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Abstract: Reactions of ethyl 4-aryl-2,4-dioxobutanoates 
1a–c at ambient temperature with diaminomaleonitrile 
in glacial acetic acid and with malononitrile in ethanol/
H2O (1:1) led to the formation of 5-(2-aryl-2-oxoethyl)-6-oxo-
1,6-dihydropyrazine-2,3-dicarbontrile 2a–c and ethyl 
5-amino-4,6-dicyanobiphenyl-3-carboxylate derivatives 
3a–c, respectively.

Keywords: 5-amino-4,6-dicyanobiphenyl-3-carboxylate; 
4-aryl-2,4-dioxobutanoate; diaminomaleonitrile; malono
nitrile; pyrazine-2,3-dicarbonitrile.

Introduction
Pyrazines are important flavor components in food [1], 
and show diverse biological activities [1–11]. Diaminom-
aleonitrile (DAMN), a tetramer of hydrogen cyanide and 
a weakly basic diamine with similar reactivity to o-phe-
nylenediamine, is an important synthetic precursor to 
pyrazine-2,3-dicarbonitriles [12]. DAMN can be condensed 
with α-diketones [12], glyoxal, α-keto aldehydes, α-keto 
oximes [13], α-keto thioesters [14], α-keto esters [15–17] and 
4-acylfuran-2,3-diones [16, 17] to provide pyrazine-2,3-di-
carbonitriles in good yields. On the other hand, malononi-
trile is an important starting material for the preparation 
of 2,6-dicyanoanilines [18] biphenyl-3-carboxylates [19] 
and 3-cyano-2-pyridinones [20]. In this paper we report 
simple procedures for synthesis of 2,3-dicyanopyrazine 
2a–c and ethyl 4,6-dicyanobiphenyl-3-carboxylate deriva-
tives 3a–c by reaction of ethyl 4-aryl-2,4-dioxobutanoates 

1a–c with diaminomaleonitrile and malononitrile, respec-
tively (Scheme 1).

Results and discussion
The reactions of ethyl aroylpyruvates 1a–c with diami-
nomaleonitrile in glacial acetic acid at room tempera-
ture for 12  h gave the pyrazine-2,3-dicarbonitriles 2a–c 
in moderate to good yields. On the other hand, treat-
ment of compounds 1a–c with malononitrile under the 
neutral conditions in ethanol/H2O at room tempera-
ture for 3  h afforded the corresponding ethyl 5-amino-
4,6-dicyanobiphenyl-3-carboxylates 3a–c in good to high 
yields (Scheme  1). The structures of products 2a–c and 
3a–c were deduced from their elemental analyses, IR, 
1H NMR, 13C NMR and mass spectra. In particular, analysis 
of 1H NMR and 13C NMR spectra revealed that compounds 
2a–c exist in two tautomeric forms of iminoketone and 
enaminoketone in DMSO-d6 solution. For example, the 
1H NMR spectrum of 2a shows four broad singlets at δ 4.64, 
6.76, 10.49 and 13.62 for CH2, =CH, amidic NH and enaminic 
NH protons and multiplet signals integrated for 10 protons 
of two aromatic rings at δ 7.49–8.02. The 13C NMR spectrum 
of 2a shows carbon signals of CH2, =CH, four C≡N, amide 
C=O and ketone C=O at δ 43.5, 91.4, 111.3, 112.1, 113.3, 114.6, 
176.9 and 195.0, respectively. The IR absorptions of NH, 
C≡N, amide C=O and ketone C=O groups are seen at 3442, 
2224, 1711, 1697 and 1624 cm−1, respectively. The ratios of 
iminoketone tautomer to enaminoketone tautomer for 
compounds 2a–c from the proton integration values of 
CH2 and =CH signals are 0.48:0.52, 0.33:0.67 and 0.33:0.67, 
respectively. Thus, for halogen-substituted compounds 
2b,c the enaminoketone form becomes two-fold predomi-
nant. In the IR and 13C NMR spectra of products 3a–c the 
absorptions of ketone carbonyl groups are absent. The 1H 
NMR spectra of 3a–c are also consistent with the given 
structures.

These results show that DAMN undergoes cyclization 
by nucleophilic attack on the hydroxy ester fragment (C-1 
and C-2) of compound 1 to produce pyrazine-2,3-dicarbo-
nitrile derivatives 2 (Scheme 1) [21]. Nucleophilic attacks of 
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two equivalents of CH2(CN)2 occur at carbonyl groups (C-2 
and C-4) of the ethyl aroylpyruvate 1, followed by cycliza-
tion of the intermediate product 4 and then hydrolysis of 
the nitrile function to obtain the corresponding 5-amino-
4,6-dicyanobiphenyl-3-carboxylate 3 (Scheme 1) [19].

Conclusion
Convenient synthetic routes to 5-(2-aryl-2-oxoethyl)-
6-oxo-1,6-dihydropyrazine-2,3-dicarbontriles 2a–c and 
ethyl 5-amino-4,6-dicyanobiphenyl-3-carboxylates 3a–c 
starting from ethyl 4-aryl-2,4-dioxobutanoates 1a–c are 
described.

Experimental
The reagents were purchased from Merck and used without purifi-
cation. Melting points were measured on an Electrothermal 9100 
apparatus and are uncorrected. Elemental analyses were performed 
using a Heraeus CHN-O-Rapid analyzer. Infrared spectra were meas-
ured using KBr disks on a Thermo Nicolet 8700 FT-IR spectrometer. 
1H NMR and 13C NMR spectra were recorded on a Bruker DRX-300 
AVANCE instrument at 300 MHz or 500 MHz and 75 MHz or 125 MHz, 
respectively, using TMS as internal standard and DMSO-d6 or CDCl3 
as solvent. Thin-layer chromatography was performed on Silufol-UV 
254 plates. Mass spectra were obtained on an Agilent HP 5973 mass 
spectrometer operating at ionization potential of 70 eV. Ethyl 
4-aryl-2,4-dioxobutanoates 1a-c were prepared from diethyl oxalate 
(10 mmol) and 4′-substituted acetophenone (10 mmol) in the pres-
ence of sodium ethoxide (10 mmol) in ethanol (30 mL) as previously 
reported [22].

General procedure for the synthesis of pyrazine-2,3-
dicarbonitriles 2a–c

To a stirred solution of diaminomaleonitrile (1.0  mmol) in glacial 
acetic acid (10 mL) was added compound 1a–c (1.0 mmol) at room 
temperature and the mixture was then stirred for 12 h. The progress of 
the reaction was monitored by TLC (eluent AcOEt/hexane, 1:1). After 
removal of the solvent, the residue was crystallized from acetonitrile 
for 2a, 2-propanol for 2c and washed with chloroform for 2b.

6-Oxo-5-(2-oxo-2-phenylethyl)-1,6-dihydropyrazine-2,3-dicarbo-
nitrile (2a) Brown crystals; yield 0.18 g (68%); mp 242–244°C (ref. 
[16] mp 243°C); IR: ν 3442 (NH), 3064 (CH, aromatic), 2896 (CH, ali-
phatic), 2224 (C≡N), 1711 (C=O, amide), 1697, 1624 (C=O, ketone), 1597 
(NH) cm−1; 1H NMR (DMSO-d6): δ 4.64 (2H, s, CH2), 6.76 (1H, s, =CH), 
7.49–7.71 (6H, m, 2Ph), 7.94 (2H, d, 3J = 7.1 Hz, 2CHortho of Ph), 8.02 (2H, 
d, 3J = 7.4 Hz, 2CHortho of Ph), 10.49 (2H, br s, 2NH, amide), 13.62 (1H, br 
s, NH, enamine); 13C NMR (DMSO-d6): δ 43.5 (CH2), 91.4 (=CH), 111.3, 
112.1, 113.3, 114.6 (4C≡N), 120.1, 126.7, 128.4, 128.7, 128.9, 129.0, 132.3, 
133.9 (12C, 2Ph), 134.9, 135.9, 151.0, 151.5, 155.2, 159.2 (6C=N), 176.9 
(2C=O, amide), 195.0 (2 C=O); EI-MS: m/z (%) 264 (M·+, 99), 235 (50), 
186 (34), 159 (20), 131 (24), 105 (100), 77 (99), 51 (44). Anal. Calcd for 
C14H8N4O2 (264.24): C, 63.64; H, 3.05; N, 21.20. Found: C, 63.89; H, 3.34; 
N, 20.92.

5-[2-(4-Chlorophenyl)-2-oxoethyl]-6-oxo-1,6-dihydropyrazine-
2,3-dicarbontrile (2b) Yellow powder; yield 0.15 g (50%); mp 
262–264°C; IR: ν 3434 (NH), 3082 (CH, aromatic), 2914 (CH, aliphatic), 
2236, 2223 (C≡N), 1700 (C=O, amide), 1624 (C=O, ketone), 1590 (NH) 
cm−1; 1H NMR (DMSO-d6): δ 4.62 (2H, s, CH2), 6.70 (1H, s, =CH), 7.56 
(2H, d, 3J = 8.5 Hz, 2CHortho of Ph-Cl), 7.62 (2H, d, 3J = 8.5 Hz, 2CHortho of 
Ph-Cl), 7.95 (2H, d, 3J = 8.5 Hz, 2CHmeta of Ph-Cl), 8.03 (2H, d, 3J = 8.5 Hz, 
2CHmeta of Ph-Cl), 13.81 (1H, br s, NH, enamine), amidic NH protons 
signals are missing; 13C NMR (DMSO-d6): δ 43.5 (CH2), 92.6 (=CH), 
112.7, 113.4, 113.7, 114.8 (4C≡N), 119.0, 128.4, 128.9, 129.0, 129.1, 130.2, 
134.1 (11C, 2Ph), 134.7, 136.5 (2C=N), 138.7 (Cipso of Ph-Cl), 150.9, 151.4, 
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Scheme 1 Synthesis of pyrazines 2a–c and ethyl biphenyl-3-carboxylates 3a–c.
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156.6, 159.5 (4C=N), 173.3 (2C=O, amide), 194.2 (2C=O); EI-MS: m/z (%) 
300 (M·+ + 2, 9), 298 (M·+, 27), 269 (11), 186 (16), 139 (100), 111 (51), 75 
(31), 43 (28). Anal. Calcd for C14H7ClN4O2 (298.68): C, 56.30; H, 2.36; N, 
18.76. Found: C, 56.58; H, 2.58; N, 18.49.

5-[2-(4-Bromophenyl)-2-oxoethyl]-6-oxo-1,6-dihydropyrazine-
2,3-dicarbontrile (2c) Yellow powder; yield 0.15 g (44%); mp 
270–272°C; IR: ν 3439 (NH), 3080 (CH, aromatic), 2911 (CH, aliphatic), 
2235, 2224 (C≡N), 1701 (C=O, amide), 1624 (C=O, ketone), 1588 (NH) 
cm−1; 1H NMR (DMSO-d6): δ 4.62 (2H, s, CH2), 6.71 (1H, s, =CH), 7.70 
(2H, d, 3J = 8.5 Hz, 2CHmeta of Ph-Br), 7.77 (2H, d, 3J = 8.4 Hz, 2CHmeta of 
Ph-Br), 7.87 (2H, d, 3J = 8.5 Hz, 2CHortho of Ph-Br), 7.95 (2H, d, 3J = 8.4 Hz, 
2CHortho of Ph-Br), 13.80 (1H, br s, NH, enamine); 13C NMR (DMSO-d6): 
δ 43.4 (CH2), 91.7 (=CH), 112.2, 113.2, 113.3, 114.6 (4C≡N), 119.9, 125.9, 
128.0, 128.6, 128.7, 130.3, 131.9, 132.1 (12C, 2Ph), 134.1, 134.9, 150.8, 
151.3, 155.5, 159.1 (6C=N), 175.0 (2C=O, amide), 194.3 (2C=O); EI-MS: 
m/z (%) 344 (M·+ + 2, 43), 342 (M·+, 44), 315 (14), 183 (100), 157 (50), 131 
(16), 104 (13), 76 (30), 50 (11). Anal. Calcd for C14H7BrN4O2 (343.13): C, 
49.00; H, 2.06; N, 16.33. Found: C, 49.28; H, 2.31; N, 16.05.

General procedure for the synthesis of ethyl  
5-amino-4,6-dicyanobiphenyl-3-carboxylates 3a–c

To a stirred solution of malononitrile (1.0  mmol) in EtOH/H2O (1:1, 
10 mL) was added compound 1a–c (1.0 mmol) at room temperature 
and the mixture was then stirred for 3 h. The progress of the reaction 
was monitored by TLC (eluent AcOEt/hexane, 1:1). The resulting solid 
was filtered, washed with EtOH/H2O (1:1) and then crystallized from 
ethanol.

Ethyl 5-amino-4,6-dicyanobiphenyl-3-carboxylate (3a) Yellow 
cotton-like solid; yield 0.12 g (82%); mp 196–198°C; IR: ν 3459, 3330, 
3235 (NH), 2973 (CH, aliphatic), 2229, 2214 (C≡N), 1739 (C=O, ester), 
1643 (C=C), 1580 (NH), 1250 (C-O) cm−1; 1H NMR (CDCl3): δ 1.47 (3H, t, 
3J = 7.2 Hz, CH3), 4.50 (2H, q, 3J = 7.2 Hz, CH2), 5.52 (2H, br s, NH2), 7.51 
(1H, s, CH), 7.53–7.62 (5H, m, Ph); 13C NMR (CDCl3): δ 13.8 (CH3), 62.3 
(CH2), 93.8 (C4), 98.6 (C6), 114.6, 115.3 (2C≡N), 118.2 (C2), 128.4, 128.8, 
129.7 (5C, Ph), 136.7 (Cipso of Ph), 136.9 (C3), 150.0 (C1), 154.1 (C5), 163.3 
(C=O, ester); EI-MS: m/z (%) 291 (M·+, 100), 263 (50), 245 (36), 219 (34), 
191 (51), 164 (44), 77 (9). Anal. Calcd for C17H13N3O2 (291.30): C, 70.09; 
H, 4.50; N, 14.42. Found: C, 70.27; H, 4.39; N, 14.65.

Ethyl 5-amino-4,6-dicyano-4′-chlorobiphenyl-3-carboxylate (3b)  
Yellow cotton-like solid; yield 0.14 g (86%); mp 212–214°C; IR: ν 3327, 
3350, 3252 (NH), 2980 (CH, aliphatic), 2221 (C≡N), 1738 (C=O, ester), 
1634 (C=C), 1579 (NH), 1257 (C-O) cm−1; 1H NMR (CDCl3): δ 1.45 (3H, t, 
3J = 7.1 Hz, CH3), 4.48 (2H, q, 3J = 7.1 Hz, CH2), 5.57 (2H, br s, NH2), 7.44 
(1H, s, CH), 7.51 (4H, m, Ph-Cl); 13C NMR (CDCl3): δ 14.0 (CH3), 63.0 
(CH2), 95.4 (C4), 99.1 (C6), 114.7, 115.1 (2C≡N), 120.0 (C2), 129.4, 129.7 (4C, 
Ph), 135.0 (Cipso of Ph-Cl), 136.5 (Cpara of Ph-Cl), 136.6 (C3), 148.8 (C1), 
153.2 (C5), 163.2 (C=O, ester); EI-MS: m/z (%) 327 (M·+ + 2, 39), 325 (M·+, 
100), 297 (52), 275 (30), 253 (28), 217 (53), 189 (23), 163 (12). Anal. Calcd 
for C17H12ClN3O2 (325.75): C, 62.68; H, 3.71; N, 12.90. Found: C, 62.92; H, 
3.89; N, 12.58.

Ethyl 5-amino-4,6-dicyano-4′-bromobiphenyl-3-carboxylate (3c)  
Yellow cotton-like solid; yield 0.14 g (76%); mp 230–232°C; IR: ν 3428, 
3350, 3251 (NH), 2979 (CH, aliphatic), 2220 (C≡N), 1737 (C=O, ester), 

1634 (C=C), 1577 (NH), 1257 (C-O) cm−1; 1H NMR (CDCl3): δ 1.45 (3H, 
t, 3J = 7.1  Hz, CH3), 4.48 (2H, q, 3J = 7.1  Hz, CH2), 5.55 (2H, br s, NH2), 
7.44 (1H, s, CH), 7.45 (2H, d, 3J = 8.3 Hz, 2CHmeta of Ph-Br), 7.67 (2H, d, 
3J = 8.3 Hz, 2CHortho of Ph-Br); 13C NMR (CDCl3): δ 14.0 (CH3), 63.0 (CH2), 
95.5 (C4), 99.1 (C6), 114.7, 115.1 (2C≡N), 120.0 (C2), 124.8 (Cipso of Ph-Br), 
130.0, 132.3 (4C, Ph), 135.5 (Cpara of Ph-Br), 136.6 (C3), 148.8 (C1), 153.2 
(C5), 163.2 (C=O, ester); EI-MS: m/z (%) 371 (M·+ + 2, 99), 369 (M·+, 100), 
341 (41), 326 (24), 297 (20), 217 (75), 189 (39), 163 (29). Anal. Calcd for 
C17H12BrN3O2 (370.20): C, 55.15; H, 3.27; N, 11.35. Found: C, 54.91; H, 
3.08; N, 11.52.
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