

Inna D. Mokhonova*, Evgenij A. Maksimov, Irina V. Ledenyona, Alevtina Y. Yegorova
and Khidmet S. Shikhaliev

Reactions of 3H-furan-2-ones and 2H-chromen-2-ones with pyrazole-3(5)-diazonium salts

<https://doi.org/10.1515/hc-2017-0192>

Received August 31, 2017; accepted May 9, 2018; previously published online July 13, 2018

Abstract: Derivatives of the new heterocyclic system, 6H-chromeno[4,3-e]pyrazolo[5,1-c][1,2,4]triazin-6-one, were obtained by the reaction of pyrazole-3(5)-diazonium salts with 4-hydroxy-2H-chromen-2-one. Similar reactions with 5-phenyl-3H-furan-2-one followed by intramolecular heterocyclization furnished 6-(4-halophenyl)-7-alkyl-2-phenylfuro[2,3-e]pyrazolo[5,1-c][1,2,4]triazines.

Keywords: 3H-furan-2-one; azo compounds; cyclocondensation; heterocyclic; intramolecular; pyrazolo[5,1-c][1,2,4]triazine.

Introduction

The structure and stability of pyrazole-3(5)-diazonium salts are the subject of many research reports [1–8]. However, the reactions of pyrazole-diazonium salts with heterocycles remain poorly studied [9]. The ability of the reaction products to undergo further cyclizations has not been sufficiently investigated. At the same time, the use of methylene-active compounds of heterocyclic series as the azo component in reactions with pyrazole-3(5)-diazonium salts opens up wide opportunities for the synthesis of new promising biologically active polyheterocyclic systems [10–13]. Previously, successful attempts have been made to react pyrazole-3(5)-diazonium salts with several methylene-active heterocyclic compounds including barbituric and thiobarbituric acids, isochromane-1,3-diones, as well as the derivatives of pyridine-2,4-dione, pyran-2,4-dione and pyrimidine-2,4-dione [14–16]. The purpose of this work was to synthesize derivatives of substituted

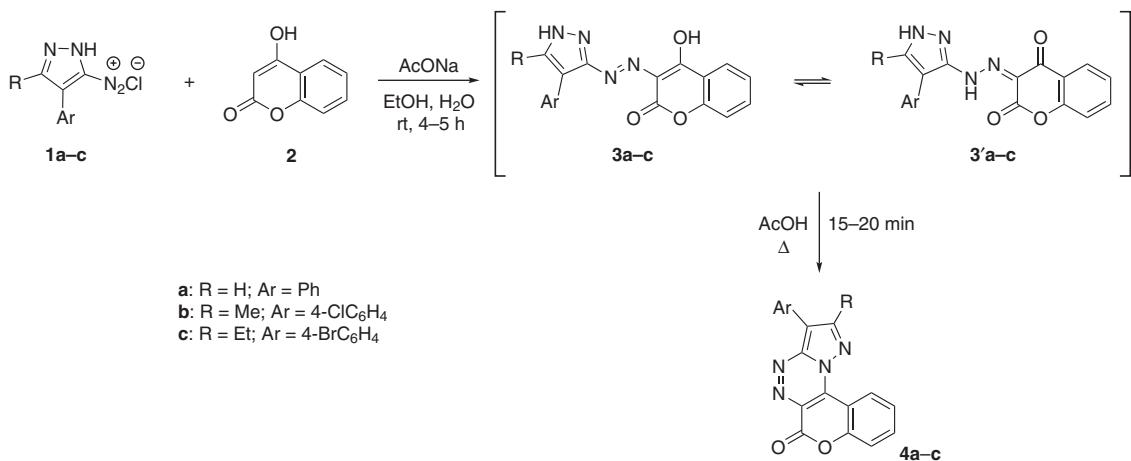
pyrazolotriazines by introducing into their structure oxygen-containing six- and five-membered rings.

Results and discussion

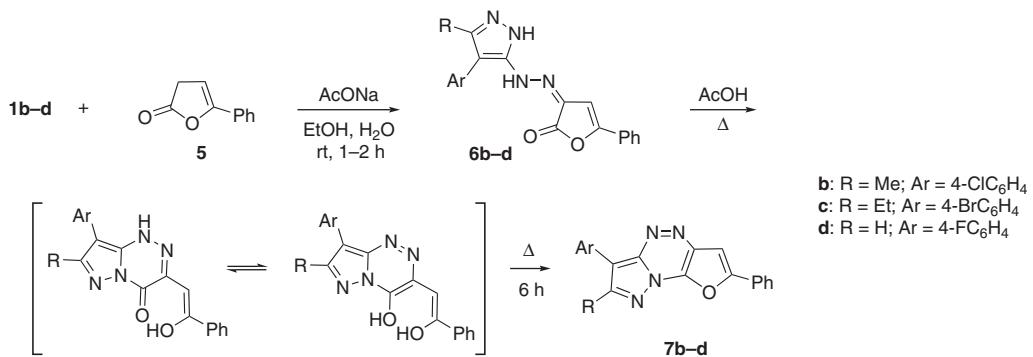
In continuation of our previous research, the pyrazole-3(5)-diazonium salt **1a–c** was allowed to react with 4-hydroxy-2H-chromen-2-one (**2**). This reaction furnished colored azo compounds **3a–c** or hydrazones **3'a–c** [17, 18] that were difficult to isolate. Heating under reflux of **3a–c** or **3'a–c** under acid catalysis led to intramolecular cyclocondensation of these compounds due to attack of the endo-cyclic nitrogen atom of pyrazole at the cyclic ketone group. Based on proton nuclear magnetic resonance (¹H NMR) spectroscopic data, the products were 6H-chromeno[4,3-e]pyrazolo[5,1-c][1,2,4]triazin-6-ones **4a–c**. These products were obtained in 66–85% yields. Their ¹H NMR spectra show no signals of the NH protons of the pyrazole and hydrazone fragments within the typical range of 12–13 ppm, as well as no proton signals of the hydroxyl groups of the salicylic fragment [19, 20].

In contrast to the reaction of Scheme 1, the hydrazones **6b–d**, obtained by coupling of pyrazole-3(5)-diazonium salts **1b–d** with 5-phenyl-3H-furan-2-one (**5**), were isolated and characterized (Scheme 2). Under acid catalysis, compounds **6b–d** underwent intramolecular cyclocondensation to new derivatives of phenylfuro[2,3-e]pyrazolo[5,1-c][1,2,4]triazines **7b–d**. The reaction was carried out under reflux in acetic acid for 6 h.

In summary, the reactions of readily available pyrazole-3(5)-diazonium salts with heterocyclic azo components are convenient ways for obtaining new derivatives of pyrazolo[5,1-c][1,2,4]triazine and polyheterocyclic ensembles with their fragments.


Experimental

¹H NMR spectra were recorded on a Varian 400 and a Bruker DRX-500 (400 and 500 MHz, respectively) spectrometers at 20°C in hexadeuterated dimethylsulfoxide (DMSO-*d*₆) in the presence of tetramethylsilane (TMS) as internal standard. Elemental analysis was carried out on a Carlo Erba NA 1500 and a VarioMicroCube devices. Melting


*Corresponding author: Inna D. Mokhonova, N.G. Chernyshevsky Saratov State National Research University, 83 Astrakhanskaya St., Saratov 410012, Russian Federation, e-mail: inn9882nni@yandex.ru

Evgenij A. Maksimov, Irina V. Ledenyona and Alevtina Y. Yegorova: N.G. Chernyshevsky Saratov State National Research University, 83 Astrakhanskaya St., Saratov 410012, Russian Federation

Khidmet S. Shikhaliev: Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Scheme 1

Scheme 2

points were measured on a Stuart SMP30 instrument. Qualitative analysis of the reaction mixtures was carried out using thin layer chromatography (TLC) on silica gel 60 F245, silufol UV-245 and alugram N/UN₂₄₅ plates, eluting with hexane, ethyl acetate and chloroform or their mixtures. Chromatograms were visualized under UV light or exposure to iodine vapor.

General synthesis of compounds **4a-c**, **6b-d** and **7b-d**

A solution of 10 mmol of a substituted 5-aminopyrazole (10 mmol) in water (15 mL) and hydrochloric acid (30 mL, d = 1.19 g/cm³) was stirred at 0°C and treated with an aqueous solution of NaNO₂ (10 mmol, 10%). After stirring for 10 min at 0°C, the solution of the resultant pyrazole-3(5)-diazonium salt **1a-d** was transferred in portions to a mixture containing compound **2** or **5** (10 mmol), ethanol (10 mL) and a saturated aqueous solution of sodium acetate (7 mL). The mixture was stirred for 4–5 h and then the precipitate of **3a-c** or **6b-d** was filtered off, washed with water and dried at room temperature. A solution of each individual compound in acetic acid (50 mL) was heated under reflux for 20 min for product **4a-c** and for 6 h for product **7b-d**. The solution was cooled slowly, and the resultant crystalline precipitate was filtered off, washed with cold 2-propanol (50 mL), dried and crystallized from acetic acid.

3-Phenyl-6*H*-chromeno[4,3-*e*]pyrazolo[5,1-*c*][1,2,4]triazin-6-one (4a**)** This compound was obtained from **1a**; red crystals; yield 66%; mp 260–262°C; ¹H NMR: δ 7.41 (t, 1H, ³J = 7.4 Hz), 7.56–7.64 (m, 4H), 7.92–7.97 (m, 1H), 8.36 (d, 2H, ³J = 7.6 Hz), 9.23 (s, 1H), 9.81 (d, 1H, ³J = 8.3 Hz). Anal. Calcd for C₁₈H₁₀N₄O₂; C, 68.79; H, 3.12; N, 17.83. Found: C, 68.85; H, 3.12; N, 17.90.

3-(4-Chlorophenyl)-2-methyl-6*H*-chromeno[4,3-*e*]pyrazolo[5,1-*c*][1,2,4]triazin-6-one (4b**)** This compound was obtained from **1b**; red-orange crystals; yield 82%; mp 270–272°C; ¹H NMR: δ 1.29 (s, 3H), 7.51 (t, 1H, ³J = 7.5 Hz), 7.62–7.67 (m, 2H), 7.87–7.98 (m, 5H, ³J = 7.6 Hz), 9.79 (d, 1H, ³J = 8.1 Hz). Anal. Calcd for C₁₉H₁₁ClN₄O₂; C, 62.91; H, 3.06; N, 15.44. Found: C, 62.85; H, 3.06; N, 15.48.

3-(4-Bromophenyl)-2-ethyl-6*H*-chromeno[4,3-*e*]pyrazolo[5,1-*c*][1,2,4]triazin-6-one (4c**)** This compound was obtained from **1c**; orange crystals; yield 75%; mp 265–267°C; ¹H NMR: δ 1.27 (t, 3H), 2.77 (dd, 2H), 7.13–7.88 (m, 7H), 9.56–9.70 (m, 1H), the sample is paramagnetic. Anal. Calcd for C₂₀H₁₃BrN₄O₂; C, 57.02; H, 3.11; N, 13.30. Found: C, 57.10; H, 3.15; N, 13.55.

5-Phenyl-3-(2-(4-(4-chlorophenyl)-3-methyl-1*H*-pyralol-5-yl)hydrazono)-3*H*-furan-2-one (6b**)** This compound was obtained from **1b**; green-yellow crystals; yield 76%; mp 129–131°C; ¹H NMR: δ 1.25 (s, 3H), 6.20 (s, 1H), 7.80–7.89 (dd, 4H, ³J = 7.8 Hz), 7.25–7.48

(m, 5H, $^3J=7.4$ Hz), 8.70 (s, 1H), 11.80 (s, 1H). Anal. Calcd for $C_{20}H_{15}ClN_4O_2$: C, 63.49; H, 3.97; N, 14.82. Found: C, 63.12; H, 3.97; N, 14.95. N, 14.82.

5-Phenyl-3-(2-(4-(4-bromophenyl)-3-ethyl-1H-pyrazol-5-yl)hydrazone)-3H-furan-2-one (6c) This compound was obtained from **1c**; orange crystals; yield 73%; mp 140–142°C; 1H NMR: δ 1.25 (t, 3H), 2.65 (dd, 2H), 6.51 (s, 1H), 7.26–7.50 (m, 5H, $^3J=7.4$ Hz), 7.76–7.89 (m, 5H, $^3J=7.8$ Hz), 8.77 (s, 1H), 11.94 (s, 1H). Anal. Calcd for $C_{21}H_{17}BrN_4O_2$: C, 57.67; H, 3.89; N, 12.81. Found: C, 57.61; H, 3.89; N, 12.92.

5-Phenyl-3-(2-(4-(4-fluorophenyl)-1H-pyrazol-5-yl)hydrazone)-3H-furan-2-one (6d) This compound was obtained from **1d**; red-orange crystals; yield 68%; mp 205–207°C; 1H NMR: δ 6.23 (s, 1H), 7.30–7.37 (m, 4H, $^3J=7.3$ Hz), 7.53–7.70 (m, 4H, $^3J=7.6$ Hz), 7.89 (m, 2H, $^3J=7.8$ Hz), 8.71 (s, 1H), 11.90 (s, 1H). Anal. Calcd for $C_{19}H_{13}FN_4O_2$: C, 65.52; H, 3.74; N, 16.09. Found: C, 65.49; H, 3.74; N, 16.12.

6-(4-Chlorophenyl)-7-methyl-2-phenylfuro[2,3-e]pyrazolo[5,1-c][1,2,4]triazine (7b) This compound was obtained from **9g**; brown crystals; yield 73%; mp 101–103°C; 1H NMR: δ 2.15 (s, 3H), 7.35–7.46 (m, 5H, $^3J=7.4$ Hz), 7.80–8.06 (m, 4H, $^3J=7.9$ Hz), 8.45 (s, 1H). Anal. Calcd for $C_{20}H_{13}ClN_4O$: C, 66.67; H, 3.61; N, 15.56. Found: C, 66.79; H, 3.61; N, 15.62.

6-(4-Bromophenyl)-7-ethyl-2-phenylfuro[2,3-e]pyrazolo[5,1-c][1,2,4]triazine (7c) This compound was obtained from **9h**; brown crystals; yield 75%; mp 95–97°C; 1H NMR: δ 1.15 (t, 3H), 1.75 (m, 2H), 7.11–7.53 (m, 5H, $^3J=7.3$ Hz), 7.85–8.19 (m, 4H, $^3J=8.1$ Hz), 8.67 (s, 1H). Anal. Calcd for $C_{21}H_{15}BrN_4O$: C, 60.14; H, 3.58; N, 13.37. Found: C, 60.29; H, 3.58; N, 13.12.

6-(4-Fluorophenyl)-2-phenylfuro[2,3-e]pyrazolo[5,1-c][1,2,4]triazine (7d) This compound was obtained from **9f**; brown crystals; yield 77%; mp 105–107°C; 1H NMR: δ 6.52 (s, 1H), 7.10–7.50 (m, 5H, $^3J=7.3$ Hz), 8.12–8.26 (m, 5H, $^3J=8.2$ Hz), 8.60 (s, 1H). Anal. Calcd for $C_{19}H_{11}FN_4O$: C, 69.09; H, 3.33; N, 16.97. Found: C, 69.21; H, 3.33; N, 16.52.

Acknowledgments: This work was supported by the Russian Foundation for Basic Research, grant 16-03-00530 (Funder Id: 10.13039/501100002261).

References

- [1] Butler, R. N. Diazotization of heterocyclic primary amines. *Chem. Rev.* **1975**, *75*, 241–257.
- [2] Karci, F. Synthesis of bis-azo dyes derived from heterocyclic components. *Color Technol.* **2005**, *121*, 275–280.
- [3] Ledenyova, I. V.; Didenko, V. V.; Shikhaliev, Kh. S. The chemistry of pyrazole-3(5)-diazonium salts. *Chem. Heterocycl. Compd.* **2014**, *50*, 1318–1349.
- [4] Behr, L. C.; Fusco, R.; Jarboe, C. H. Pyrazoles and reduced and condensed pyrazoles. In *The Chemistry of Heterocyclic Compounds, Pyrazoles, Pryazolines, Pyrazolidines, Indazoles and Condensed Rings*. Wiley, R. H., Ed. Wiley: New York, 1967; Vol. 22, p 888.
- [5] Schofield, K.; Grimmet, M. R.; Keene, B. R. T. *Heteroaromatic Nitrogen Compounds: The Azoles*; Cambridge University Press: Cambridge, 1976, p 437.
- [6] Elnagdi, M. H.; Abdel-Galil, F. M.; Riad, B. Y.; Elgemeie, G. E. H. Recent developments in chemistry of 3(5)-aminopyrazoles. *Heterocycles* **1983**, *20*, 2437–2470.
- [7] Makino, K.; Kim, H. S.; Kurasawa, Y. Synthesis of pyrazoles and condensed pyrazoles. *J. Heterocycl. Chem.* **1999**, *36*, 321–332.
- [8] Elmaati, T. M. A.; El-Taweel, F. M. New trends in the chemistry of 5-aminopyrazoles. *J. Heterocycl. Chem.* **2004**, *41*, 109–134.
- [9] Deeb, A.; Kotb, M. Reactions of 3-diazopyrazolo[3,4-c]pyridazine with reactive methylene compounds and other groups. *Heterocycles* **2004**, *63*, 1143–115.
- [10] Maiorova, O. A.; Yegorova, A. Y.; Grinev, V. S. Crystal structure of 3-(2-(2-nitrophenyl)hydrazone)-5-phenyl-3H-furan-2-one. *J. Struct. Chem.* **2015**, *56*, 803–805.
- [11] Maiorova, O. A.; Babkina, N. V.; Egorova, A. Yu. Studies of stereochemistry of 3-(arylhydrazone)furan-2(3H)-ones, synthesis of 4-(arylhydrazone)pyridazin-3(1H)-ones. *Chem. Heterocycl. Compd.* **2015**, *51*, 514–517.
- [12] Maksimov, E. A.; Mayorova, O. A.; Yegorova, A. Yu. Acid- and base-catalyzed modifications of 3-[aryl(hetaryl)hydrazinylidene]-3H-furan-2-ones. *Russ. J. Org. Chem.* **2015**, *51*, 1305–1307.
- [13] Ledenyova, I. V.; Gracheva, A. A.; Shikhaliev, Kh. S. Reactions of pyrazole-3(5)-diazonium salts with 4-hydroxy-2H-chromen-2-one and isochroman-1,3-dione. *Chem. Heterocycl. Compd.* **2015**, *51*, 734–737.
- [14] Karci, F.; Karci, F. Synthesis and absorption spectra of some novel heterocyclic disazo dyes derived from pyridone and pyrazolone derivatives. *Dyes Pigm.* **2008**, *76*, 147–157.
- [15] Shikhaliev, Kh. S.; Didenko, V. V.; Voronkova, V. A.; Kryl'skii, D. V. Pyrazole-3(5)-diazonium salts in the synthesis of novel pyrazolo[5,1-c][1,2,4]triazines. *Russ. Chem. Bull. Int. Ed.* **2009**, *58*, 1034–1040.
- [16] Ledenyova, I. V.; Didenko, V. V.; Shestakov, A. C.; Shikhaliev, Kh. S. Synthesis of new azocompounds and fused pyrazolo[5,1-c][1,2,4]triazines using heterocyclic components. *J. Heterocycl. Chem.* **2013**, *50*, 573–578.
- [17] Kitaev, Yu. P.; Buzykin, B. I. *Hydrazone*; Nauka: Moskva, 1974 (in Russian).
- [18] Song, H.; Chen, K.; Tian, H. Synthesis of novel dyes derived from 1-ethyl-3-cyano-6-hydroxy-4-methyl-5-amino-2-pyridone. *Dyes Pigm.* **2002**, *53*, 257–262.
- [19] Hajo's, G. Bicyclic 5-6 Systems with one ring junction nitrogen atom: three extra heteroatoms 1:2. In *Comprehensive Heterocyclic Chemistry. II*. Katritzky, A. R., Ed. Elsevier Ltd.: Oxford, 1996; Vol. 8, pp 460–462.
- [20] Hajo's, G.; Riedl, Z. Bicyclic 5-6 systems with one bridgehead (ring junction) nitrogen atom: three extra heteroatoms 1:2. In *Comprehensive Heterocyclic Chemistry. III*. Katritzky, A. R., Ed. Elsevier Ltd.: Oxford, 2008; Vol. 11, pp 765–817.