: m/z 315.1681.

2-Benzyl-4-(benzyloxy)-6,6-dimethyl-3-(p-tolyl)-1,2,4-oxa-
diazinan-5-one (3l) Yield 92%; 1H NMR: δ 7.40–7.17 (m, 14H), 5.09 
(s, 1H), 5.03 (d, 1H, J = 10Hz), 4.45 (d, 1H, J = 10  Hz), 3.63 (d, 1H, 
J = 10 Hz), 3.45 (d, 1H, J = 10 Hz), 2.44 (s, 3H), 1.47 (s, 3H), 1.41 (s, 3H); 
13C NMR: δ 170.5, 139.8, 136.4, 134.9, 131.1, 130.3, 129.8, 129.4, 129.3, 
129.1, 128.8, 128.6, 128.4, 128.0, 127.4, 81.8, 77.1, 57.2, 24.0, 23.8, 21.4. 
HR-MS. Calcd for C26H28N2O3Na, [M + Na] +: m/z 439.1998. Found: 
m/z 439.1995.

2-Benzyl-4-(benzyloxy)-6,6-dimethyl-3-(thiophen-2-yl)-1,2,4-
oxadiazinan-5-one (3m) Yield 98%; 1H NMR: δ 7.51–7.09 (m, 13H), 
5.41 (s, 1H), 5.03 (d, 1H, J = 10 Hz), 4.44 (d, 1H, J = 10 Hz), 3.80 (d, 1H, 
J = 10 Hz), 3.52 (d, 1H, J = 10 Hz), 1.50 (s, 3H), 1.48 (s, 3H); 13C NMR: δ 
170.0, 134.6, 130.0, 129.7, 129.4, 128.9, 128.5, 128.4, 128.3, 127.8, 126.2, 
82.5, 77.7, 57.3, 23.9, 23.3. HR-MS. Calcd for C23H24N2O4SNa, [M + Na]+: 
m/z 431.1405. Found: m/z 431.1400.
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