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Abstract: α-Methylene-γ-lactams were synthesized from 
readily available N-acylhydrazones by a tin-mediated 
Barbier-type reaction. The method avoids the use of toxic 
allylstannanes and the reaction proceeds smoothly under 
mild conditions.
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Introduction
The addition of allylic organometallic compounds to 
imines is one of the most important methods for the prep-
aration of homoallylic amines [1–5]. Many allylic organo-
metallics such as allylic magnesium, zinc, boron, silane 
and stannane reagents have been used in such reactions 
[6–13]. In particular, allylstannanes are stable toward 
heat, hydrolysis, oxygen, and are compatible with many 
functional groups [3, 4, 8, 9]. However, the application 
of allylstannanes in organic synthesis is restricted due to 
their toxicity and the formation of undesirable trialkyltin-
containing by-products [14, 15]. Besides, Lewis acids or 
transition-metal catalysts are often needed in allylstan-
nane-mediated allylation reactions [3, 4, 8, 9]. In 1981, 
Mukaiyama and Harada [16] reported for the first time the 
allylation reaction of carbonyl compounds with allylic 
halide in the presence of tin powder to give the correspond-
ing homoallylic alcohols. Additional reactions of this type 
with imines have been investigated [17–21]. In this report, 
we describe a practical procedure for the preparation of 
homoallylic N-aminophthalimides and α-methylene-
γ-lactams by the reactions of aromatic aldehydes and 
N-acylhydrazones derived from N-aminophthalimide in 

the presence of tin powder. The combination of tin powder 
and allylic bromide as an allylation system avoids the use 
of toxic allylstannane.

Results and discussion
Initially, a mixture of 1 equivalent of 2-(benzylideneamino)
isoindoline-1,3-dione (1a, generated from benzaldehyde 
and N-aminophthalimide), 1.5 equivalents of 2-(bromome-
thyl)acrylate (2) and 2 equivalents of tin powder in ethanol 
was heated under reflux. After 2 h, product 3a was obtained 
in 32% yield, and a trace amount of cyclized derivative 
4a was also detected (Scheme  1). Under optimized con-
ditions, the use of 1 equivalent of 1a, 3 equivalents of 2 
and 3.5 equivalents of tin powder in ethanol furnished the 
desired product 3a in 57% yield. The use of dichlorometh-
ane, tetrahydrofuran, methanol, toluene and 1,4-dioxane 
have been examined. The product 3a was obtained in a 
36% yield after 2 h of heating in methanol under reflux. 
In the remaining solvents under similar conditions, the 
allylation reaction of 1a did not occur. These results show 
that ethanol is the optimized solvent for the allylation 
reaction of 1a. Then, the allylation reaction was examined 
using various substrates 1 (Scheme 1). It was found that 
substituted acylhydrazones 1 are allylated smoothly with 
reagent 2 in the presence of tin powder. The position of the 
substituent on the phenyl ring has little effect on the yield 
of the corresponding product 3. However, an attempted 
reaction of substrate 1 bearing an amino or nitro group on 
the phenyl ring did not afford the desired product 3, and a 
complex mixture was obtained.

The cyclized by-products 4a were observed in these 
allylation reactions (Scheme 1). Related α-methylene-
γ-lactam units are important scaffolds found in some 
biologically active synthetic molecules and natural 
products [22–26]. It was found that prolonging the 
reaction time resulted in the formation of compounds 
4 as the major products. For example, heating of the 
mixture of the substrates for 2 h furnished 3a in a 57% 
yield, and the subsequent heating for an additional 
2  h furnished product 4a in an 83% yield. Afterwards, 
different substituted 2-(benzylideneamino)isoindo-
line-1,3-diones 1 were examined for the synthesis of 
α-methylene-γ-lactams 4 (Scheme 1). The results show 
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that acylhydrazones 1 with an electron-donating or 
electron-withdrawing group on phenyl ring undergo the 
cyclization reactions smoothly to give the correspond-
ing products 4 in good to excellent  yields. Again, the 
attempted cyclization of acylhydrazones 1 bearing an 
amino or nitro group on the phenyl ring did not afford 
the corresponding products 4.

A possible mechanism that includes the literature 
data [27, 28] and our previous research results [18–21] is 
shown in Scheme 2. Thus, substrate 1 undergoes a reac-
tion with the intermediate product 5, to generate the 
intermediate product 6. Hydrolysis of compound 6 gives 
the observed product 3. On the other hand, cyclization 
of 6 generates compound 7, which is the precursor to the 
observed product 4.

Conclusion
Efficient methods for the synthesis of homoallylic amines 
and α-methylene-γ-lactams are described. In these 

reactions, a mixture of allylic bromide and tin powder is 
used to replace toxic allylic stannane.

Experimental
All reactions were performed in oven-dried glassware equipped with 
a magnetic stirring bar. Silica gel column chromatography was car-
ried out using silica gel 60 (230–400  mesh). Analytical thin layer 
chromatography (TLC) was done using silica gel GF254. Compounds 
were visualized by exposure to ultraviolet light, phosphomolybdic 
acid solution, potassium permanganate solution or iodine vapor. 
Proton nuclear magnetic resonance (1H NMR) (600  MHz) and car-
bon-13 nuclear magnetic resonance (13C NMR) (150 MHz) spectra were 
recorded in deuterated chloroform (CDCl3). Melting points are uncor-
rected. Infrared (IR) spectra were recorded using KBr pellets. Substi-
tuted 2-(benzylideneamino)isoindoline-1,3-diones 1 were prepared as 
previously described [29, 30].

General procedure for the synthesis of compounds 3 and 4

A mixture of 1 (0.4  mmol, 1 equiv.), 2 (1.2  mmol, 3 equiv.) and Sn 
powder (1.4 mmol, 3.5 equiv.) in anhydrous ethanol (4 mL) protected 
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from atmospheric moisture was stirred and heated under reflux for a 
period of time indicated below. After the formation of compound 3 or 
4, as monitored by TLC, the mixture was cooled to room temperature. 
The solvent was removed under reduced pressure, the residue was 
treated with a saturated solution of ammonium chloride (4 mL), and 
the mixture was stirred for 15 min. The mixture was extracted with 
ethyl acetate (3 × 10  mL). The combined organic phases were dried 
(MgSO4) and concentrated. Purification of the residue by silica gel 
column chromatography using petroleum ether and ethyl acetate 
(5:1) as an eluent furnished pure product 3 or 4.

Ethyl 4-((1,3-dioxoisoindolin2yl)amino)-2-methylene-4-phe-
nylbutanoate (3a) Reaction time 2  h; white solid; yield 80  mg 
(57%); mp 81–82°C; 1H NMR: δ 7.76 (dd, J = 5.4 Hz and 3.0 Hz, 2H), 7.68 
(dd, J = 5.4 Hz and 3.0 Hz, 2H), 7.44 (d, J = 7.2 Hz, 2H), 7.29 (t, J = 7.2 Hz, 
2H), 7.23 (t, J = 7.2 Hz, 1H), 6.19 (s, 1H), 5.57 (s, 1H), 4.66 (t, J = 7.2 Hz, 
1H), 4.21 (qd, J = 7.2 Hz and 2.4 Hz, 2H), 2.83 (m, 2H), 1.28 (t, J = 7.2 Hz, 
3H); 13C NMR: δ 166.8, 166.6, 139.6, 136.8, 134.1, 130.1, 128.3, 128.1, 
128.00, 128.0, 123.3, 62.3, 60.9, 38.6, 14.1; IR: ν 3430, 3289, 2974, 2920, 
1798, 1721, 1628, 1461, 1380, 1192, 1079, 706 cm−1. ESI-HRMS. Calcd for 
C21H20N2O4Na, [M + Na]+: m/z 387.1315. Found: m/z 387.1312.

Ethyl 4-((1,3-dioxoisoindolin-2-yl)amino)-4-(2-fluorophenyl)-
2-methylenebutanoate (3b) Reaction time 2.1 h; white solid; yield 
46 mg (30%); mp 111–112°C; 1H NMR: δ 7.77 (dd, J = 9.0 Hz and 3.6 Hz, 
2H), 7.69 (m, 3H), 7.21 (m, 1H), 7.13 (t, J = 7.2 Hz, 1H), 6.94 (m, 1H), 6.24 
(s, 1H), 5.62 (s, 1H), 4.99 (t, J = 6.6 Hz, 1H), 4.23 (q, J = 7.2 Hz, 2H), 2.87 
(m, 2H), 1.57 (s, 1H), 1.31 (t, J = 7.2 Hz, 3H); 13C NMR: δ 166.6, 166.5, 135.9 
(d, J = 241.5 Hz), 134.1, 130.1, 129.4 (d, J = 9.0 Hz), 129.3 (d, J = 4.5 Hz), 
128.1, 124.2 (d, J = 3.0 Hz), 123.4, 120.0, 115.2 (d, J = 22.5 Hz), 61.0, 56.0, 
37.3, 14.1; IR: ν 3430, 3289, 2978, 2937, 1781, 1724, 1627, 1377, 1284, 1192, 
1081, 882, 710  cm−1. ESI-HRMS. Calcd for C21H19FN2O4Na, [M + Na]+: 
m/z 405.1221. Found: m/z 405.1217.

Ethyl 4-(2-chlorophenyl)-4-((1,3-dioxoisoindolin-2-yl)amino)-
2-methylenebutanoate (3c) Reaction time 2.2  h; white solid; yield 
92 mg (57%); mp 116–117°C; 1H NMR: δ 7.94 (d, J = 7.8 Hz, 1H), 7.76 (dd, 
J = 5.4 Hz and 3.0 Hz, 2H), 7.68 (dd, J = 5.4 Hz and 3.0 Hz, 2H), 7.32 (t, 
J = 7.2 Hz, 1H), 7.25 (d, J = 7.8 Hz, 1H), 7.17 (t, J = 7.2 Hz, 1H), 6.28 (s, 1H), 5.67 
(s, 1H), 5.24 (t, J = 6.6 Hz, 1H), 4.26 (q, J = 6.6 Hz, 2H), 2.81 (m, 2H), 1.54 
(br, 1H), 1.32 (t, J = 7.2 Hz, 3H); 13C NMR: δ 166.8, 166.7, 136.6, 134.1, 130.1, 
129.2, 128.9, 128.4, 127.0, 123.4, 61.07, 40.9, 37.6, 14.2; IR: ν 3429, 3289, 2978, 
2928, 1789, 1720, 1628, 1464, 1377, 1192, 1074, 883, 705 cm−1. ESI-HRMS. 
Calcd for C21H19ClN2O4Na, [M + Na]+: m/z 421.0926. Found: m/z 421.0923.

Ethyl 4-(3-chlorophenyl)-4-((1,3-dioxoisoindolin-2-yl)amino)-
2-methylenebutanoate (3d) Reaction time 2.2 h; white solid; yield 
60 mg (42%); mp 142–144°C; 1H NMR: δ 7.78 (dd, J = 5.4 Hz and 3.0 Hz, 
2H), 7.69 (dd, J = 5.4 Hz and 3.0 Hz, 2H), 7.46 (s, 1H), 7.37 (d, J = 7.2 Hz, 
1H), 7.23 (m, 2H), 6.23 (s, 1H), 5.60 (s, 1H), 4.79 (s, 1H), 4.64 (t, 
J = 6.6 Hz, 1H), 4.22 (q, J =6.6 Hz, 2H), 2.81 (dd, J = 13.8 Hz and 7.2 Hz, 
1H), 2.76 (dd, J = 13.8  Hz and 7.2  Hz, 1H), 1.30 (t, J = 6.6  Hz, 3H); 13C 
NMR: δ 166.7, 166.5, 141.9, 136.5, 134.2, 134.1, 130.0, 129.6, 128.3, 128.2, 
128.1, 126.1, 123.4, 61.9, 61.0, 38.8, 14.1; IR: ν 3445, 3203, 2923, 2852, 
1774, 1747, 1650, 1463, 1385, 1139, 1052, 914, 716 cm−1. ESI-HRMS. Calcd 
for C21H19ClN2O4Na, [M + Na]+: m/z 421.0926. Found: 421.0924.

Ethyl 4-(4-chlorophenyl)-4-((1,3-dioxoisoindolin-2-yl)amino)-
2-methylenebutanoate (3e) Reaction time 2  h; white solid; yield 
96 mg (60%); mp 108–109°C; 1H NMR: δ 7.77 (dd, J = 8.4 Hz and 4.8 Hz, 
2H), 7.69 (dd, J = 8.4  Hz and 4.8  Hz, 2H), 7.39 (m, 2H), 7.25 (m, 2H), 

6.21 (d, J = 1.8 Hz, 1H), 5.57 (d, J = 1.2 Hz, 1H), 4.66 (t, J = 10.2 Hz, 1H), 
4.22 (qd, J = 10.8 Hz and 1.8 Hz, 2H), 2.78 (m, 2H), 1.55 (br, 1H), 1.30 
(t, J = 10.2  Hz, 3H); 13C NMR: δ 166.7, 166.5, 138.2, 136.6, 134.2, 133.7, 
130.0, 129.4, 128.5, 128.2, 123.4, 61.6, 61.0, 38.8, 14.2; IR: ν 3441, 2924, 
2854,  1797, 1224, 1666, 1458, 1373, 1115, 1080, 887  cm−1. ESI-HRMS. 
Calcd for C21H19ClN2O4Na, [M + Na]+: m/z 421.0926. Found: m/z 
421.0923.

Ethyl 4-(4-bromophenyl) ((1,3dioxoisoindolin-2-yl)amino)-
2-methylenebutanoate (3f) Reaction time 2.1 h; white solid: yield 
123 mg (69%); mp 106–107°C; 1H NMR: δ 7.76 (dd, J = 5.4 Hz and 3.6 Hz, 
2H), 7.68 (dd, J = 5.4 Hz and 3.0 Hz, 2H), 7.41 (d, J = 7.8 Hz, 2H), 7.33 (d, 
J = 5.4 Hz, 2H), 6.21 (s, 1H), 5.57 (s, 1H), 4.65 (t, J = 6.6 Hz, 1H), 4.22 (qd, 
J = 7.2 Hz and 3.0 Hz, 2H), 2.77 (m, 2H), 1.54 (br, 1H), 1.30 (t, J = 7.2 Hz, 
3H); 13C NMR: δ 166.7, 166.5, 138.8, 134.2, 131.5, 130.0, 129.7, 128.7, 
128.2, 123.4, 61.7, 61.0, 38.8, 14.2; IR: ν 3478, 3281, 2933, 2874, 1764, 
1610, 1625, 1441, 1328, 1251, 1045, 945, 776 cm−1. ESI-HRMS. Calcd for 
C21H19BrN2O4Na, [M + Na]+: m/z 465.0420. Found: m/z 465.0416.

Ethyl 4-((1,3-dioxoisoindolinyl)amino)2-methylen4-(4-(trifluoro
methyl)phenyl) butanoate (3g) Reaction time 2.2  h; white solid; 
yield 92 mg (53%); mp 103–104°C; 1H NMR: δ 7.77 (dd, J = 5.4 Hz and 
3.0 Hz, 2H), 7.69 (dd, J = 5.4 Hz and 3.0 Hz, 2H), 7.61 (d, J = 7.8 Hz, 2H), 7.55 
(d, J = 7.8 Hz, 2H), 6.24 (s, 1H), 5.60 (s, 1H), 4.76 (t, J = 6.6 Hz, 1H), 4.23 
(m, 2H), 2.79 (m, 2H), 1.31 (t, J = 7.2 Hz, 3H), 1.25 (s, 1H); 13C NMR: δ 166.7, 
166.5, 144.0, 136.5, 134.3, 129.9, 128.4, 128.3, 125.3 (q, J = 4.5 Hz), 123.4, 
61.9, 61.1, 39.1, 14.2; IR: ν 3446, 3281, 2921, 2830, 1805, 1683, 1621, 1465, 
1382, 1123, 1067, 879, 709  cm−1. ESI-HRMS. Calcd for C22H19F3N2O4Na, 
[M + Na]+: m/z 455.1189. Found: m/z 455.1187.

Ethyl 4-[(1,3-dioxoisoindolin-2-yl)amino]-2-methylene-4-(o-tolyl)
butanoate (3h) Reaction time 2.2  h; colorless crystals; yield 61  mg 
(40%); mp 86–87°C; 1H NMR: δ 7.78 (m, 3H), 7.68 (m, 2H), 7.23 (t, 
J = 7.8 Hz, 1H), 7.13 (t, J = 7.8 Hz, 1H), 7.07 (d, J = 7.2 Hz, 1H), 6.17 (s, 1H), 
5.57 (s, 1H), 5.03 (t, J = 7.2 Hz, 1H), 4.71 (s, 1H), 4.19 (q, J = 7.2 Hz, 2H), 2.78 
(d, J = 6.6 Hz, 2H), 2.32 (s, 3H), 1.26 (t, J = 7.2 Hz, 3H); 13C NMR: δ 166.9, 
166.6, 137.8, 136.8, 136.5, 134.1, 130.2, 130.1, 128.1, 127.5, 126.2, 123.3, 110.0, 
60.9, 57.4, 38.5, 19.2, 14.1; IR: ν 3435, 3285, 2982, 2932, 1784, 1729, 1629, 
1464, 1383, 1192, 1026, 887, 711 cm−1. ESI-HRMS. Calcd for C22H22N2O4Na, 
[M + Na]+: m/z 401.1472. Found: m/z 401.1471.

Ethyl 4-((1,3-dioxoisoindolin-2-yl)amino)-2-methylene-4-(m-tolyl)
butanoate (3i) Reaction time 2.3  h; colorless crystals; yield 61  mg 
(40%); mp 77–78°C; 1H NMR: δ 7.77 (dd, J = 8.4 Hz and 4.8 Hz, 2H), 7.68 
(dd, J = 8.4 Hz and 5.4 Hz, 2H), 7.26 (d, J = 4.8 Hz, 1H), 7.22 (d, J = 5.4 Hz, 
1H), 7.17 (dd, J = 13.2 Hz and 7.8 Hz, 1H), 7.04 (m, 1H), 6.18 (d, J = 4.8 Hz, 
1H), 5.56 (d, J = 4.8 Hz, 1H), 4.61 (dd, J = 12.6 Hz and 6.6 Hz, 1H), 4.18 (m, 
2H), 2.80 (m, 2H), 2.31 (s, 3H), 1.27 (t, J = 7.2 Hz, 3H); 13C NMR: δ 166.8, 
166.7, 139.5, 137.9, 136.9, 134.1, 130.1, 128.8, 128.6, 128.2, 127.9, 125.0, 123.3, 
62.2, 60.9, 38.6, 21.4, 14.1; IR: ν 3468, 3289, 2974, 2928, 1781, 1720, 1624, 
1464, 1377, 1192, 1076, 879, 705 cm−1. ESI-HRMS. Calcd for C22H22N2O4Na, 
[M + Na]+: m/z 401.1472. Found: m/z 401.1470.

Ethyl 4-((1,3-dioxoisoindolin-2-yl)amino)-2-methylene-4-(p-
tolyl)butanoate (3j) Reaction time 2.3 h; white solid; yield 152 mg 
(53%); mp 84–85°C; 1H NMR: δ 7.79–7.73 (m, 2H), 7.68 (m, 2H), 7.32 (d, 
J = 7.8 Hz, 2H), 7.09 (d, J = 7.8 Hz, 2H), 6.18 (s, 1H), 5.56 (s, 1H), 4.77 (br, 
1H), 4.62 (t, J = 7.2 Hz, 1H), 4.20 (q, J = 7.2 Hz, 2H), 2.81 (dd, J = 14.4 Hz 
and 7.2 Hz, 1H), 2.78 (dd, J = 13.8 Hz and 6.6 Hz, 1H), 2.28 (s, 3H), 1.27 
(t, J = 7.2 Hz, 3H); 13C NMR: δ 166.7, 166.6, 137.6, 136.9, 136.5, 134.0, 130.0, 
129.0, 127.8, 123.3, 62.0, 60.8, 38.5, 21.1, 14.1; IR: ν 3449, 3291, 2980, 
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2929, 1782, 1727, 1628, 1479, 1381, 1194, 1080, 885, 710 cm−1. ESI-HRMS. 
Calcd for C22H22N2O4, [M + H]+: m/z 379.1652, Found: m/z 379.1648.

2-(3-Methylene-2-oxo-5-phenylpyrrolidin-1-yl)isoindoline-
1,3-dione (4a) Reaction time 4 h; white solid; yield 106 mg (83%); 
mp 168–169°C; 1H NMR: δ 7.83 (dd, J = 2.4 Hz and 1.8 Hz, 1H), 7.77 (dd, 
J = 4.8 Hz and 2.4 Hz, 1H), 7.72 (m, 2H), 7.47 (d, J = 7.2 Hz, 2H), 7.33 (t, 
J = 7.2 Hz, 2H), 7.29 (t, J = 7.2 Hz, 1H), 6.28 (s, 1H), 5.58 (s, 1H), 5.17 (t, 
J = 7.2 Hz, 1H), 3.40 (dd, J = 17.4 Hz and 8.4 Hz, 1H), 2.92 (m, 1H); 13C 
NMR: δ 166.0, 165.1, 163.7, 138.2, 135.1, 134.7, 134.5, 130.1, 129.8, 128.8, 
128.8, 127.4, 124.1, 123.7, 119.6, 61.0, 35.0. IR: ν 3078, 3038, 2897, 1788, 
1743, 1673, 1462, 1342, 1277, 1224, 1078  cm−1. ESI-HRMS. Calcd for 
C19H15N2O3, [M + H]+: m/z 319.1077. Found: m/z 319.1075.

2-(5-(2-Fluorophenyl)-3-methylene-2-oxopyrrolidin-1-yl)isoin-
doline-1,3-dione (4b) Reaction time 4 h; white solid; yield 117 mg 
(87%); mp 170–171°C; 1H NMR: δ 7.86 (m, 1H), 7.80 (m, 1H), 7.74 (m, 
2H), 7.69 (td, J = 7.8 Hz and 1.8 Hz, 1H), 7.27 (m, 1H), 7.17 (td, J = 7.8 Hz 
and 0.6 Hz, 1H), 7.01 (m, 1H), 6.30 (t, J = 2.4 Hz, 1H), 5.60 (t, J = 2.4 Hz, 
1H), 5.54 (dd, J = 8.4 Hz and 6.0 Hz, 1H), 3.47 (dd, J = 17.4 Hz and 8.4 Hz, 
1H), 2.93 (m, 1H); 13C NMR: δ 166.1, 165.0, 163.9, 161.0 (d, J = 246.0 Hz), 
134.7, 134.6, 134.6, 130.0 (d, J = 7.5 Hz), 130.1, 129.8, 128.5 (d, J = 3.0 Hz), 
125.6 (d, J = 12.0 Hz), 124.7 (d, J = 4.5 Hz), 124.1, 123.9, 120.0, 115.5 (d, 
J = 6.0  Hz), 54.1, 33.3; IR: ν 3099, 3019, 2928, 1791, 1742, 1656, 1493, 
1347, 1267, 1225, 1105  cm−1. ESI-HRMS. Calcd for C19H13FN2O3Na, 
[M + Na]+: m/z 359.0802. Found: m/z 359.0804.

2-(5-(3-Chlorophenyl)-3-methylene-2-oxopyrrolidin-1-yl)isoin-
doline-1,3-dione (4c) Reaction time 7  h; white solid; yield 71  mg 
(50%); mp 104–105°C; 1H NMR: δ 7.85 (m, 1H), 7.82 (dd, J = 4.8 Hz and 
1.8 Hz, 1H), 7.74 (m, 2H), 7.45 (s, 1H), 7.41 (d, J = 7.2 Hz, 1H), 7.29 (m, 2H), 
6.29 (s, 1H), 5.60 (s, 1H), 5.12 (t, J = 7.8 Hz, 1H), 3.41 (dd, J = 17.4 Hz and 
7.8  Hz, 1H), 2.87 (m, 1H); 13C NMR: δ 165.9, 165.1, 163.7, 140.5, 134.8, 
134.6, 134.5, 130.2, 130.1, 129.7, 129.0, 127.7, 125.4, 124.2, 123.8, 120.1, 
119.8, 60.5, 34.9; IR: ν 3055, 2937, 2686, 1791, 1740, 1666, 1413, 1350, 
1272, 1221, 1076 cm−1. ESI-HRMS. Calcd for C19H13ClN2O3Na, [M + Na]+: 
m/z 375.0507. Found: m/z 375.0510.

2-(5-(4-Chlorophenyl)-3-methylene-2-oxopyrrolidin-1-yl)isoin-
doline-1,3-dione (4d) Reaction time 4 h; white solid; yield 129 mg 
(91%); mp 191–192°C; 1H NMR: δ 7.84 (dd, J = 6.6 Hz and 3.0 Hz, 1H), 
7.80 (dd, J = 5.4 Hz and 2.4 Hz, 1H), 7.74 (dd, J = 5.4 Hz and 3.6 Hz, 2H), 
7.41 (d, J = 8.4 Hz, 2H), 7.30 (d, J = 8.4 Hz, 2H), 6.29 (s, 1H), 5.59 (s, 1H), 
5.14 (t, J = 7.2 Hz, 1H), 3.40 (dd, J = 16.8 Hz and 7.8 Hz, 1H), 2.87 (m, 
1H); 13C NMR: δ 165.9, 165.1, 163.7, 136.8, 134.8, 134.7, 134.7, 134.6, 130.1, 
129.7, 129.0, 128.8, 124.2, 123.8, 120.0, 60.3, 35.0; IR: ν 3092, 2964, 2932, 
1792, 1742, 1656, 1493, 1345, 1260, 1224, 1091 cm1. ESI-HRMS. Calcd for 
C19H13ClN2O3Na, [M +  Na]+: m/z 375.0507. Found: m/z 375.0503.

2-(3-Methylene-2-oxo-5-(o-tolyl)pyrrolidin-1-yl)isoindoline-
1,3-dione (4e) Reaction time 8  h; white solid; yield 55 mg (41%); 
mp 125–126°C; 1H NMR: δ 7.82 (dd, J = 6.0 Hz and 3.0 Hz, 1H), 7.79 (dd, 
J = 5.4 Hz and 2.4 Hz, 1H), 7.72 (dd, J = 5.4 Hz and 3.0 Hz, 2H), 7.22 (t, 
J = 8.4 Hz, 1H), 7.09 (s, 1H), 7.00 (d, J = 7.8 Hz, 1H), 6.82 (dd, J = 8.4 Hz 
and 2.4 Hz, 1H), 6.27 (s, 1H), 5.58 (s, 1H), 5.17 (t, J = 7.2 Hz, 1H), 3.81 
(s, 3H), 3.39 (dd, J = 16.8 Hz and 7.8 Hz, 1H), 2.88 (m, 1H); 13C NMR: 
δ 166.1, 165.1, 163.7, 159.9, 139.9, 135.0, 134.7, 134.5, 130.2, 129.7, 124.1, 
123.7, 119.7, 119.6, 115.0, 111.7, 60.9, 55.3, 35.1; IR: ν 3060, 2931, 2641, 
1795, 1739, 1660, 1403, 1361, 1282, 1220, 1081 cm−1. ESI-HRMS. Calcd for 
C20H16N2O3Na, [M + Na]+: m/z 355.1053. Found: m/z 355.1058.

2-(3-Methylene-2-oxo-5-(m-tolyl)pyrrolidin-1-yl)isoindoline-
1,3-dione (4f) Reaction time 8 h; white solid; yield 85 mg (64%); 
mp 152–153°C; 1H NMR: δ 7.83 (m, 1H), 7.79 (dd, J = 4.8 Hz and 1.2 Hz, 
1H), 7.72 (m, 2H), 7.26 (d, J = 4.2 Hz, 2H), 7.16 (m, 1H), 7.10 (d, J = 7.2 Hz, 
1H), 6.27 (s, 1H), 5.57 (s, 1H), 5.14 (t, J = 7.2 Hz, 1H), 3.38 (dd, J = 17.4 Hz 
and 7.8  Hz, 1H), 2.89 (m, 1H), 2.32 (s, 3H); 13C NMR: δ 166.1, 165.2, 
163.7, 138.5, 138.2, 135.2, 134.6, 134.4, 130.2, 129.8, 129.5, 128.7, 128.1, 
124.4, 124.1, 123.7, 119.5, 60.9, 35.1, 21.3; IR: ν 3040, 2925, 2691, 1878, 
1733, 1605, 1418, 1349, 1279, 1221, 1080  cm−1. ESI-HRMS. Calcd for 
C20H16N2O3Na, [M + Na]+: m/z 355.1053. Found: 355.1049.

2-(3-Methylene-2-oxo-5-(p-tolyl)pyrrolidin-1-yl)isoindoline-
1,3-dione (4g) Reaction time 8 h; white solid; yield 54 mg (40%); 
mp 183–184°C; 1 H NMR: δ 7.83 (dd, J = 7.2 Hz and 3.0 Hz, 1H), 7.78 (dd, 
J = 8.4 Hz and 4.8 Hz, 1H), 7.72 (m, 2H), 7.34 (d, J = 7.8 Hz, 2H), 7.13 (d, 
J = 7.8 Hz, 2H), 6.27 (s, 1H), 5.57 (s, 1H), 5.13 (t, J = 6.6 Hz, 1H), 3.37 (dd, 
J = 16.8 Hz and 7.8 Hz, 1H), 2.90 (m, 1H), 2.30 (s, 3H); 13C NMR: δ 166.0, 
165.1, 163.7, 138.7, 135.3, 135.1, 134.6, 134.4, 130.2, 129.8, 129.4, 127.4, 
124.1, 123.7, 119.5, 60.8, 35.1, 21.1; IR: ν 3038, 3006, 2922, 1802, 1743, 
1658, 1423, 1350, 1279, 1222, 1078 cm−1. ESI-HRMS. Calcd for C20H17N2O3, 
[M + H]+: m/z 333.1239. Found: m/z 333.1230.

2-(5-(4-Methoxyphenyl)-2-methylene-3-oxopyrrolidin-1-yl)
isoindoline-1,3-dione (4h) Reaction time 10 h; white solid; yield 
93 mg (66%); mp 146–147°C; 1H NMR: δ 7.83 (dd, J = 7.2 Hz and 2.4 Hz, 
1H), 7.78 (dd, J = 6.0 Hz and 1.8 Hz, 1H), 7.72 (m, 2H), 7.37 (d, J = 8.4 Hz, 
2H), 6.84 (d, J = 9.0 Hz, 2H), 6.27 (s, 1H), 5.57 (s, 1H), 5.12 (t, J = 7.2 Hz, 
1H), 3.76 (s, 3H), 3.36 (dd, J = 16.8 Hz and 7.8 Hz, 1H), 2.90 (m, 1H); 13C 
NMR: δ 165.9, 165.1, 163.7, 159.9, 135.3, 134.6, 134.4, 130.1, 129.9, 129.8, 
128.8, 124.1, 123.7, 119.4, 114.1, 60.5, 55.2, 35.1; IR: ν 3100, 2965, 2931, 
1796, 1737, 1610, 1515, 1338, 1252, 1222, 1076 cm−1. ESI-HRMS. Calcd for 
C20H16N2O4Na, [M + Na]+: m/z 371.1002. Found: m/z 371.0999.
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